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Reversible thermal breakdown in thin films is shown to resemble a first-order phase transition. 
The probability, size, and growth time of a critical nucleus are calculated. 

Reversible thermal breakdown is a typical example of ra 

bistable behavior in nonequilibrium systems.' If a conduct- 1 = I (P-Q)  dT=O. (3) 
ing specimen is placed in a (specified) external magnetic T I  

field, its temperature will depend on the relative rates of heat The quantity J may be regarded as a "supersaturation," 
evolution and dissipation. If the heat evolution is nonlinear while Eq. ( 3 ) is analogous to Maxwell's If the super- 

saturation is small (R, ) r, ), Eq. (2)  gives 
P ( T ) = o ( T ) E 2 V  . 

and exceeds the heat transfer Q(T) for a certain range of 
temperatures (Fig. I), reversible thermal breakdown, ac- 
companied by a rapid temperature change with hysteresis, 
may occur in the system [here o( T) and V are the conduc- 
tivity and volume of the specimen, and E is the electric 
field]. 

We will show below that reversible thermal breakdown 
in thin films is completely analogous to a first-order phase 
transition: at a certain "supersaturation," a macroscopic nu- 
cleus of hot "phase" forms in unstable equilibrium with the 
surrounding cold film. The thermal fluctuations are respon- 
sible for critical nucleation. Macroscopic critical nuclei do 
not occur in one- or three-dimensional systems. 

The kinetics of thermal breakdown in a thin film of 
thickness d is described by the heat equation, averaged over 
the thickness of the film: 

Here r is a point in the plane of the film, x, is the thermal 
conductivity, and c, P(T) ,  Q( T) are the specific heat, heat 
evolution, and heat dissipation per unit film area. The homo- 
geneous steady states of the film are found from the equation 
P(T)  = Q(T), which for a range of external fields E has 
three solutions TI, T, , and T, , of which TI and T, are stable 
(Fig. 1 ) . If the temperature distribution is nonuniform, the 
characteristic width of the interface (wall) between the hot 
and cold phases is 

(r, 9 d ) .  The width r, may vary widely from -10W2 to - lop6 cm, depending on the experimental conditions. 
Let us first consider time-independent, axisymmetric 

solutions of ( 1 1, T = To( r )  ; these correspond to round nu- 
clei of radius R, r,. Multiplying ( 1 ) by dTo/dr and inte- 
grating over r, we get 

The nucleus of new phase in the film is thus macroscopic, as 
in the capillary theory of first-order phase  transition^.^ 
Thermal conduction across the wall of the nucleus plays the 
role of surface tension.'' 

As usual, nuclei with R = R, are unstable; they grow 
(decay) for R > R, (R <R, ). We will find the growth rate 
by exploiting the fact that for nuclei with small curvatures 
(R)  R, ), Eq. ( 1 ) has a solution that describes a moving 
wall (a switching wave'.4), and the thickness of the wall 
remains comparable to r, < R. We can therefore use the ap- 
proximate relation T = To[r - u (R ) t] to find the average 
growth rate. Proceeding as in the derivation of (4), we find 
from ( 1 ) that 

where the quantity 
0. 

can be regarded as the velocity of the moving planar inter- 
face (wall) at a given supersaturation J. 

Relation (5 )  can be used to calculate the critical nuclea- 
tion time (Zel'dovich time5) : r, zR, /urn . 

An analysis shows that all the properties of a round 
nucleus apart from its radius are stable to small temperature 
fluctuations ST  = T - To(r), again as would be expected 
for a first-order phase transition. 

A nucleus of critical size can form only due to fluctu- 
ations in P, Q, and T. We can estimate the probability for a 
nucleus of radius R, to form spontaneously at a given super- 
saturation J. In contrast to the case of first-order phase tran- 
sitions, here the standard thermodynamic formulas cannot 

m T h  

x 1 (% ) ': - 5 (P-Q)  dT=O. 
o T I  (2 )  L l f *  

Most of the contribution to the first term in (2) comes from I 

the region R, - r, 5. r 5 R, + r,, where R, is the radius of 
the nucleus. A steady state with R, -+ w (a  straight-line in- 5 < Th 
terface) is therefore possible if FIG. 1. 
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be used and one must solve a kinetic problem. If g(R) de- 
notes the size distribution of the nuclei, then the flux of nu- 
clei as a function of R is given by 

where the effective diffusion coefficient D(R)  (see, e.g., Ref. 
6) is proportional to the correlation function Sv(R,T) for 
the fluctuations in nucleus growth rate caused by the fluctu- 
ations SP, SQ, 6T. We will assume that the correlation radius 
for the fluctuations is small, r,, (r, . I t  is then easy to show 
that D(R) = Dor,/R holds. The steady-state distribution 
function for R<Rc follows from the condition j ( R )  = 0: 

Up to exponentially small terms, expression (7) gives the 
probability for the formation of a critical nucleus. If the 
magnitudes of the fluctuations 6 P  and SQ are close to their 
equilibrium value, the probability (7) is nearly equal to the 
probability of a temperature fluctuation ST  = T, - T, in a 
volume V =  2?iRcr,d and is minute for any reasonable 
choice of parameter values. However, the size of the current 
fluctuations in the heat evolution may substantially exceed 
the equilibrium value if the power applied to the material is 
large and the temperature is low. For example, during ava- 
lanche breakdown in a p-n junction (Ref. 7), P can reach 
10" W/cm3. The width of the strong-field region ( E z  lo6 
V/cm) is d--, r, -, lop5 cm. Thus 

which is large enough so that the nucleation kinetics should 
be observable. 

Large fluctuations may also be produced by fluctu- 
ations Spin films heated by optical radiation.274 The problem 
considered above is also relevant to degradation processes in 
semiconductor lasers. 

We are grateful to B. M. Ashkinadze for helpful discus- 
sions. 

"In a one-dimensional system (rod), the heat flux from the hot to the cold 
region is independent of the length of the former, apart from exponen- 
tially small terms; nuclei of new phase are therefore "microscopic," i.e., 
R, -r , lnJdJ (Ref. 4). In a three-dimensional system, because heat 
transfer proceeds from the surface while heat is evolved throughout the 
interior, the size of a nucleus (inhomogeneity) may be either r, or else 
close to the length 1 of the specimen (when r, > I). In the latter case, the 
entire specimen may be regarded as a critical nucleus. 
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