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Quantum absorption of ultrasound by free carriers in low-dimensional systems in the presence of 
a magnetic field is analyzed theoretically. The main qualitative features distinguishing this 
absorption from its three-dimensional analog (the geometry of the absorption and the role of 
dynamic screening) are discussed. Estimates indicate that it should be possible in principle to 
observe giant quantum oscillations in existing gallium arsenide heterostructures. 

Quantum effects are observed when sound propagates 
in solids in a strong magnetic field and at low temperatures. 
Specifically, the electron sound-absorption coefficient r os- 
cillates with a large amplitude T,,,/T,,, & 1 ("giant" 
quantum oscillations) . I  The absorption is greatest when the 
magnetic field is such that the Fermi level crosses a Landau 
level, and the projection of the magnetic field along the di- 
rection of sound propagation must be nonzero. Recent ex- 
periments2 on electron damping of Rayleigh waves in 
GaAlAs-GaAs heterostructures have stimulated interest in 
the study of giant quantum oscillations (GQO) in quasi- 
two-dimensional electron systems. The possibility that giant 
quantum oscillations might occur in a dimensionally quan- 
tized film with q l H  (where q is the wave vector of the acous- 
tic wave, H the magnetic field) was discussed in Ref. 3; 
GQO's do not occur in three-dimensional systems under 
these conditions3. The sound absorption coefficient was cal- 
culated in Refs. l, 3 by using the Fermi "golden rule" with 
an effective electron-phonon interaction constant, i.e., dy- 
namic screening effects were neglected. Such a treatment is 
justified for typical metals. In the situation of interest to us 
however, dynamic screening substantially alters both the ab- 
solute absorption r and the ratio I?,,, /T,,, . In addition, 
the temperature and magnetic field dependences of the GQO 
parameters change, while the phase velocity of the sound 
wave undergoes small but abrupt changes as the magnetic 
field varies. 

In Sec. 1 we derive a general expression for the complex 
renormalization of the Rayleigh wave frequency caused by 
its interaction with a quasi-two-dimensional electron gas. In 
Sec. 2 we analyze a homogeneous two-dimensional model 
system in which the magnetic field makes an arbitrary angle 
with the vector q. Section 3 is devoted to a study of a quasi- 
one-dimensional system (two-dimensional electrons in a 
strip of finite width), while in Sec. 4 we generalize the model 
to the case when an arbitrary potential confines the electrons 
along the normal to the surface. 

placement vector and the electric potential e, are nonzero; 
the z axis is chosen normal to the surface, while the x axis is 
parallel to the direction [ 1101. In this geometry the equa- 
tions governing the electric field and the motion of the crys- 
tal have the form 

x ( z )  ((P"-q2rp)+8xp(iqu,'-u,q2/2) =-4xp,6 (z), ( 3 )  

after elimination of a common factor exp (iqx-iwt). Here c, 
and c, are the longitudinal and transverse velocities of sound 
in the bulk of the crystal, f l  is the piezoekctric modulus,p is 
the density of the crystal, X(Z < 0)  is the dielectric constant 
of the crystal, ~ ( z  > 0)  = X, is the dielectric constant of the 
surrounding material, p, is the variable component of the 
surface charge density associated with the wave, and primes 
denote derivatives with respect toz. The factor S(z) appears 
on the right in (3) because we assume that the acoustic 
wavelength (and hence the characteristic scale of the per- 
turbing potential) is much greater than the width of the con- 
ducting layer. The quantity p, is expressed as usual in terms 
of the polarization operator: 

In Eqs. ( 1 ) and (2)  we have made the customary approxi- 
mation that the crystal is acoustically isotropic in the ab- 
sence of piezoelectric interaction. We have also neglected 
the mechanical loading of the surface, i.e., the Rayleigh 
wave is assumed to be the same as on a free surface; this is 
justified because for the wavelengths R - 1 pm of interest, 
the mass of the adjoining dielectric is much less than the 
mass of the piezoelectric material involved in the wave mo- 
tion. It follows that we have 

The system ( 1 ) - (3 )  must be supplemented with the 
1. GENERAL FORMULAS FOR THE ABSORPTION 
COEFFICIENT AND RENORMALIZATION OFTHE SPEED OF 

boundary conditions 

SOUND ct"uz(-o) + iqu,(--0) I- (Blp) iqcp (0) =O, 
For definiteness we will consider a situation which has i(c11-2ctZ) qux (-0) +cl2uZf (-0) =0, (P (+O) =cp (-0) , (4) 

been realized experimentally (Refs. 2)," in which two-di- xlcp'(+ 0) - X ( P  (-0) -4npiqu,(-0) =4nrIs (a, q) cp (0). 
mensional electrons interact piezoelectrically with a Ray- 
leigh wave. We assume that the Rayleigh wave propagates Mechanically, they describe a free surface not subject to any 
along the piezoactive direction [ 1 101 on the [001 ] surface of external force, while electrostatically they specify a jump in 
a cubic crystal. The x- and z-components u,, u, of the dis- the potential corresponding to a givenp,. We proceed in the 
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usual way by seeking a solution as a superposition of expon- 
ential~ exp (xiz). The damping factors K~ are the roots of the 
determinant of the system of algebraic equations obtained by 
substitution into (1)-(3). In our case there are three zeros 
(the wave has three components). In the absence of piezoe- 
lectric interaction (p = 0) , 

The equation 9 = 0 follows from the conditions (4),  
where 9 is the determinant of the boundary conditions (see, 
e.g., Ref. 4). This equation determines the dispersion w (q) 
of the surface wave. In general it is not possible to find a 
closed-form expression for w (9). However, the piezoelectric 
modulus is generally small, and this can be exploited to find 
the complex correction Aw(q) to the dispersion 
w,(q) = c, 191 for an isotropic crystal with fi = 0 and Ray- 
leigh wave velocity c, . A rather lengthy calculation leads to 

where 11, = (X + x,) lq1/4~ and a ,  the "effective" electro- 
mechanical coupling coefficient for the surface wave, de- 
pends on the direction of q, the orientation of the surface, 
and the ratios c, /c,,c, /c,. In our geometry 

We stress that Aw(q) in Eq. (5) gives only the component of 
the frequency renormalization due to the presence of the 
electrons; this is the component which is affected by magnet- 
ic fields and measured experimentally. 

The formulas for the absorption coefficient and the 
Rayleigh wave velocity normalization follow from (5); we 
have 

where II, = II,' + in ,  ". The problem thus reduces to find- 
ing the polarization operator for a quasi-two-dimensional 
gas in a magnetic field. 

The technique proposed by Ingebrigtsens is widely used 
to calculate the electron damping of sound in multilayer sys- 
tems. This method involves matching the impedances on ei- 
ther side of the interface; local electrodynamic equations are 
used to treat the conducting layer, i.e., it is assumed that 
II (z, 2') = II (z)u(z-2'). However, this is clearly invalid for 
systems such as quantum films. Although the resulting for- 
mulas are similar in structure to Eqs. (5)-(7) above, their 
derivation is thus open to question. In particular, it is not 
clear how to calculate the effective impedance for a quasi- 
two dimensional electron system with allowance for spatial 
dispersion. The derivation given here is more systematic and 
explains the significance of the "surface" quantities such as 
11, that appear in the result for the case of a thin electron 
layer (see below). In the next section we will calculate the 

absorption coefficient and phase velocity renormalization 
directly. 

2. GQ0 IN A QUASI-TWO-DIMENSIONAL ELECTRON SYSTEM 

We start with an exactly solvable model, in which the 
electron motion along the z axis is confined by a parabolic 
potential U(z) = mn2z2/2. We note that molecular beam 
epitaxy can be used to fabricate such parabolic,potential 
wells in GaAs-GaAlAs structures, for e ~ a m p l e . ~  Assume 
first that the magnetic field lies in the plane of the structure 
and is perpendicular to q (i.e., Hlly). The energy spectrum 
depends on three quantum numbers: 

&,=en (k,, k,)=@(n+'l2)+k2/2%+k,2/2m, (8 )  

where i;, = (wC2 + Ct2)lt2, we = lelH/mc is the cyclotron 
frequency, EI = m ( ~ / l l ) ~ ,  m is the effective mass, and 
f i =  1. 

We will use the relaxation time Ansatz'~~ for the density 
matrix to calculate the polarization operator. In the calcula- 
tions we again use the fact that the electron layer is thin 
compared to the wavelength; the potential p(z )  and the cor- 
rection to the chemical potential are taken outside the inte- 
grals (see, e.g., Eq. (20) in Ref. 8) by replacing them by 
their values at z = 0. The result for the polarization operator 
then becomes 

Here Z = w + i/r, 

where Sis the area of the system, a denotes the set of electron 
quantum numbers, the fa are the Fermi occupation 
numbers, Jao (q) = < a 1 eiqx > , and T is a phenomenologi- 
cal relaxation time. 

In the case of interest (large spatial dispersion), the 
damping of the acoustic wave can be described as a quan- 
tum-mechanical process in which phonons are absorbed by 
electrons (this is the essential physical feature of GQO). We 
consider the case wr( 1 ,ql k 1 of greatest experimental inter- 
est (1 is the Fermi mean free path). These two conditions are 
consistent, because the speed of sound is small compared to 
the typical electron velocity. In specializing the general ex- 
pressions (9 ) ,  ( 10) to our model system, we impose the con- 
ditions T ( Z ,  q( ( r n ~ ) ' / ~ ,  which are generally necessary in 
order for GQO to be observed ( T  is the temperature). We 
can then replace J,, (9) by 6 ,  n.6kyf, kx + , , where 
P =  (n, kx , ky ), a = (n', k :, ky ') . The expressions for 
n,', II, " become 
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Here 

where E~ is the Fermi energy. 
It is clear from (11) and (12) that IIS"/IIs1-wT(1, 

and furthermore ns1/II0 - qa, where a = (x, + x,) /2me2 is 
the effective Bohr radius. Since the parameter qa is small for 
all reasonable acoustic frequencies, we get the following fi- 
nal expressions for the absorption coefficient and phase ve- 
locity renormalization: 

-=- Ah a{ i -p( : )  "' [E( l+th$)]-'1. (14) 
C R  n 

These results have the same form for an arbitrary angle 8 
between q and H (H lies in the x, y plane); one merely re- 
places 3 by the quantity ( B  ' cos28 + 3 ' sin' 8) '", where 
B = qr(2T/m) ' I 2 .  

As the magnetic field varies, for each n = 1,2, ..., the 
quantity F(A, ,3)  passes through a maximum lying in the 
region (A, ( g 1, so that the corresponding Landau level with 
hybrid frequency 5 lies in the thermal layer with energy 
nearly equal to the Fermi energy. For A, large and negative, 
F(A,, 2 )  decays exponentially, while in the limit A, ) 1 we 
have F(A,, 3) - (2 A, ) -'I2. The quantity F(A,, 3) is of 
the order of (3 'A,) - 'I2 g 1 because the electron gas is high- 
ly degenerate, which implies A,) 1. The denominator in 
expression ( 13) for r varies sharply near the nth maximum, 
from 2n for A, < 0 to 2(n + 1) for A, > 0. The ratio I?,,,/ 
r,, is of the order o ~ ~ ( z / T )  'I2 ) 1, provided of course that 
the parameter 2 characterizing the scattering is not too 
small. The magnetic field dependence of the absorption coef- 
ficient thus exhibits the characteristic features of giant quan- 
tum oscillations, and moreover, the maxima in I? are highly 
asymmetric. We stress that this asymmetry is due to the ef- 
fects of dynamic screening, which causes the denominator in 
(13) to have step-function dependence on the magnetic 
field. Formula ( 14) shows that a similar step dependence is 
also present for the renormalized phase velocity of the wave. 

3. A QUASI-ONE DIMENSIONAL SYSTEM 

Let us assume that a Rayleigh wave propagates along a 
narrow strip of quasi-two-dimensional electrons (along the 
x axis). The method discussed above clearly breaks down in 
this case, because for an acoustic wave unbounded along the 
y axis, the renormalization contributed by a single "strip" of 
electrons vanishes. Rigorously speaking, one must solve the 
problem for an acoustic beam of finite width, which is com- 
putationally very difficult. We will therefore find the absorp- 
tion coefficient by a simpler method, which is based on di- 
rectly calculating the energy losses of the wave within the 
conducting r e g i ~ n . ~  Since the electromechanical coupling 
constant is small, to first order the displacement field within 
the Rayleigh wave may be assumed to be the same as in the 

absence of piezoelectric interaction. The problem then re- 
duces to solving the equation 

=-4npL6 ( y )  6 ( z )  . (15) 

for the electrostatic potential, where the right-hand side is 
specified. The factor 6(y) appears in ( 15) because the width 
of the strip (as well as its thickness) is assumed much 
smaller than the wavelength. The quantity pL is the varying 
part of the linear charge density; it is expressible in terms of 
the polarization operator for an "electron filament": p, = 

- n, (w, 4)4)(0,0). 
Since the components u,,, (z) of the displacement field 

are expressible as superpositions of exponentials exp (K,,~z) 
(see, e.g., Ref. lo),  Eq. ( 15) is easily solved. The potential 
p(y, z) can be expressed in terms of the modified Bessel 
function KO( Iql (y2 + 2)  'I2), which diverges logarithmical- 
ly as y, z-0. Clearly, this divergence must be cut off at dis- 
tances comparable to the width of the strip. Denoting the 
cut-off logarithm in the expression for p(0,O) by A, we find 
that the absorption coefficient is 

where a is as in ( 5 ) ,  II,, = (X + ,y,)/4, and d is the width 
of the acoustic beam. 

Let us first consider the low-frequency limit ql<l in the 
absence of a magnetic field; in this case II, (w,q) is express- 
ible in terms of the static conductivity uL = n, e2r/m, where 
n, is the linear electron density. We then have 

i.e., as a function of the acoustic frequency I? has a maximum 
at w = w, = (X + )cR '/4AuL (such is not the case for 
two- and three-dimensional systems). Assuming a strip of 
width 0.2 pm, we have w,- lo5-lo6 s-' for typical GaAs- 
based heterostructures. 

We next consider giant quantum oscillations for a qua- 
si-one-dimensional system; the potential confining the elec- 
tron motion along they axis is again assumed to be parabolic: 
U(y) = mf12y2/2. We continue to assume that wr< 1, which 
implies that II,') n, ". It should be noted that in this one- 
dimensional situation, dynamic screening effects should be 
less pronounced than in the three- and two-dimensional 
cases. Indeed, in the denominator in ( 16) we may neglect 1 
compared with AIIL1/IIL, only if the Coulomb parameter 
e2/a(x + xI)uT is sufficiently large. Estimates reveal that 
near the maxima AnLt/IIL0 is greater than 1, although not 
by much, while between maxima it is of the order of unity. 
The final result is 

where 
r=_e"(FilT)'"l~ (x+ XI) ,  
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Equation ( 18) gives the estimate rmax /rmin -iS3I2Ry * 
T '12~',  where R, * is the effective Bohr energy. The magnet- 
ic field dependence of the giant quantum oscillations in this 
case thus proves to be the same as for a three-dimensional 
system (-i;i3IZ), while the temperature dependence 
( - T -'I2) is the same as for a two-dimensional system. 

4. ARBITRARY POTENTIALS U(z) 

The treatment in Sec. 2 can be generalized to arbitrary 
potentials U(z). Indeed, let the magnetic field be perpendic- 
ular to q (i.e., parallel to they axis). Then we can replace ( 8) 
by 

en (L, k,) =en( kx)+k,Z/2m, (19) 

while the expression for the Jd (q) becomes 

where p,, ( z ) , ~ ,  (k, ) are the eigenfunctions and eigenval- 
ues of the operator 

As before, the inequality E, + , - E, % q2/m holds by a wide 
margin (it replaces the condition iS4q2/m for the case of a 
parabolic potential). The integral in (20) can then be re- 
placed by S,,. . 

Calculations similar to the ones used in deriving ( 13) 
show that the oscillations in the absorption coefficient are 
due primarily to the integral 

The function en (k, ) also describes a "well" in k-space, re- 
gardless of the form of the potential confining the electrons 
along the z axis. If the Fermi level lies close to the minimum 
of the function E, (k, ,ky ), in the sense that - E, 5 T 
(and, of course, E, + - E, % T), we can use the expansion 

min 2 ~ , ( k , ) = ~ , ~ ~ ~ + ( k , - k , ,  ) /2mn,wheremnistheef- 
fective mass in the nth subband. The integral J, is then of 
order J, """= Y(mm, ) 'I2 if the scattering is not too strong, 
i.e., grVT- 1. On the other hand, if E, is not close to the 
bottom of one of the subbands, i.e., (E, - E, I % T, the inte- 
gral over ky can be evaluated by approximating the hyperbo- 
lic cosine by a 6-function. The remaining integral over k, is 
determined primarily by a small neighborhood of the point 
k,, "'", at which the velocity &,/dk, vanishes. One obtains 
the estimate 

Giant quantum oscillations thus occur in this case also. 
We close with an estimate for an electron gas in a 

GaAs-GaAlAs heterostructure. Assuming a mobility of - lo6 cm2/V.S (this corresponds to T -4. lo-" s),  we have 
B = wrVT/cR - 1 at T = 2 K and frequency w - 5. 108 Hz. 
Taking 100-200 as the diameter of the potential well, we 
find that the size and magnetic quantizations are compara- 
ble for fields H- 5-10 T. We then obtain CI - 100 K, iS - 150 
K, and r,,, /rmin - 5-7. 

"To prevent misunderstanding, we shall point out that in Ref. 2 the ge- 
ometry of the experiment and the values of the special parameters corre- 
spond to the classical mechanism of the electrons and the sound wave 
interactions. 
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