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The dimensions of all the conformally invariant operators are found in the scaling limit for the 
lattice antiferromagnetic spin-1/2 XXZchain. The operator algebra of the XXZmodel is shown 
to be generated by a discrete set of exponentials involving the free massless boson field. Hence it is 
possible to compute the infrared asymptotic form of the multipoint correlations. The results for 
the XXZchain are extended to "magnets" with larger symmetry groups SU( n ), 0( 2n ), En.  

1. INTRODUCTION 

Exact solutions of the two-dimensional statistical and 
1 + 1-dimensional quantum lattice models have played an 
important role in the development of the theory of phase 
transitions (see Baxter's monograph' and the references 
therein). In particular, the spin-1/2 XXZ magnetic model 
can be solved exactly. Several quasi-one-dimensional mag- 
netic materials to which this model applies are currently 
known.'' One can measure experimentally both the neutron 
scattering cross sections, which are related to the spin pair 
correlation function, and the Brillouin scattering, which 
yields information on the Cpoint correlation functions. 

Theoretical calculations of the correlation functions in 
the lattice model are difficult. Although a well-established 
procedure (quantum inverse scattering problem) is avail- 
able for diagonalizing integrable Hamiltonian~,~-~ only a few 
pair correlation functions have been calculated thus 

Methods from conformally invariant field theory can be 
used to find the multipoint correlation functions for systems 
at a phase transition point. This approach is based on the 
principle of conformal invariance for critical fluctuations9 
and requires that the operators form a closed algebra." The 
constraints on the correlation functions imposed by these 
assumptions take the form of a system of "conformal boot- 
strap" equations. The structure of the operator algebra is 
completely determined by the bootstrap conditions for the 
two-dimensional and 1 + 1-dimensional field theories, be- 
cause the conformal group is infinite-dimensional." Several 
exact conformal bootstrap solutions have recently been 
found which describe various kinds of universal critical be- 
havior. "-I4 

In this paper we show that the conformally invariant 
Ashkin-Teller model can be used to find the correlation 
functions for the XXZ model in the infrared limit.I4 We also 
determine the operator algebra for several generalizations of 

relate the energy and momentum of the state In) to the scal- 
ing dimension A, and spin S, .'' Here N) 1 is the number of 
lattice sites in the quantum chain, E~ is the thermodynamic 
energy density of the ground state, v, is the Fermi velocity, 
which depends on how the lattice Hamiltonian is normal- 
ized, p, is the Fermi momentum, and k ,  is an integer. The 
contribution 2knp, to the momentum in (1.2) is due to 
Umklapp processes from one edge of the Fermi band to the 
other.' The "conformally invariant" contributions to the en- 
ergy and momentum are effects that arise due to the finite 
size of the system (N) 1 ) .I5,l6 The thermodynamic terms in 
( 1.1 ) , ( 1.2) contain a contribution from the ultraviolet de- 
grees of freedom, while the corrections of order 1/N are due 
to the infrared degrees of freedom. The coefficient c deter- 
mines the correction to the ground-state energy and is an 
important parameter in the conformal theoryI6; it is equal to 
the central charge of the conformal algebra." We note that 
the corrections of higher order in 1/N and l l ln  N which 
have not been included in ( 1.1 ) can be interpreted as scaling 
corrections. l 5  

An alternative method was proposed in Refs. 16 and 17, 
in which the central charge is calculated from the low-tem- 
perature specific heat C, of the chain (per single site) ac- 
cording to the formula 

where T is the absolute temperature. 
We stress that the scale dimensions A, and the spins Sn 

cannot be arbitrary in a conformally invariant theory. The 
spectrum of conformal dimensions 

the XXZ model. 
splits up into series corresponding to irreducible representa- 

In order to relate the lattice model in the continuous 
limit to the solution of the conformal bootstrap equations, tions (modules) of the conformal algebra, 'I the dimensions 

in each series forming an arithmetic progression. The mini- we analyze the low-energy portion of the spectrum of the 
lattice Hamiltonian. It was shown in Refs. 15 and 16 that if mum dimension in each series and the corresponding con- 

formally invariant operator are called "primary," while all the lattice Hamiltonian becomes conformally invariant in 
the continuous limit, then the low-energy portion of the subsequent operators in the module are "secondary." The 

number of secondary representations with dimension A:* ' spectrum and the structure of the eigenstates near the 
- A; * ' + d ' * ', d ' * ' a nonnegative integer, is equal to the ground state must satisfy stringent constraints. Each eigen- 
- 

stateJn) must correspond to a conformally invariant opera- number of partitions of d ' * ' as a sum of nonnegative inte- 

tor a, in the field theory, while the  formula^'^^'^ gers. The spectrum of the primary dimensions is not speci- 
fied by the requirement of conformal invariance but must be 

( 1.1 ) found by invoking the self-consistency conditions for the 
bootstrap equations." 
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The conformal dimension spectrum has been calculated 
completely for the Ising lattice model. l8 In Sec. 2 below, we 
use the Bethe Ansatz19 to compute the spectrum for a spin- 
1/2 XXZ antiferromagnet described by the Hamiltonian 

where the Pauli matrices 8, act on the nth site, and y is the 
anisotropy parameter. The primary dimensions found below 
are completely specified by two integer parameters k and 
m:3) 

The XXZ model in the continuous limit is widely re- 
garded as equivalent to the massless Thirring model 

where the symbol :: denotes normal ordering. The primary 
conformally invariant operators in the Thirring model are 
expressible as products of the fermion degrees of freedom: 
fl$;l:, :$;$;crn:, etc. The bosonization formulasZ0 can be 
used to express these operators in the form 

where z * = t f ix are the standard complex coordinates, '' 
and p ( * (z , ) are the holomorphic and antiholomorphic 
components of the free massless real boson field @(z+,z- 1. 
The fermions themselves coincide with the following opera- 
tors: 

The degrees of the fermions coincide with the operators 
( 1.8) for n, m of equal parity. A comparison of the dimen- 
sions in ( 1.6) and (1.8) reveals that the primary operators 
( 1.8) correspond to the XXZ model if n = 2k, with P+ = c. 

The operator algebra in the conformally invariant Ash- 
kin-Teller model14 contains all the operators V,,, (Refs. 14, 
21,22). A sector with n, m of the same parity corresponds to 
the Thirring model, while a sector with n even corresponds 
to the XXZ model. The two models are equivalent in sectors 
with n, m both even. 

The generalized XXZ models considered below can also 
be descrilied using an r-component massless boson field the- 
ory. In this theory the central charge c is equal to r (Ref. 11 ). 
As an illustration, consider the integrable models with the 
H a m i l t ~ n i a n s ~ ~ . ~ ~  

+i sin yx pijxnfix;}, 

This series contains the XXZ model ( r  = 1 ) . The isotropic 
Hamiltonians in (1.10) are invariant under the group 
SU(r  + 1 ), provided y = 0 (Refs. 25,26). The primary op- 
erators in this model are specified by an r-dimensional vector 
a in the lattice generated by the simple roots of the Lie alge- 
bra of SU(r  + 1 ) together with a vector o in the dual lattice 
( o  is the highest weight of some irreducible representation 
of the algebra) : 

v,, , (z,, 2-) =: exp i ---- + 1/2 5 0  T(+) (2,) { (2-;2c 1 

where q, '* '(z,  ) denotes the holomorphic and antiholo- 
morphic components of the vector boson field (z, ,z- ), 
respectively. 

The rest of our discussion proceeds as follows. Section 2 
is devoted to a detailed analysis of weakly excited states in 
the XXZ model, and the conformal dimensions are calculat- 
ed. The classification of solvable models is considered in Sec. 
3, where we are particularly interested in models with an 
integral central charge, for which we calculate the dimen- 
sion spectrum. The results are briefly discussed in Sec. 4. 

2. DIMENSION SPECTRUM AND CLASSIFICATION OF 
STATES FOR AN XXZMAGNET 

The Hamiltonian for the XXZ model commutes with 
the spin operator 

The Hamiltonian ( 1 ) thus remains integrable if the term hS, 
is added to it, where h is the magnetic field. In what follows 
we will analyze the energy and momentum spectra for an 
XXZ magnet in a moderately strong magnetic field 1 ) h / 
J g  l/N. 

The eigenstates of the Hamiltonian for the XXZ model 
can be found by the quantum inverse scattering m e t h ~ d . ~  If 
the total spin Szis  specified, the state is parametrized by a set 
of M = N/2 - Sz rapidities A, (a = 1, ..., M) which satisfy 
the system of Bethe equations19 

where 

The numbers I,  are half-integral (integral) for M even 
(odd). The state is completely specified by the number M 
and the set of quantum numbers {I,); its energy and mo- 
mentgm are given by 

( 2 . 5 )  
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sin 7 
E = z t ( ~ ) ,  t ( ~ =  7 e,'(n) - h. 

In a sector with a specified M, the quantum numbers for the 
state with minimum energy are given by 

We will refer to such a distribution as a symmetrically filled 
Fermi band. Among all the possible ground states corre- 
sponding to different M, there exists a value M = M,(y,h) 
for which the energy is a minimum; moreover, 
M,(y,O) = N/2. 

The ground-state solution of the Bethe equations is 
specified by a set of real-valued rapidities A, (Ref. 19), 
while the excited states are described by complex-valued ra- 
pidities. For h)J /N(N) 1 ), the complex rapidities can be 
grouped together into strings. Excitations of the string type 
lie above the ground state by an energy comparable in order 
of magnitude to the strength of the magnetic field.27 In other 
words, the string excitations lie in the high-energy part of the 
spectrum and may be neglected in the subsequent analysis. 

Excitations with real-valued rapidities may be classified 
as follows. In an excited state, some of the numbers I, in the 
distribution (2.7) may lie outside the Fermi band (Fig. 1 ) . 
We write I,, for the coordinates of the holes thus produced in 
the Fermi band, and I, for the coordinates of the particles 
lying outside the band. In terms of the configurations of the 
numbers I, for weakly excited states, the particles and holes 
are localized near the edges of the Fermi band; we may there- 
fore segregate them into "left" and "right" populations 
whose interaction is negligible. Hole/particle balance is ob- 
served only globally; the number of right (left) particles is 
not necessarily equal to the number of right (left) holes. Let 
k be the difference between the number of right particles and 
holes (Fig. 2a). We will show that for states with a specified 
M and k, the distribution of quantum states minimizing the 
energy is given by 

We will call this distribution a "shifted Fermi band" (Fig. 
2b). Excitations above the state (2.8) are readily describable 
in terms of holes and particles above the shifted Fermi band 
(Fig. 2c). States in a sector with fixed M and k can be conve- 
niently specified by means of the half-integral quantum 
numbers J j *  ' and J i *  ', defined as the distances of the 
right (left) holes and particles from the right- and left-hand 
edges f M/2 + k of the Fermi band. 

An expression for the momentum in terms of the quan- 
tum numbers of the state can be found by adding the Bethe 
equations (2.3 ). Since the functions (2.4) are odd, we obtain 

where 

FIG. 2. 

In terms of the Fermi momentum p, = rM,,/N and quan- 
tum number m = M - M,, we find 

The energy is somewhat harder to calculate. One must 
determine how the energy of states with a symmetrically 
filled Fermi band depends on the number of particles N. 
Using the Euler-Maclaurin formula, we may replace the 
summations in (2.4) and (2.6) by an integral, 

a a J F(h(Z) )dZ  
a-L a-i -XIZN (2.12) 

where the function A(Z)  is inverse to Z(i l ) .  A similar pro- 
cedure was employed in Ref. 28. 

Differentiating (2.3) with respect to A and using 
(2.12), we find that the density distribution 

o ( h )  =dZ/dh (2.13) 

of the roots of Eq. (2.3) satisfies the integral equation 

where Q = A(M/2N) & the edge of the Fermi band. The 
linear integral operator K(Q) acts on a function f as follows: 

0 

Using Eq. (2.12), we can rewrite (2.6) as 
0 

E 1 t' (h )  
-= Jt(h)o(h)dh--- I 
N 

-4 24N a(h)  -o 

where we have introduced the inner product 
0 

(1,g)o = f (A) g (A) dh (2.17) 

FIG. 1. and by definition (2.13 ) , 
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Equations (2.14)-(2.18) determine the dependence 
E(M)  implicitly. The ground state is given by the condition 
dE/dM = 0. It is convenient to work with new functions 
€(A) and g(A) satisfying the integral equations 

The technique suggested in Ref. 29 can be used to find the 
energy of excited states lying in a sector with a specified M. 
Let the excited state be described by a hole-particle configu- 
ration {I;+', I:+', I;-', I:-'), where the superscripts 
+ and - refer to left and right excitations, respectively. 

Writing {A,) for the set of roots of the Bethe equations 
(2.2), (2.3) in the excited state, we can rewrite the function 
(2.3) in the form Combining (2.19) with (2.14) and (2.16), we get the 

expression 

for the energy in terms of &(A); in the same way, we obtain 

The shift in the rapidities in the Fermi band is given by the 
function SA (A : In deriving Eqs. (2.2 1 ) and (2.22) we have used the fact that 

A 

the operator K(Q) is Hermitian. 
In calculating the derivatives dE  /dQ and dM/dQ we 

may neglect the terms of order 1/N in the Euler-Maclaurin 
expansions (2.21 ), (2.22). To treat the explicit dependence 
of the functions &(A,Q) and C(A,Q) on Q, one must differen- 
tiate Eqs. (2.19) and (2.20) with respect to Q. 

The final expressions for these derivatives are as fol- 
lows: 

2 (h+8A (h )  ) =Z(h) ; (2.30) 

The function Z(A ) in Eq. (2.30) is for a symmetrically pop- 
ulated Fermi band. The quantity SA is of order 1/N, and in 
this approximation the rapidities for the holes and particles 
are equal to 

where AI; * ' and AI * ' are the distances of the right (left) 
particles and holes from the right-hand (left-hand) edges of 
the Fermi band. We get a finite-difference equation for the 
function SA(A) by expanding (2.30) in powers of SA and 
the small corrections to the particle rapidities. Using (2.12) 
to replace the sums by integrals (The Euler-Maclaurin cor- 
rections may be neglected), we obtain a nonlinear integral 
equation for SA(A) which can be solved by successive ap- 
proximations: 

We have exploited the parity properties of the functions 
&(A), u(A), C(A ) in deriving these formulas. Minimum en- 
ergy occurs at the value Q = Qo at which 

E (h, Q) (1=q,=0. (2.25) 

The corresponding extremum M,, = M(Q,,) need not be an 
integer. The integral values ofM, for a specified anisotropy y 
determine a discrete series of magnetic fields. The second 
derivatived 2E /dQ at Q = Qois easiertoevaluatebecauseof 
the equality 

The functions f and 7 satisfy the following integral equa- 
tions: 

We have 

According to (2.21) and (2.24)-(2.26), the energy of a 
state with a symmetrically filled Fermi band is given by 

as a function ofM, here E,, is the ground-state energy density 
in the thermodynamic limit, and fo and the Fermi velocity 
v, are given by 

where 
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The last equality in (2.36) holds for a shifted (as opposed to 
symmetrically filled) Fermi band; the numbers d ' * ' are 
given by (2.10). 

To get an expression for the energy of the excited state, 
we express the energy in the form 

M n n 

and subtract (2.7) for the energy of a state with a symmetri- 
cally filled Fermi band. After expanding the resulting 
expression in powers of 1/N, using Eqs. (2.31) and (2.32), 
we may use (2.12) to replace the sums by integrals, neglect- 
ing the Euler-Maclaurin corrections. We thus obtain the fol- 
lowing expressions for SE = i? - E to first and second order: 

1 
6E'2'=(t'(h), q (A) )Q + (t" (A), (tZ(h)/o (A)) > q  

Using the integral equations (2.34), (2.35) and recall- 
ing the relation 

we find the expressions 

The first-order correction SE "' (2.41 ) vanishes because 
the functions & ( A )  and c ( A )  are even. If we set Q = Qo in 
(2.42), the resulting error is of order 1/N, and in this ap- 
proximation the term in curly brackets on the right in (2.42) 
vanishes by Eq. (2.25). Thus, 

The dimensions for the excited state can be found from 
(2.11), (2.26), and (2.43) togetherwith (1.1 ), (1.2), (1.4); 
the result is4) 

Since the d' * ' are integers, it seems plausible that a 
sector of Bethe states with specified m, k should correspond 
to a conformal representation (module). Indeed, the multi- 
plicity of a level with specified d ' * ' is equal to the number 
of partitions of the type (2.10). It is equal to the number of 
free secondary representations in the free fermion theory,'' 
which in turn coincides with the level multiplicity in the 
general conformally invariant theory." 

We conclude this section with a formula for the value of 

go at h = 0; this corresponds to letting Qo+ oo in the integral 
equation (2.20). If we neglect the dependence on the lower 
limit - Q in (2.15) in evaluating ((2 + Q,, Q,), where 
A &Qo, the Fredholm equation (2.20) reduces to a Wiener- 
Hopf equation,19 which can be solved to give 

3. SOLVABLE MODELS WITH HIGHER DEGREES OF 
SYMMETRY 

In this section we consider some multicomponent gen- 
eralizations of the XXZ model. The model Hamiltonians are 
constructed from factored R-matrices. Let the matrix 
R,, ( A )  act on the tensor product space V, V,, and assume 
that it satisfies the triangle equations5' (Refs. 5,6); then we 
can construct a parametric family of transfer matrices 

The Hamiltonian and the momentum operator for the corre- 
sponding model are expressible in terms of the transfer ma- 
trix' as follows: 

d 
H = l -  [In T(h) ]I=o, P=-iln[T (h) ]A,,. (3.lb) 

dh 

The factored R-matrices are classified in terms of the repre- 
sentations of sitnple Lie g r o ~ p s . ~ O - ~ ~  A solution of the trian- 
gle equP,ions is said to be invariant under the action of a 
group ti if 

Here the representation of G on V, and V, is expressed in 
terms of the matrices T, and T,. The matrix R,, (A)  is a 
rational function of A. Any representation Va is obtainable 
as a symmetric power of a "fundamental quantum group" 
representation33: V, = [ V, IP .  These fundamental represen- 
tations are in general reducible in the ordinary group-theore- 
tic sense. A complete list is given in Ref. 30, where it is also 
shown that any representation 

is uniquely characterized by the first term v:" in the direct 
sum. If w ,  is its highest weight (we refer to ma as the highest 
weight of the fundamental representation of the quantum 
group), then the highest weight of the representation V, is 
fla = pw, . 

Any rational solution of the triangle equations can be 
generalized to a trigonometric solution6) (Refs. 32,34). The 
trigonometric R-matrix is no longer invariant under G, but 
only under the Cartan subgroup ( U( 1 ) ) '. Nevertheless, the 
Bethe equations and the results for the energy and momen- 
tum as functions of the state rapidities can still be expressed 
in terms of the roots of the Lie algebra and the weights of the 
Lie-algebra representations. Let the Hamiltonian (3. lb)  be 
built up from R-matrices which are invariant under a group 
G of rank r or, more generally, from the corresponding trigo- 
nometric R-matrices. The eigenvalues of the Hamiltonian 
are characterized by the set of rapidities A h, which satisfy 
the Bethe eq~a t ions~O-~~  
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a=I,  . . . , Mi, Mi>Mz>. .>MI, (3.3) 

where 
r MI 

1' 1 
Zi ( A )  = Z;; q i  ( A )  - - 7, @u(k-As'). (3.4) 

2nN j-i 8-1 

where 

Here pi and aij are expressible in terms of the functions 
(2.4) : 

*=I h-i 

mi=lMi-Mi(0), piF=nMi(Q/N. 

Here the MI - ' are the magnetic quantum numbers corre- 
sponding to minimum energy. 

In the continuous limit the state is described by densi- 
ties oi (A), i = 1,2, ..., r satisfying a system of integral equa- 
tions 

where the ai are the simple roots of the Lie algebra. The 
energy and momentum are 

The operator 2 acts on the vector-valued function f, by the 
formula 

r Ql 

where the "magnetic fields" hi are conjugate to the integrals 
Mi of the motion. 

Equations (3.3) and (3.7) can be used to calculate the 
low-temperature specific heat of the system, and hence by 
(1.3) its central charge. The central charge for an SU(2)- 
invariant magnet is related to the spin S by the formula 
c = 3S/(S + 1 ) (Ref. 35). In the general case of a G-invar- 
iant magnet, whose spin variables take values in a represen- 
tation space Va = [ v a I P  of a quantum group, the central 
charge is equal to 

The energy and the numbers Mi can be expressed in terms of 
the densities oi ( A )  by means of the inner product 

One obtains 

where 9 denotes the dimension of the group G and C,, is the 
value of the square of the Casimir operator in the adjoint 
representation. A proof of Eq. (3.8) in the general case will 
be published elsewhere. 

It is known that forp = 1 (i.e., for a fundamental repre- 
sentation) 

It is helpful to rewrite expressions (3.16) and (3.17) in 
terms of the "dressed" densities: 

( K e )  i (A) =ti (A), (3.18) 

(95') t (A) =62. c = the r-rank of the Lie algebra 

for any Lie algebra whose simple roots all have the same 
length (i.e., the algebras A,, D,, E n ) .  These models yield 
generalizations of the XXZ model, for which c = 1. From 
the standpoint of the Bethe Ansatz, they are also quite simi- 
lar: the vacuum is again filled with real-valued rapidities. We 
may therefore employ the formalism developed in Sec. 3 to 
calculate the dimensions. We will discuss these calculations 
only briefly, pointing out where they differ significantly 
from the ones in Sec. 2. 

Thus, if the simple roots of the Lie algebra all have the 
same length, then in a sector with specified quantum 
numbers M, > M, > . . . > M, the ground state corresponds 
to a Fermi band which is symmetrically filled by rapidities of 
each type i = 1,2, ..., r: 

Using (3.18), (3.19) we can write 

where the function pi is defined by (3.5). 
Equations (3.18)-(3.21) can be used to calculate the 

derivatives 

1 aMc 
P 

N aQj 21;: ( A )  0, (A) I r-o, . 
In both of these formulas we have used the parity properties 
of the functions E ~ ,  oi, 6 f . The energy minimum is reached at 
Qi = Q lo'. According to (3.22), the limits Q jO' are deter- 
mined by the system of equations 

The excited states are described by the quantum numbers ki 
(the shift in the ith Fermi band) and by the distances J:  * ', 
J 2 * ' from the edges of the band. 

Adding all the Bethe equations (3.2), we readily obtain 
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Using the relations (3.18) and (3.2 1 ), we can calculate 
the matrix of second derivatives of the energy at the mini- 
mum point: 

Equations (3.23) and (3.25) show how the energy of states 
with a symmetrically filled Fermi band depends on the quan- 
tum numbers mi (3.12). 

The energy of excited states in a sector with specified 
quantum numbers can be calculated just as in Sec. 2 for the 
XXZ model. The result is 

where 

is the energy density of the ground state, 

and the numbersdj * ) are given by (3.11). Finally, the term 
1/12 in (3.26) gives the Euler-Maclaurin correction. 

The ratios ~ j '  (Bj )/aj (Qj ) can be interpreted as the Fer- 
mi velocities in each band, j = 1,2, ..., r. The model possesses 
a conformally invariant continuous limit only if all these 
velocities are equal, 

If this condition holds, it follows from Eqs. (3.26), (3.10) 
that the dimensions for the state {mi, ki; Jpi( * ),J; * )) are 
equal to7' 

r 

A(*) -- ~ { $ ( i k * ~ ~ - i r n  )'+d,(*)}. (3.30) 
j-i 

As in the XXZ model, states with a completely filled 
Fermi band correspond to primary operators, while states 
with holes and particles within the Fermi band correspond 
to secondary representations. However, it turns out that 
there are many more secondary representations of a given 
dimension than is the case in the Virasoro algebra represen- 
tation. This indicates that the symmetry group here is larger 
than the conformal group. 

4. CONCLUSIONS 

We will now describe the operator algebra for the Ash- 
kin-Teller model, which is obtained for the bootstrap equa- 
tions in Ref. 14 and has been described previously in Refs. 
21,22. The entire algebra is generated by four fundamental 
operators of dimension A' * ' = 1/16. Two of them corre- 
spond to the Ising order parameters d",  d2', the other two to 
the disorder parametersp'" andp'". The operator expansion 
of the Ising variables contains exponentials of the free boson 
field (1.8) which form a closed operator subalgebra. The 
subalgebra corresponding to the XXZ model consists of the 
operators V,,, ( n  even) which appear in operator expan- 

sions of the type dl'd" and d1),U'2'. This result has a natural 
phenomenological interpretation. Indeed, the XXZ model is 
related to the 6-vertex model of statistical physics by equa- 
tions (3.la), (3.lb). The latter model is a special case of the 
8-vertex Baxter model1, which in turn is a specialization of 
the Ashkin-Teller lattice model1 for two interacting Ising 
sublattices. The edge variables in the 8-vertex model are ex- 
pressed as products d1),U'2' of the Ising variables at neighbor- 
ing sites. The spin configuration in the 8-vertex model re- 
mains unchanged if the signs of d'' and p"' are 
simultaneously reversed, and the same is true of the above 
operator expansions. 

If {= 1/f i  (y=O; h=O) ,  the operators (1.8) and 
their secondary representations give a boson representation 
in the SU(2) XSU(2)-invariant and conformally invariant 
Wess-Zumino theory, which has an anomaly in the k = 1 
current algebra (Refs. 36,37). The conserved currents form 
a Kac-Moody algebra13.36,37 and are expressible in terms of 
the following operators V,,, : 

a 
I/*) (z*) = - q(*) (z*) . 

dz* 

Here the subscripts + denote the isotopic current indices, 
while the superscripts + denote holomorphic and antiholo- 
morphic components, respectively. 

For magnets with a larger symmetry group in the iso- 
tropic case ( y = O), the operators ( 1.1 1 ) are similarly relat- 
ed to a boson representation in the G e  G-invariant Wess- 
Zumino theory.36 The currents corresponding to the 
generators of a Cartan subalgebra can be expressed as 

in terms of the derivatives of the r-component boson field, 
while the currents corresponding to the roots ai in a Cartan- 
Weyl basis of the Lie algebra 9 are expressible in terms of 
the operators ( 1.1 1 ) : 

where ai and mi are the simple roots and fundamental 
weights of 9. 

The Wess-Zumino theory no longer describes magnets 
in the anisotropic case ( y # 0). In the continuous limit, they 
should correspond to the generalization of the Ashkin-Tell- 
er model to the case of Z, ,  symmetry. 

In closing, it is our pleasant duty to thank M. A. Ber- 
shadskiy, P. B. Vigman, V. L. Pokrovskii, A. M. Polyakov, 
N. Yu. Reshetikhina, and V. A. Fateev for valuable discus- 
sions. 

"Such as CsCoC1, (Ref. 2) and CsNiF, (Ref. 3),  for example. 
"The pair correlation functions for these operators fall off as ( l / r12*  at 

large distances. 
3)Here k is equal to the macroscopic momentum of the state divided by 

twice the Fermi momentum; rn measures the deviation of the projection 
of the spin on the Z axis from its equilibrium value. 
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"Thedirnensionsforthestateswithk= f l ,m=Oandm= f l,k=O, 
as well as the dimensions for the secondary representations d'+' = 1, 
d '-' = 0 and d'+' = 0, d ( - )  = 1 of the vacuum, where calculated in Ref. 
8. 

"Also called the Yang-Baxter equations. 
6)This nrneralization cannot be carried out uniquely for certain groups, 

since-merent R-matrices are related by an a ~ t o ~ o r p h i s m  of the r&t 
s v ~ t e m . ~ ~ - ~ '  In what follows we will discuss only solutions corresponding 
t i  the trivial automorphism. 

7'Condition (3.29) holds in the limit Q, = Q+ m, and 

(f?)rj=(ar, a,) [2(1-r/n) I-''*, 

the primary dimensions being given by Eq. ( 1.1 1 1. 
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