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The nonequilibrium current-current correlation function is evaluated using the method of 
quasiclassical Green's functions for a microjunction between two normal metals, and between a 
normal metal and a superconductor, for an arbitrary transmission coefficient at the boundary 
between the metals. The noise current spectrum of a normal junction equals the sum of an 
equilibrium noise current through a resistance R,  which is independent of the applied voltage V 
and nonequilibrium noise in the tunnel junction whose resistance is R,. The "noise" resistances 
R ,,, (R, -' + R,-' = R, - I )  are determined by the transmission coefficient of the boundary. 
For a contact between a superconductor and a normal metal the low-frequency spectral density of 
the current and voltage fluctuations is calculated for arbitrary Vand T. In this case an additional 
noise current appears, because there are now two possible processes by which electrons with 
energy greater than the gap A are transmitted through the NS boundary: Andreev reflection and 
electronic transitions from the normal metal to states above the gap in the superconductor. In the 
absence of electron reflection from the boundary and scattering by impurities, these processes 
completely determine the current fluctuations at T = 0. 

1. INTRODUCTION 

Current and voltage fluctuations in metallic microjunc- 
tions of various types-small-area tunnel junctions, micro- 
bridges, point contacts etc.-provide an interesting example 
of nonequilibrium fluctuations when the current and applied 
voltage through the junction are large. Calculation of the 
noise characteristics of these junctions is necessary in order 
to determine the limiting sensitivity of systems containing 
them as nonlinear elements. 

In states of thermodynamic equilibrium the spectrum 
of fluctuations is connected with the linear response func- 
tions according to the fluctuation-dissipation theorem 
(FDT) .' In the general case the noise spectrum of the cur- 
rent is determined from the current-current correlation 
function, whose average is taken using nonequilibrium den- 
sity matrices. 

In tunnel junctions the nonequilibrium current-current 
correlation function is calculated in Refs. 2-4 for normal 
and superconducting metals, i.e., for NIN-, SIN- and SIS- 
structures. The most general expression for the current-cur- 
rent correlation function in superconducting tunnel junc- 
tions, which is valid for arbitrary nonequilibrium states of 
the superconductor, was obtained in a paper by Larkin and 
Ovchinnik~v.~ For a fixed total tunneling transition current, 
including the displacement current, the spectrum of voltage 
fluctuations was calculated by Z o r h 6  In Refs. 2-6, the tun- 
neling Hamiltonian was used to find the current-current cor- 
relation function. 

In microjunctions with constrictions designed to vary 
the transmission coefficient of the boundary between metals, 
the direct conductivity is replaced by the tunneling conduc- 
tivity. Thus, one should expect a change in the noise proper- 
ties of the junction. 

In this paper the current-current correlation function 
and the current and voltage fluctuation spectrum are calcu- 
lated in microjunctions wth constrictions for arbitrary trans- 
mission coefficients through the boundary between the con- 

tacting metals. In this case the tunneling Hamiltonian 
method is inapplicable. 

The current-current correlation function can be ex- 
pressed in terms of quasiclassical Green's functions integrat- 
ed over For a structure with sharp boundaries 
between the metals the quasiclassical equations were ob- 
tained by Zaitsev,I0 who also introduced in place of the well- 
known quasiclasssical functionsk (Ref. 9) a new function 3 
connected with the reflected wave amplitude from the 
boundary. Macroscopic quantities such as the current den- 
sity or potential are expressed in terms ofk. The function 3 
also appears in the current-current correlation function, as 
will be shown below. In the limit of small transmission, the 
result for the current-current correlation function obtained 
here coincides with well-known expressions found using the 
tunneling Hamiltonian method.'v5 

In what follows, junctions will be investigated between 
two normal metals (N,cN,) and between a normal metal 
and a superconductor (ScN; the c denote a constriction). In 
the ScN case, the I- Vcharacteristic is n~nlinear ' l- '~ and has 
been c a l ~ u l a t e d ' ~ ~ ' ~  for arbitrary values of applied voltage V 
in the limit of small junction dimensions. 

In this paper, the spectral density of current fluctu- 
ations SI is evaluated for arbitrary voltages and tempera- 
tures. Basically, we will limit ourselves to the low-frequency 
limit w ~{T ,A ,~v} ,  where A is the energy gap in the super- 
conductor. For V = 0, SI reduces to the Nyquist thermal 
noise 4T/Rd ( V) in agreement with the FDT, where Rd ( V )  
is the differential resistance. For large voltages eVb{T,A), 
S, contains a contribution 2eV/R, which increases linearly 
with voltage; however, in contrast to shot noise in the tunnel 

the resistance R, exceeds the normal resistance 
R,, and coincides with it only in the limit of a transparent 
barrier. For voltages which are the same order of magnitude 
as the gap there arises an additional noise mechanism, con- 
nected with Andreev reflection of electrons at the boundary 
between the normal and superconducting metals. In pure 
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form, this mechanism determines the current fluctuations in 
an ideal ScN short (the transmission coefficient D = 1 ) in 
the absence of impurity scattering for T = 0. 

The low-frequency noise voltage spectrum S, is calcu- 
lated from S, = SIR,  in a way analogous to the method 
used for point superconducting  junction^'^"^; here SI is 
found from the Nyquist formula for thermal noise in a nor- 
mal resistive contact or from the formula for shot noise. In 
this paper S, ( V) is calculated from microscopic Green's 
function equations. 

In describing as "low", the frequencies for which the 
results obtained here are applicable we are implying that 
these frequencies are nevertheless bounded from below by 
the region where l/f noise appears (see, e.g., Ref. 17). The 
growth of the noise as Vincreases can also possibly be due to 
heating of the region around the junction.'' Also of interest 
to us is a region of significant nonlinearity in the I- Vcharac- 
teristics, i.e., voltages which do not exceed the gap A by too 
much, for which thermal heating of sufficiently high ohmic 
junctions is usually small. 

2. JUNCTION MODEL; QUASICLASSICAL EQUATION FOR 
THE CURRENT-CURRENT CORRELATION FUNCTION 

As a model of the microjunction with constriction, we 
will investigate a hole of radius a in a thin screen separating 
two  metal^,'^.^^ a model which has been discussed earlier in 
papers on the Josephson effect. In what follows, quantities 
related to the left- and right-side metals will be denoted by 
the subscripts 1 and 2. In order to include the reflection of 
electrons at the boundaries, we will assume, following Ref. 
10, that within the inner constriction there is a thin transi- 
tion layer of thickness 26 near the plane z = O(S 4 a ) ,  within 
which the potential U(z,p) at the boundary changes. This 
potential is considered to vary smoothly in the transverse 
coordinate p. In addition, we assume the inequality a )p&,\ 
holds. 

We will investigate the limit of a pure microjunction, 
which implies that the inequality 

holds; here, 4 are the mean free paths of electrons in the 
metals 1 and 2, VW are the Fermi velocities, T, is the critical 
temperature. 

Let us write down an expression for the current-current 
correlation function, obtained by averaging the Heisenberg 
current operators at times t ,,, using a nonequilibrium den- 
sity matrix: 

The paired operator averages in (2)  can be cast in the form 
of averaged values of ordered products of electron creation 
and annihilation operators, where the time ordering corre- 
sponds to the position of the arguments t ,,, on the Keldysh 
contour C (Ref. 21) which runs along the time axis from 
t = - w to t = + w and back again. According to the 
rules of the diagram technique for nonequilibrium sys- 
t e m ~ , ~ '  the Keldysh average introduced into (2)  can be re- 
duced to a product of single-particle nonequilibrium Green's 
functions which make up the Keldysh matrix: 

Each of the components of this matrix in turn is a 2 X 2 ma- 
trix, whose elements will be normal and anomalous electron 
Green's functions. The definition of the Green's functions 
used here coincides with that used in Ref. 9. The current- 
current correlation function is written in terms of the non- 
diagonal matrix elements ( 3 )  in the following way: 

+e<(If, 2) t32'(2', 1 )  ;3)rl=zI'=z2=r,'=*. (4) 

Here, 1 = (t,,p,,z,), 1' = (t,,p,,z; ), etc.; i, is a Pauli ma- 
trix. Taking into account the smooth variation of the poten- 
tial barrier with p,,,, we transform to the total transverse 
coordinate ( p, + p2)/2, and form the Fourier transform in 
the difference coordinate p, - p,; the transverse electron 
momentum pll is conserved to quasiclassical accuracy. 

Let us separate out the rapidly-oscillating factors 
h 

exp [ + ip,, (z - z' ) ] and exp [ + ip,, (z + z' ) ] in G' (z,zl) 
A 

and G' (z,zf) where p,, = (p& -pi ) is the component of 
the momentum normal to the boundary for electrons at the 
Fermi surface in metals 1 and 2. In the absence of reflection 
from the boundary, when all quantities depend smoothly on 
the total coordinate ( r  + r1)/2, the slowly-varying coeffi- 
cients in these exponentials can be reduced to Green's func- 
tions integrated with respect to 5, (Ref. 7). This limit has 
been investigated in detail by Shelankov.,, In the case treat- 
ed here, in addition to the usual functionsH(t,t ';R,p,,. ), inte- 
grated over energy, where R = (z,p) and pW = (p,, ,pII ) lies 
on the Fermi surface, it is also necessary to investigate the 
function .!? (t,t ',R,p,,. ) (Ref. 10) which arises from the coef- 
ficients of the factors exp[ + ip,, (z + z') ] which describes 
the wave reflected from the barrier. The correlation function 
(4)  contains only nondiagonal Keldysh functions; therefore 
the slowly-varying coefficients are continuous at z = z' and 
to within a constant factor coincide with the quasiclassical 
Green's functions. 

In calculating (4),  the differential operator with re- 
spect to z acts only on the rapidly-oscillating exponents, con- 
sistent with our approximation. The nonzero contribution 
arises only from those terms in which the coordinates zl,z; 
and alsoz,,~; appear in the exponents with opposite signs. In 
the end we obtain an expression for the correlation function 
of the form 

K (t, ,  t?) = - - "P" Jd2p j 1 a,  1 daz ~ p { p > ( t , ,  t2; a,) 
1 Gn - I  

.^t3g'(tz, t,; a2)% 

-@'(t,, t , ;  a2);3g<(t2, t,; (tl+t2) ), ( 5 )  

where the functions g> .<  and 3 ',' are calculated to the 
left of the barrier at z = + S. The parameter a, defines the 
direction of the vector p,, , a, = case, = pZ2 /pFZ. 

Thus, the calculation of the current-current correlation 
function reduces to finding the quasiclassical functions i: and 
3 in the vicinity of the barrier. They satisfy equations which 
are most conveniently written if we pass to a triangular rep- 
resentation of the Green's functions: 
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The quasiclassical equations for the nonequilibrium Green's 
can be cast in the following compact form: 

The matrix operator H contains the electric potential p(R,t) 
which appears as the electric current flows through the con- 
tact, and the complex order parameter A(R,t) in the super- 
conductor: 

The matrices which enter into (9)  are defined thus: - \ ii; 6 
i3=(f3; 0; %, Oj,  a=('* ,o; ii ) ,  a = (  - O; A*; t ) .  

The Green's function in Eq. (5 )  can be expressed in terms of 
the matrix elements 

g>= ( g ~ + g ~ - g * )  12, g<= ( p - ; ~  + B A )  12 etc. 

The self-energy operator Z in (7)-(9) has a form analo- 
gous to (6), and describes scattering of electrons by impuri- 
ties and phonons. The products in Eqs. (7),  (8)  include ma- 
trix multiplication and convolution with respect to the 
internal time variable. 

In order to solve (71, (8 ), we will use the boundary 
conditions for the quasiclassical Green's function at a bar- 
rier," in which the transmission coefficient of the barrier D 
appears; in general, D depends on p and on the direction of 
the electron momentum. Outside the constriction, i.e., for 
lpl >a,  we will set D = 0. Reflection of electrons from the 
barrier, which is connected with the presence of isolating or 
strongly scattering layers at the boundary, and also reflec- 
tion arising from the differing electronic parameters of the 
metals, gives rise to ajump in the part of the Green's function 
which is symmetric in momentum space: 
2, z = + 6 i s  ( + ) does not coincide with 
2, (z = - 8) -is ( - ), which is also the case for 
3, ( + ) , g  , ( - ) . The components ka and 9, which are 
antisymmetric in momentum space are continuous as we 
pass through the barrier region. 

For an ideal junction between identical metals 
(pFI =PF2 1, D = 1 ,  the function 9 =O and (5 )  reduces to 
the form 

n 
K ( t i ,  t 2 )  = -- { S p [ g ' ( t i ,  t 2 )  ; 3 g < ( t ' 2 ,  t i )  ?SS ( t I + t 2 )  1) s, 

4Riv 
(10) 

where (...), denotes separating out the symmetric part (in 
the case discussed here i depends only on the sign of p, ), 
R, = 4 ~ / e 2 p F 2 S  is the normal resistance of a "pure" con- 
tact in the form of a hole in the surface S = r a 2  in a thin 
partition between the metals.23 

In the limit of small barrier transmission in (5)  we ob- 
tain the current-current function in the tunneling junction, 
whose expression we will write as follows, distinguishing 
clearly, between the components which are symmetric and 
antisymmetric in momentum space: 

+ga' ( t l .  t z )  ;Sga<(tz. t i )  ; 3 - g s > ( t l ,  t 2 )  ;33s< ( t Z .  t l )  ;3 

Here all quantities are evaluated to the right of the barrier, 
i.e.,i, = i s ( + ) a n d g ,  = g , ( + ) .  

Let us investigate the contribution to ( 11 ) which is lin- 
ear in the transmission coefficient. The second term can be 
discarded, because the odd part 8, is proportional to D. 
Also, the next term in ( 1 1 ) is negligible in the approxima- 
tion under discussion here. We use the relation between 2, 
and 3,. lo: 

where R = 1 - D is the reflection coefficient of electrons 
from the boundary. Retaining the terms linear in D, we ob- 
tain 

5. (+) =g:(+) - D ; ~  (-). 

Let us substitute this expression into ( 1 1 ) and replace the 
functions is ( + ) by their values for the zero transmission 
approximation, i.e., by the quasiclassical functions for the 
left-hand and right-hand metals. By doing this we arrive at 
the well-known expression for the current-current correla- 
tion function5 which is derived using the tunneling Hamilto- 
nian: 

The resistailcz df the tunnel junction between normal metals 
equals 

I 

From here on, we will use Eq. ( 1 1 ) for calculating the 
spectrum of fluctuations in N,cN, and ScN microcontacts. 
In this stationary case the fluctuation spectrum S, (w) is 
related to the Fourier transform of the correlation function 
by S, (w) = 2K(w). 

3. SPECTRAL DENSITY OF CURRENT AND VOLTAGE 
FLUCTUATIONS FOR A MICROJUNCTION WITH 
CONSTRICTION 

For microjunctions in which the size of the constriction 
satisfies the inequality ( 1 ) , we can seek a solution to Eq. (7)  
by expanding in the small ratio a/<, where f = min { b , v @ /  
T,). To lowest order in this parameter we can replace the 
order parameter A and potential g, in the operator H ( 9 )  by 
the asymptotic values of these quantities far from the 
h ~ l e . ' ~ * ~ O  Calculating the Green's functions in first nonvan- 
ishing approximation in a/f and a/l, (I, is the mean free 
path for inelastic phonon yields nonlinear 
contributions to the I- V characteristics. 

Far from the junction, for z+ f co the function E: takes 
on values . Let us henceforth assume that the right-hand 
metal is the superconductor; we will set the scalar potential 
there equal to zero far from the constriction, and choose the 
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order parameter to be real. Then g2 coincides with the 
Green's functiong( t )  integrated over energy for a homogen- 
eous equilibrium superconductor,7-9 which is the energy 
representation equals 

where 

In the left-hand normal metal we set q, far from the junction 
equal to the potential difference V. For g,, after performing a 
phase gradient transformation, we obtain 

where 

In addition to the boundary conditions at infinity, we 
must include the boundary condition for the quasiclassical 
Green's function at the surface separating the metals,'' 
which connects the component ga of the Green's function 
which is odd in momentum space and continuous through 
the barrier with the discontinuous even part, i.e., is ( & ): 

; [R(&+)~+(~ , - ) ' I  = ~ g , - i , + .  (16) 

Here is*  = [ g s ( + ) f  (-)1/2. 
In calculating 8 and we also make use of the normali- 

zation condition9 
t 

.. 
gZ= 1 (17) 

and the connection between these functions, from which 
there follows in particular a relation of the form" 

As a result, we obtain the following expressions for the ma- 
trix Green's function: 

In order to calculate the I- V characteristic of the junc- 
tion, we must know the coefficient of ?, in the expansion of 
ga , while in order to find the current-current correlation 
function it is necessary to determine all the coefficients of the 
Pauli matrices in the expression for the components of the 
matrix functions ( 19), (20). For D = 1 the equations for the 
Green's functions were presented in Ref. 25. We will not 
write out here the rather involved expressions for the matrix 

elements ( 19), (20) in the general case, but will turn to an 
investigation of the final results for the fluctuation spectrum 
which follows from Eqs. ( 11 ), ( 19) and (20). 

3.1. The N,cN2 ~undtion 

The spectral density of current fluctuations for a nor- 
mal heterocontact with a constriction has the form 

20 (o+eV) (o+eV) 
S ,  ( o )  = cth - + 

2 T 
cth 

Rz 2T 

(a-eV) (a-eV) +- cth 
Rz 2T ' 

The resistance R ,,, equal 

Rl-'=Ro-'(D2>, R2-l=R0-'(RD), 

R1-'~tRz-'=R,-~=R,-'(D>, (22) 
where the angle brackets denote an average over the momen- 
tum directions, 

I 

. . . )= 2 jda2a2..  . , 
0 

while the resistance R, coincides in form with the resistance 
of a pure junction: R, = 4r2/e2pF2 2S. 

From (21 ) it follows that with regard to noise proper- 
ties the N,cN2 microjunction with finite transmission at the 
boundary separating the metals can be discussed as a parallel 
combination of an ideal microjunction with resistance R ,  in 
which an equilibrium noise current spectrum continues to be 
observed at any voltage and a normal tunneling resistance R, 
for which the current fluctuations change over thermal noise 
in the limit eV, w ( T to shot noise when eV, w ) T.'-' Pre- 
vious by solving the Boltzmann equation, ob- 
tained the result that for a homogeneous NcN junction the 
noise spectrum is independent of voltage if we do not take 
into account electron-impurity and electron-phonon colli- 
sions. In Eqs. (21), (22) this corresponds to a reflection 
coefficient R equal to zero. The nonlinear properties of point 
ScN and ScS junctions were previously explained based on 
the model of a parallel combination of a metal short and a 
tunnel j~nction. '~~' '  In the present case it is clear that such a 
representation exactly describes the noise properties of a 
normal point junction, while it is possible to obtain the mag- 
nitudes of the metal-metal boundary reflection and trans- 
mission coefficients averaged over direction from the 
"noise" resistance R ,,, . 

The I- Vcharacteristics of normal microjunction are oh- 
mic; therefore, from (2  1 ) we can immediately find the spec- 
tral density of voltage fluctuations, which for w<T, eV 
equals 

S,( V )  =4TRNZ/Rl+ (2eVRN2/R2)cth(eV/2T). (23) 

3.2 The ScN junction 

Finding the spectrum of current fluctuations for an ScN 
junction requires rather tedious calculations; therefore, we 
will limit ourselves to giving only the expressions for the 
low-frequency limit of the fluctuation spectrum, i.e., 
w < {T,A,e V}, which we can cast in the form of a sum of two 
terms: 

where 
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For T = 0 an integration over energy in (24) gives 

where Q = (1 + R)/2R 'I2, and 

A 
S, (V)=S, (A)+ - [ f ( u ) - f ( 1 )  I for eV>A, (25b) 

Ho 

where the function f ( u )  is defined in the following way: 

In Fig. 1 a plot is shown of S, for various values of the 
reflection coefficient R. For simplicity we investigate a mod- 

,el in which D, R do not depend on the direction of momen- 
tum. It is clear that the intensity of the noise current depends 
strongly on the barrier transmission at the boundary of the 
contacting metals; this dependence strongly influences the 
behavior of the nonequilibrium spectral density S, as R in- 
creases. For larger voltages S, goes over to a linear function 
whose slope is determined by the resistance R ,,, . In the case 

FIG. 1. Spectral density of current fluctuations at zero frequency as a 
function of voltage for an ScN junction at T = 0 for various values of the 
electron reflection coefficient R at the boundary: 1-0.01,2--0.1,3-0.5,  
4-48. 

of an ideal microshort between metals with the same Fermi 
momentum (D  = 1 ), the expression for S, ( V )  reduces to 
the form 

In the zero-temperature limit under discussion here, 
there is no Nyquist noise, while the shot noise, which also 
increases linearly with voltage for large V, also disappears 
since the transmission of the boundary equals unity. How- 
ever, in contrast to a normal junction the current noise for 
eV> A has a spectral density different from zero (at zero 
frequency), which goes to the limiting value 8A/15R0 as V 
increases. 

The reason that an excess noise appears when we pass 
from a normal to an ScN contact is Andreev reflection pro- 
cesses at the normal-superconductor boundary,28 which also 
leads to the appearance of excess current in the I- V charac- 
teristics of ScN microjunctions. 14-10 

Before a dependence of S, on voltage can appear in a 
normal junction, it is necessary that a mechanism for scatter- 
ing or reflection from the potential barrier be present at the 
boundary, which hinders the transmission of electrons 
through the constriction (see Subsec. 3.1 and Ref. 26). If we 
do not include electron-phonon collisions, then for D = 1 
there is also no such mechanism for a pure microjunction. In 
this case the contribution of a given electron to the current 
depends only on the direction of its momentum, which does 
not change as the electron moves along its trajectory 
through the constriction. Therefore, at least for frequencies 
smaller than the inverse transit time of electrons through the 
junction region .T~ -a/vF (in the absence of electron-impuri- 
ty scattering) the noise current is determined by the equilib- 
rium fluctuations of the electron distribution function, and 
does not depend on voltage. 

When one of the metals enters the superconducting 
state, the electrons undergo Andreev reflection at the 
boundary, i.e., in the normal metal there appears a reflected 
hole, while in the depths of the superconductor the current 
carries a Cooper pair.28 If we measure the energy of an elec- 
tron incident from the normal metal from the Fermi level in 
the equilibrium superconductor, then for E < A Andreev re- 
flection takes place with a probability of unity. This leads to 
an increase in the conductivity of a pure junction for eV< A 
and T = 0 by a factor of two compared to its value in the 
normal state." Here, the fluctuation current, as in a normal 
junction, is connected with equilibrium fluctuations far from 
the junction, and for zero temperatures and at zero frequen- 
cy it disappears. If the energy E > A, then an electron from 
the normal metal can pass into the superconductor and OC- 

cupy a quasiparticle state above the gap; however, there is a 
finite probability of Andreev reflection ("above-barrier" re- 
flection), which decreases with the growth of &. The pres- 
ence of two scattering channels for a normal electron at the 
NS-boundary gives rise to a noise current. 

At zero temperatures, in the absence of reflection from 
the boundary (D  = 1 ) and scattering by point impurities at 
the edge of the microjunction, fluctuations due to Andreev 
reflection fully determine the noise current, whose spectral 
density at zero frequency (26) is proportional to the integral 
over energy of the product A ( E )  [ 1 - A (E) 1, where 
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is the probability of above-barrier Andreev reflection for 
E > A. There is a clear analogy with the shot noise current in 
the normal case, whose spectrum is proportional to 
R ( 1 - R),  where R gives the probability of the usual one- 
electron reflection from the boundary. An increase in R 
leads to growth of the noise current for eV<A (Fig. l ) ,  
while for eV> A the noise is related both with the one-elec- 
tron and Andreev reflection. For small carrier transmission 
the amplitude of the fluctuation spectrum decreases because 
of the smallness of the conductivity. 

At finite temperatures Eq. (24) for V = 0 reduces in 
agreement with the FDT to the form 

S , ( T ,  V=0) =4TIR, (0). 

Usually, in experiments the intensity of voltage fluctu- 
ations is measured at fixed displacement current. To first 
order in the fluctuating contribution at low frequencies for 
which the condition oRd C,, 4 1 holds in addition to the in- 
equalities indicated earlier (here C,, is the capacity of the 
shunting junction), the noise voltage spectrum equals 
S, ( V) = S, ( V)Rd2. Here, V is the average voltage at the 
junction. The differential resistance was calculated in Ref. 
10. In Fig. 2 a plot ofS, ( V) obtained in this way is shown for 
finite temperatures, and also the corresponding curves 
Rd ( V). The family of curves S, ( V) at fixed T and various 
values of the reflection coefficient R are illustrated in Fig. 3. 

The function S, ( V) changes from monotonic curves 
for small reflection coefficients to curves with a maximum 
lying within eVof A/2. The minima on the curves of Figs. 2, 
3 correspond to a minimum in the differential resistance. In 
contrast to the well-known result for point superconducting 
junctions,15 in this case the functional dependence ofS, on V 
is related not only to the voltage dependence of Rd but also 
to the V dependence of the current fluctuation spectrum. 

The nonmonotonic dependence of the spectrum of vol- 
tage fluctuations S, in the voltage range eV- A is observed 

FIG. 2. Low-frequency spectral density of voltage fluctuations in an ScN 
junction at finite temperature ( A / T =  8 )  and the corresponding depen- 
dence of the differential resistance on voltage for two values of the reflec- 
tion coefficient R: 1-4.15,  2 - 4 4 ,  

FIG. 3. Low-frequency spectral density of the noise voltage of an ScN 
junction at fixed temperature ( A/T = 4 )  and for various values of R: 1- 
0.01 ,2-0 .1 ,  3-0.5,4-0.7. 

experimentally in ScN junctions.29 The curves in Figs. 2, 3 
with maxima are in qualitative agreement with the results of 
Ref. 29, which were obtained for a rather highly ohmic junc- 
tion. At higher voltages the magnitude of the observed spec- 
tral noise power is smaller than predicted by the Schottky 
equation for shot noise. The theory developed here can ex- 
plain this, in that the contribution to S, which increases 
linearly with V (analogous to Eq. (23) ) for eV% A is smaller 
than the shot noise for a tunnel junction with resistance R, 
by a factor of R,/R,. 

The authors of Ref. 29 also observed some functions S, 
with two peaks for voltages smaller and larger than the gap; 
the present theory cannot account for such a shape of S, . In 
connection with this, we note that the presence of strong 
impurity scattering, for which the electron motion through 
the constriction has a diffusive character, can significantly 
change the results related to the fluctuation properties of the 
junction. At the same time, the shape of the I- Vcharacteris- 
tic, in particular the presence of a minimum in the differen- 
tial resistance for voltages on the order of the gap, can just as 
easily be explained either by impurity scattering at the junc- 
tion edge or by a finite-valued reflection coefficient R in the 
absence of impurities. 

If the impurity concentration is low, then the effect of 
electron scattering on the noise spectrum can be included by 
expanding all quantities in the small ratio a/l. Calculating 
the first-order correction to the quasiclassical Green's func- 
tion at z = 0 (for D = 1 ) using the method described in Ref. 
25 and substituting the result into ( l o )  gives a shot noise 
contribution to the current fluctuation spectrum of an ScN 
junction which increases with voltage; for the resistance R2 
in (21 ) we must now substitute RoI /a. Thus, the presence of 
a small number of impurities in the junction region which 
can prevent electrons which collide with them from passing 
through the hole is equivalent to a small reflection coeffi- 
cient from the potential barrier. This assertion does not ap- 
ply if I < a, in which case additional investigation is required. 

The possible influence of effects which are nonlinear in 
the fluctuation voltage on the magnitude of the low-frequen- 
cy noise spectrum was also pointed out in Ref. 29; these ef- 
fects are not included in the approximate treatment given 
here, which is linear in the fluctuations. In addition, it is 
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possible for external noise to affect the system along with the 
intrinsic junction noise. 

However, the dependence on external voltage of the 
nonequilibrium current fluctuation spectrum, which pre- 
viously has been taken into account only by replacing the 
Nyquist thermal noise by shot noise for large applied vol- 
tages, must necessarily be accounted for in a correct descrip- 
tion of the noise properties of junctions. 

In conclusion, we note that the expression for the corre- 
lation function obtained in this paper is applicable also to 
ScS point junctions. In this case, the solutions to the equa- 
tions for and 9 are significantly more complicated. A solu- 
tion is easily found for a current through the junction which 
is smaller than the critical Josephson current, when there are 
no voltage oscillations and the noise current remains an 
equilibrium current. The current fluctuation spectrum cal- 
culated in this case from ( l l ), according to the FDT, is then 
given in terms of the linear response function of the junction. 
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