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The magnetic linear birefringence (MLB ) of rare-earth garnets has been investigated 
experimentally and theoretically. It was found that the field, temperature, and orientational 
dependence of the MLB depended strongly on the nature of the ground state of the rare-earth ion. 
In the case of Gd, Ga, O,, , where the Gd3 + ion has L = 0 in the ground state, the behavior of the 
MLB was basically described well by the formulas of the Akulov phenomenological theory of 
even effects. A microscopic theory predicted a specific dependence of the MLB on Hand T, 
different from that proposed in the phenomenological theory. The MLB of garnets with non- 
Kramers ions, for which the ground state is an isolated singlet ( Eu3+, Tm3+, Pr3+), was found to 
depend quadratically on the magnetic field, was independent of temperature (in the limit T-0), 
and exhibited the orientational dependence predicted by the phenomenological theory. 
Experiments on Tm, Al,O,, and Tm, Ga501, confirmed satisfactorily the theoretical 
conclusions. The MLB of crystals with ions for which the ground state was a Kramers doublet 

( DY + , Er3 + , Yb3+, Sm3+, or Nd3 + ) or a quasidoublet (Tb3+, Ho3+) exhibited a strong field 
dependence in the magnetization saturation region. Generally speaking, these crystals did not 
obey the rules for even effects. Experiments on Yb3Ga50 ,, , Dy ,Also ,, ,and Tb3Al,0 ,, 
confirmed fully these conclusions. It was found that the quadrupole moment of the electron shell 
of the rare-earth ion plays an important role in the even magnetooptic effects. In general, the 
symmetry of the magnetic corrections to the permittivity tensor is governed not by the point 
group of a crystal but by its space group 0 p. 

INTRODUCTION 
An important task in magnetism is the determination of 

the relationship between the material tensors representing a 
crystal and its magnetic structure (in other words, the rela- 
tionship with the magnetic order parameter). Knowing this 
relationship, we can investigate the behavior of thermody- 
namic and transport properties of a material when external 
parameters are varied, study the evolution of the properties 
in the course of phase transitions, consider the role of fluctu- 
ations, etc. 

In the case of magnetooptic effects (particularly the 
magnetic linear birefringence, or MLB) it is necessary to 
determine the dependence of the permittivity tensor E ,  on 
the magnetic structure of the applied magnetic field. This 
dependence has been investigated quite thoroughly for mate- 
rials in which magnetic ions have zero or frozen orbital mo- 
mentum. For example, detailed investigations have been 
made of the MLB of yttrium iron garnet.' This and other 
even magnetooptic effects in magnetic materials of this type 
can be described satisfactorily by a phenomenological theo- 
ry originated by A k u l ~ v . ~ ~ ~  In this theory the tensor E, ,  is 
represented by an expansion in powers of a magnetic order 
parameter (magnetization, antiferromagnetic vector, etc. ) . 

However, in the case of ions with an unfrozen orbital 
momentum the situation is more complex. This is con- 
firmed, for example, by the results of an investigation of the 
MLB of terbium iron garnet.' In particular, the observed 
temperature dependence of the contribution of the rare- 
earth ion to the MLB of this ferrimagnet does not agree with 
the predictions of the phenomenological theory, the angular 
dependences of the MLB are more complex, etc. 

When even magnetic effects in rare-earth magnetic ma- 
terials are described, one is faced with two fundamental 

problems. The first is the degree of influence of the "unfro- 
zen" state of the orbital momentum of the rare-earth ion on 
the even effects. The problem arises because in this case the 
main assumption of the Akulov theory of the even effects is 
not obeyed: the splitting of the energy levels of the magnetic 
ion in the crystal field is not small compared with the split- 
ting in the external (or effective) magnetic field, so that the 
spectrum of the magnetic ion cannot be regarded as quasi- 
equidistant. The second problem arises because in many 
rare-earth magnetic materials the magnetic ions occupy ine- 
quivalent crystallographic positions, so that even in the 
paramagnetic range of temperatures an external field in- 
duces a complex magnetic structure and it is not obvious 
whether the even magnetic effects can be described simply in 
terms of the total magnetization. 

As pointed out above, many characteristic features of 
the MLB have been established by investigating rare-earth 
iron garnets. Compounds with the garnet structure are good 
model objects for the investigation of the even magnetic ef- 
fects. Their crystal structure and the magnetic properties are 
known quite Various methods have been used to deter- 
mine the energy spectra of the rare-earth ions in garnets (see 
Ref. 4 and also the reviews in Refs. 5-8). All this makes it 
possible, at least in principle, to calculate quite accurately 
the contribution made by rare-earth ions to the MLB and to 
other even effects, and to compare such theoretical calcula- 
tions with experimental data. 

However, interpretation of the data obtained for iron 
garnets (and until recently measurements of the MLB of 
garnets have been made only for these compounds) is diffi- 
cult because these substances are ferrimagnets, so that in 
addition to the rare-earth subsystem there is a second mag- 
netic subsystem consisting of the iron ions. 
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The contribution of rare-earth ions to the MLB was 
found in its pure form and the characteristics of this effect in 
magnetic subsystems containing ions with an unfrozen orbi- 
tal momentum were determined in the present investigation 
by theoretical and experimental studies of the MLB in 
simpler paramagnetic systems containing only rare-earth 
magnetic ions such as garnet aluminates and gallates. 

CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES OF 
ALUMINATES AND GALLATES WITH THE GARNET 
STRUCTURE 

Rare-earth compounds with the garnet structure can be 
described by a general formula R,M,O,, , where R is a rare 
earth or yttrium, and M = Fe, Al, Ga, etc. Garnets belong to 
the hexaoctahedral class of the cubic symmetry and are de- 
scribed by the space group 0 iO. A primitive cell of a garnet 
consists of four R,M, O,, molecules. It is important to note 
that the rare-earth ions are distributed between six inequiva- 
lent c sites and the local symmetry of these sites is described 
by the point group D,. The symmetry axes of all six sites 
(local e: ) are derived from the crystallographic coordinate 
system as a result of rotation by an angle f ?r/4 about the 
axes [ 1001, [OlO], or [001], respe~tively,~ and are listed in 
Table I. 

Rare-earth gallates with the garnet structure R,Ga5 
O,, (formed by all the rare earths) and rare-earth garnet 
aluminates R3A150,, (formed only by heavy rare earths 
bqginning from Gd) are antiferromagnets with very low 
NCel temperatures that usually do not exceed 1-2 K. Mag- 
netic properties of gallates and aluminates are largely deter- 
mined by the effect of the crystal field which is much strong- 
er than the R-R exchange interaction (splitting of the 
ground-state multiplet of rare-earth ions by the crystal field 
in garnets is of the order of 10,-lo3 cm- '-see Refs. 5-8). It 
is important to note that the low symmetry of the crystal 
environment results in the maximum lifting of the degener- 
acy of the levels of the ground multiplet of the rare-earth ion 
(SO that doublets are observed in the case of the Kramers 
rare-earth ions and singlets in the case of the non-Kramers 
ions). 

SAMPLES AND MEASUREMENT METHODS 

We determined the MLB of rare-earth garnet gallates 
(R  = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) and garnet 
aluminates (R = Tb, Dy, Ho, Er, Tm, Yb) using single- 
crystal plates with surfaces parallel to the {110) or {loo) 
planes of a crystal in the usual perpendicular geometry (an 
external field H oriented in the plane of the plate and the 
light propagation vector k perpendicular to the plane of the 
plate). Helium-neon laser radiation of wavelength 0.63 pm 
was used in an optical cryostat with a superconducting mag- 

netic system of the Helmholtz type (where the variation of 
the field in a volume of 3 X 3 X 3 mm dimensions was less 
than 1%) generating fields up to 50 kOe. A sample was 
cooled in a stream of gaseous helium to the required tem- 
perature in the range 4.2-50 K. The MLB was measured by 
the polarization modulation method1' with a sensitivity of 
An = The experimental error was mainly due to the 
error in the setting of a sample (setting of the field direction 
relative to a given crystallographic direction in the plane of a 
plate to within 1.5" and setting of the plate at right-angles to 
the propagation vector k of the incident light to within 0.5") 
and typically was less than 5-7%. The vibration magnetom- 
eter method was used in the same ranges of fields and tem- 
peratures to measure the magnetization of gallate and alumi- 
nate single crystals along various directions. The error in the 
magnetization measurements was 5%. 

MAGNETIZATION 

We have mentioned already that the rare-earth ions oc- 
cupy six inequivalent crystallographic sites in the garnet 
structure. Since the environment of a rare-earth ion is aniso- 
tropic, a magnetic field oriented along an arbitrary direction 
induces six different noncollinear and noncoplanar rare- 
earth magnetic moments M"' . The magnetization of such a 
crystal per rare-earth ion is 

1 H-fiC BMw M= /, 

and it depends on the direction of the magnetic field. In the 
subsequent analysis of the MLB we shall be interested in 
those cases when the field is directed along the symmetry 
axes of a crystal. We shall consider the types of magnetic 
structures which appear for HI1 [ 11 11, HI1 [ 1101, and 
Hll t 1001. 

HI/[ 1 1 1 1. In this case a double helical (spiral) magnet- 
ic structure is formed in the applied field. One helix repre- 
sents the magnetic moments of ions at the sites 1, 3, and 5, 
whereas the other helix corresponds to the sites 2, 4, and 6. 
Inside each helix the moments are equal, and they lie in the 
(  TO), ( o l i ) ,  and ( 107) planes at the same angles relative to 
the [ 11 1 ] axis. 

HJJ  [ 1101. The magnetic structure now consists of three 
magnetic subsystems. Two of them have different magnetic 
moments at the sites 1 and 2, which are directed along the 
[ 1 101 axis. The third subsystem is formed by equal magnetic 
moments at the sites 3,4,5, and 6. The moments at the sites 5 
and 6 are mirror images, relative to the (001 ) plane, of the 
moments of the sites 3 and 4, respectively. The planes in 
which the moments at the sites 3 and 4 and also 5 and 6 are 
located pass through the [001 ] axis and are inclined relative 
to the ( 100) and (001 ) planes by the same angles measured 
in the direction toward the [ 1101 axis. 

TABLE 1. Orientations of local symmetry axes of c sites in garnet structure. 

I Site 

1234 Sov. Phys. JETP 66 (6), December 1987 Vedernikov etal. 1234 



HI/[ 1001. In this case there are two magnetic subsys- 
tems. One of them is formed by equal and collinear (with the 
direction of the field) moments at the sites 1 and 2. The other 
consists of the moments at the sites 3,4,5, and 6. The magni- 
tudes of these moments are equal. The moments at the sites 3 
and 4 lie in the ( 100) plane and are oriented at angles to the 
[001 ] axis which are the same in magnitude but have differ- 
ent signs. The moments at the sites 5 and 6,  lying in the (010) 
plane, are oriented in a similar manner. 

PERMITTIVITY TENSOR AND MAGNETIC LINEAR 
BIREFRINGENCE 

In the interpretation of the experimental data on the 
MLB it is usual to employ the phenomonological approach 
based on the Akulov theory of even magnetic In 
this approach the permittivity tensor is represented by 

k k l  

where Mk are the components of the magnetization vector. 
The observed phase shift due to the birefringence is defined 
as @ = 2rAn/A, where A is the wavelength of light in vacu- 
um and An is the difference between the refractive indices of 
light waves propagating at right-angles to the magnetic field 
(or magnetization) and polarized along and across the mag- 
netic field. The relationship between the refractive indices 
(or refraction vectors) and the E~ tensor is governed in the 
optics of crystals by the Fresnel equation 

which describes normal modes and the corresponding wave 
vectors k = no/c (or the refraction vectors n). 

This definition of the birefringence @ suffers from cer- 
tain limitations even in the case of cubic crystals.3 It is valid 
only if the directions of the magnetic field H and of the wave 
vector k coincide with the principal axes of the optical indi- 
catrix of a crystal. This situation occurs when the directions 
of the magnetic field (or of the magnetization) coincide with 
the symmetry axes of a crystal (i.e., with the [100], [ I l l ] ,  
and [I101 axes). 

In general, the principal axes of the optical indicatrix do 
not coincide with the crystal axes or with the direction of the 
magnetization, so that the quantity An in the formula for @ 
could be understood to represent the difference between the 
refractive indices corresponding to two axes of the indicatrix 
when the wave vector is parallel to the third axis. It is this 
point that one has to bear in mind when speaking of the 
anisotropy of the MLB. It is understood to be the depen- 
dence of the difference An defined in this way on the direc- 
tion of magnetization in a plane perpendicular to k. 

It should be pointed out that the MLB includes contri- 
butions from even (quadratic in M )  terms in the expansion 
of .cli and "gyrotropic" terms (linear in M).  Let us assume 
that, for example, k11 [OOl] and M J J  [loo].  We have 
E~~ = E,, = 0 and it follows from the Fresnel equation that 
there are two linearly polarized (along the x and y axes) 
modes with the refractive indices 

In the majority of cases the "gyrotropic" contribution 
('/E, is small, so that n: z.cO + Scyy. This follows di- 

rectly from a comparison of the experimental data for E~~ and 

E ~ ,  where i#j .  The conclusion that the gyrotropic contribu- 
tion to the birefringence can be ignored applies also in the 
case of more general situations. Therefore, in the birefrin- 
gence studies we confine ourselves to the terms in the tensor 
E~ which are even in M. 

It follows from Eqs. ( 1 ) and (2)  that the MLB depends 
only on the magnetization (or, more exactly, on its magni- 
tude and orientation in a crystal) and it should remain con- 
stant if the magnetization is not changed. Moreover, appli- 
cation of Eqs. (1) and (2)  to crystals of different symmetry 
allows us to derive certain relationships between the values 
of the MLB for various orientations of the vectors H and k 
(known as Akulov rules for the even effects). For example, 
in the case of cubic crystal it follows from Eqs. ( 1 ) and (2 )  
that 

An(H11 [IIO], k\l[001] ) =An(HI/ [ I l l ] ,  k l H ) ,  

However, this approach is not always valid and, strictly 
speaking, it should be applied only to S ions and even then 
the phenomenological theory based on the expansion of Eq. 
( 1 ) describes correctly the field and temperature depen- 
dence of the MLB only at sufficiently high temperatures and 
in moderately strong fields]. In other cases, one should use 
different invariants permitted by the crystal symmetry in the 
description of the MLB; however, these invariants are ig- 
nored in the phenomenological theory because they are re- 
garded as small. 

We can show this by an analysis of the MLB for rare- 
earth paramagnets using a microscopic model which allows 
for the influence of the crystal and external magnetic fields 
on the electron structure and polarizability of the rare-earth 
ion. We shall allow for the real spatial symmetry of rare- 
earth garnets. 

In the visible range of wavelengths the magnetooptic 
properties of rare-earth crystals are governed by allowed 
4fx -4fx - ' 5d transitions in the rare-earth ions. The ener- 
gy of these transitions in free trivalent rare-earth ions is - lo5 cm - (see, for example, Ref. 11 ) . The electrostatic 
interaction of a 5d electron with the 4f "- core ( - lo4 
cm-') is-of the same order of magnitnde as the interaction 
between the crystal field and a 5d electron. The spin-orbit 
interaction of the 4f electrons is somewhat weaker. The 
spin-orbit interaction of a 5d electron and the influence of 
the crystal field on the 4f electrons are even weaker effects. 
In the long-wavelength wing of an allowed optical transition 
we can ignore, in the first approximation, the splitting of the 
levels of the 4f "- ' 5d configuration (for ions with L #O) .  
In this case the actual corrections to the polarizability tensor 
of a rare-earth ion with L #O can be represented in the 
form1* 

6aij=a(Qij(J) ), a=917a ( r , d e ) Z ~ o / h ( ~ o Z - ~ 2 ) ,  (4)  

where r f ,  = (4f I r J  5d ) is the radial integral; a is the Stevens 
parameter (see, for example, Ref. 13) of the ground multi- 
plet of the ion; w, is the average frequency of f-d transitions 
(k, = lo5 cm-'): 

Qij(J) ='/, [JiJj+JjJi-'/,6ijJ(J+1) ] 
is the quadrupole moment operator of the electron shell of 
the ion. Along the rare-earth ion series the value of rf, ranges 
from 0.29 A Tm3+ to 0.44 A for Pr3+ (Ref. 14). We shall 
ignore the frequency dependences of the MLB and concen- 
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trate our attention on the field and temperature dependences 
o , +,% ;O 3; ;o H, Foe of this effect. We simply note that if (w/wo12< 1 then the 

MLB is frequency-independent see Eq. (4) ] .  We shall give 
the values of a (obtained in the limit w +0) for some of the 
rare-earth ions: 

$\$ 

up,=-6.10-" cm3, aTb=-2.1 cm3, - 0 , ~  
'h, \ 4 

b \% 
a,,= 1.2. cm3. 

In the case of S ions (Gd3 + , Eu2+) the expression for 
Say is (Ref. 12) ') 

- I  
200 (~co'+oo') 

Gai]=a,(Qij (S) ), a, = ASL2 (r tdeIZ,  (5 [ n ( o z - ~ o Z )  i 3  

I \ 
where A, is the spin-orbit coupling constant. In the case of '8, 
Gd3+ at frequencies in the range ( w / ~ , ) ~  < 1 when rf, = 0.4 A n  
.& (Ref. 14) and A, = 300-400 cm- I ,  we find that Eq. (5)  
yields as = - (3.2-5.8) X 10 - 30 cm3. The contribution of FIG. 1 .  Field dependence of the magnetic linear birefringence of 
the terms (4) and ( 5 )  to the permittivity of a crystal ob- Gda GasO,, at 4.2 K. The symbols +re the experimental data obtained for 

tained in the standard Lorenz-Lorentz approximation is kl(110): e)H11[001], A )  H11[110], 0 )  ~ I I [ i l l ] ;  kl(100); 0) 
HI\ [ O l ] ,  A )  Hll [Oll]. The dashed curves are calculated using Eq. ( 10). 

where A = +raN [ (n2 + 2)/312 (n is the refractive index 
and N is the number of the rare-earth ions per unit volume) 
and the summation is carried out over all six inequivalent c 
sites occupied by the rare-earth ions. 

MAGNETIC LINEAR BIREFRINGENCE OF GARNETS: 
THEORETICAL RELATIONSHIPS AND EXPERIMENTAL 
RESULTS 

The field and temperature dependences of the MLB can 
be determined provided we first calculate the field and tem- 
perature dependences of the quadrupole moment (Q ). 
Naturally, these dependences will be different for rare-earth 
ions in different states. We shall consider this problem in 
greater detail for typical rare-earth ion spectra of garnets, 
beginning from the simplest orbital singlet (S ion) and then 
going over to more complex spectra which are formed large- 
ly under the influence of the local crystal environment. 

S ion (Gd3+). The ground-state multiplet of Gd3 + is 
'S,,, . Since in this state we have L = 0, we can ignore the 
influence of the crystal field on the splitting of the levels of 
the multiplet. Therefore, the energy levels of Gd3' in an 
external field are described by 2p,mH, where m = - 7.2, 
- 5/2, ... , 5/2, and 7/2. 

The quadrupole moment operators Q,. can be ex- 
pressed conveniently in terms of irreducible tensor operators 
Y;"(S), with S = 7/2, using the relationships 

The average values ( Y F (S) ) are in this case given by 
(see, for example, Ref. 13 ) 

where 6 = M / M ,  M is the magnetization, and ( Y i  (S ' ) )  is 
calculdted in a coordinate system in which the z axis is di- 

rected along the magnetization. Using Eqs. (7)  and (8),  we 
find from Eq. ( 6 )  that 

Since the MLB is described by An = J(SE,, - S E ~  ), its 
field and temperature dependence are governed by the field 
and temperature dependence of pijkl (H,T), defined by the 
ratio (Y:)./(Y;),. In the classical limit (S$ l ) ,  we have 

where?,,, ( x )  = I,,, (x) / I  ,,, (x)  is a reduced Bessel func- 
tion and L - ' is the reciprocal of the Langevin function. At 
low temperatures or in strong fields, when only the two low- 
est energy levels of the Gd3 + ion are populated, it follows 
from Eq. ( 10) that the MLB is proportional to M(H,T) 3, 
whereas at high temperatures when the magnetization is 
weak, we have An aM(H,T12. Saturation of the MLB 
(An, )of Gd3 Ga, O, ,  occurs when the magnetization is sat- 

FIG. 2. Temperature dependence of the magnetic linear birefringence of 
Gd,Ga,O,, in a field 40 kOe obtained for kl(110) and HI1 [ i l l ] .  The 
circles are the'experimental results and the dashed curve is calculated 
using Eq. ( 10). 
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urated paramagnetically. The value of An, calculated using 
Eqs. (5) and (6) with the parameters r f ,  = 0.4 A (Ref. 14), 
A, = 300-400 cm-', n " 2 ,  and N =  1 . 2 7 ~ 1 0 ~ '  ~ m - ~ ,  is 
An, = - ( 1.1-1.9) x 10 - ' and is ofthe same order ofmag- 
nitude as the experimental data reported below. 

It therefore follows from our calculations that the mag- 
netic-field dependence of the MLB of compounds of gadolin- 
ium and other S ions is the same as that predicted by the 
phenomenological theory above-mentioned see [Eq. (9) 1. 
A new feature of the microscopic theory is that it yields the 
field and temperature dependences very different from those 
proposed earlier and these agree with the earlier predictions 
only in the limit of weak magnetization. It should be pointed 
out that Eq. (10) is fully analogous to the formula which 
describes the field and temperature dependences of the mag- 
netostriction obtained by Callen and Callen.15 

Figure 1 shows the experimental field dependence of the 
MLB of Gd, Gas 012 obtained for various directions at 4.2 K 
and the theoretical dependence plotted on the basis of Eq. 
( 10) using our own measured values of the magnetization of 
Gd, Ga, O,, . We can see that the agreement between the 
experimental and theoretical dependences is good. The ex- 
perimental dependence An (T)  is plotted in Fig. 2 and once 
again it is described well by Eq. ( 10). 

Therefore, our experiments and a microscopic theoreti- 
cal analysis confirm that in the case of rare-earth compounds 
containing S ions the orientational dependence of the MLB 
can be described by the phenomenological theory in which 
the temperature and field dependences of the coefficients are 
given by Eq. ( 10). 

Ions with a singlet ground state ( E U ~ + ,  Tm3+, Pr3+ ). 
The Eu3 + ion has a singlet ground state with J = 0. The first 
excited multiplet 'F,  is separated by an energy of 350 cm-I 
from the ground m ~ l t i ~ l e t . ' ~  In the case of Tm3+ (ground 
multiplet 3H6 ) the singlet ground state appears in a garnet 
because of lifting of the degeneracy of the ground multiplet 
in a crystal field of D2 symmetry. The first excited level lies 
35 cm-' above the ground state in the case of Tm3A14012 
and at 63 cm-' in the case ofTm3 Ga5012 (Refs. 5 and 6).  A 
similar structure of the splitting of the ground multiplet 3H4 
of Pr3 + by the crystal field is observed for Pr,Ga,O,,. 

It is known that a nonzero magnetic moment of an ion 
with a singlet ground state appears only if excited states are 
admixed, in accordance with perturbation theory, to the 
ground state (Van Vleck mechanism). This also applies to 
the quadrupole moment. The only difference is that a field- 
dependent quadrupole moment appears only in perturbation 
theory which is of second order in the ratio of the Zeeman 
energy to the energy of the crystal field, so that 

6(Qij) - (pa H /  W)', 

where W is a characteristic energy interval separating the 
ground singlet from excited levels. 

A more detailed quantum-mechanical calculation 
based on perturbation theory gives 

where the fourth-rank tensor by,, can be called the quadru- 
pole susceptibility tensor. The symmetry of this tensor is 
now governed by the point group D, . The expressions for the 
components b,,, are given in the Appendix. At low-tempera- 
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tures ( T( W) the tensor bgk, is independent of temperature. 
Substituting Eq. ( 1 1 ) into the expression for the permittivi- 
ty (6),  we can now calculate the MLB. It is found that the 
orientational dependence of An is exactly the same as that 
predicted by the phenomenological theory. In particular, the 
rule of the even effects is obeyed. The expressions for An in 
the cases when HJI [001 ] and Hll[ 11 1 ] are as follows: 

This is precisely the experimentally observed behavior 
of the MLB of Tm, Ga5012 (Figs. 3 and 4) .  In particular, in 
the investigated range of magnetic fields the value of An for 
this garnet is very accurately proportional to H 2  at 4.2 K. 
Below approximately 20 K the MLB of Tm,GasOl, is inde- 
pendent of temperature. At higher temperatures the effects 
due to thermal filling of the excited levels become important 
and the MLB varies with temperature. This interpretation is 
supported by the results of our measurements of the MLB of 
thulium aluminate. Since in this compound the excited levels 
are much closer to the ground state than in thulium gallate, 
the temperature interval where An ( T) = const is much nar- 
rower and the value of An is larger (Fig, 4 ) .  It is clear from 
Fig. 4 that the MLB of thulium garnet varies with tempera- 
ture but it is not proportional to the square of the magnetiza- 
tion; this is again in agreement with the theory. 

The MLB of Eu3Ga501, is very small (it is less than 
2 X 10- in the highest field used in our study). This is prob- 
ably due to the fact that the energy intekval separating the 
ground singlet from excited levels is large. 

Ions with a doublet ground state (Sm3+, Nd 3f, Dy3+, 
Er3+, and Yb 3+). The crystal field in garnets splits the 

FIG. 3. Field dependence of the magnetic linear birefringence of 
Tm, Ga,O,, at 4.2 K. The symbols are the experimental results (the nota- 
tion is the same as in Fig. 1 ). The dashed curves represent An = HZ. 
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ground multiplet of the Kramers rare-earth ions into doub- 
lets. If we consider only the ground doublet (assuming that 
it is isolated), it then follows from the calculations of Ref. 12 
that the average quadrupole moment of the rare-earth ion is 
independent of the field. Consequently, in this approxima- 
tion the MLB vanishes. (The effective spin of an isolated 
doublet is S,, = 1/2. We recall that in this state the single- 
ion magnetostriction and magnetic anisotropy also vanish.) 
This property of the MLB can be compared with vanishing 
of the magnetic moment of an isolated singlet: in the singlet 
state the magnetic moment, which is a first-rank tensor, van- 
ishes; for a doublet the change in the quadrupole moment, 
which is a second-rank tensor with zero trace, again vanish- 
es. 

We can calculate the change in the quadrupole moment 
of a rare-earth ion with a doublet ground state if we use 
perturbation theory to allow for the admixture of excited 
doublets to the ground doublet (Van Vleck mechanism). As 
in the case of the singlet state, the perturbation is the Zeeman 
energy. 

In the first approximation of perturbation theory we 
have 

where M is the magnetization of the rare-earth ion. In this 
case the field dependence of the MLB differs qualitatively 
from the corresponding dependence for an S ion: An is gov- 
erned by the product of the magnetization and the field (and 
not only by the magnetization alone), so that in strong fields 
when the magnetization ceases to depend on the field (para- 
magnetic saturation) the value of the MLB varies linearly 
with the field. The MLB of garnets with a Kramers rare- 
earth ion should be greater in the doublet ground state (oth- 
er conditions being equal) than in the case of the singlet 
ground state, since it is governed by the first order of the 
small parameter p,H / W. 

More detailed calculations of the change in the quadru- 
pole moment in a magnetic field yield 

where M, is the component of the magnetization of the rare- 
earth ion due to the splitting of the ground-doublet levels. In 
terms of the local symmetry axes of the rth site, we find that 

where g, are the components of the g tensor of the ground 
doublet and Gg,, are the effective coefficients, for which ex- 
plicit expressions are given in Ref. 12. The tensor G ,  is the 
main characteristic of a Kramers ion governing the appear- 
ance of the magnetic corrections to the quadrupole moment. 
It can be regarded as the quadrupole susceptibility tensor of 
a Kramers ion. 

It is convenient to calculate the MLB using a coordinate 
system characterized by zllk. We shall first consider the per- 
mittivity tensor. It follows from Eqs. (6) and ( 13) that in 
the laboratory coordinate system defined by orthonorma- 
lized triplet vectors y ,  , y, , and y, (in the subsequent calcu- 

FIG. 4. Temperature d e p e n d e ~  of the magnetic linear birefringence 
obtained for kl( 110) and HI1 [ 1 1  1 ] (open symbols) and of the square of 
the magnetization (black symbols) in a field of 40 kOe applied to 
Tm, Ga, O,, (circles) and Tm,Al,O,, (triangles). 

lations of the MLB we shall assume that Y,IIH, y,llk, 
y2 = [y3y1 ] ), the tensor S E ~  is 

It follows from Eq. ( 15) that the permittivity of rare- 
earth garnets is governed generally not by the resultant mag- 
netization, but by a combination of the magnetizations of the 
rare-earth ions at various inequivalent sites. Using the sys- 
tem of equations (15) we find that the expressions for the 
MLB of garnets with rare-earth ions that have a doublet 
ground state can be represented as follows (for different ori- 
entations of the field and of the light propagation vector): 

where the coefficients C,, , ,  B,, ,  and Df,,,, are given in the 
Appendix [see Eq. (A2) 1; the index p = 1 corresponds to 
k(( [001 ] , whereas the index p = 2 corresponds to kt( [ 1 lo]. 
The magnetic moment vectors of the rare-earth ions, defined 
by Eq. ( 14), occur in Eq. ( 16) and can be calculated for the 
appropriate directions of the magnetic field H. 

It follows from Eq. ( 16) that the field and temperature 
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dependences of the MLB are in this case very different from 
those proposed in the phenomenological theory. In particu- 
lar, the MLB now exhibits a strong field dependence and it 
rises linearly with the field in strong fields, when the magne- 
tization of the rare-earth sublattices (and, consequently, the 
total magnetization of the garnet) is completely or almost 
completely saturated. Moreover, the dependence of the 
MLB on the magnetic field orientation is more complicated 
than in the phenomenological approach. If we use Eqs. ( 14) 
and (A2), Eq. ( 16) shows that the even effects rule of Eq. 
( 3 )  is now satisfied only in weak fields or at high tempera- 
tures (when gH& W) or in the case of a weak anisotropy of 
the g tensor of the ground doublet. 

It is worth noting that, generally speaking, the MLB 
depends on linear combinations of the sublattice magnetiz- 
ations and not on their sum, which is the total magnetization 
of a crystal. The MLB can be expressed in terms of the total 
magnetization only in two limiting cases: rare-earth ions 
with an isotropicg tensor and very strongly anisotropic Ising 
rare-earth ions characterized by g, (g,, gy . 

In both these limiting cases the field and temperature 
dependence of the MLB is simple: 

However, in the case of garnets with isotropic rare-earth ions 
the magnetization due to the ground doublet of the rare- 
earth ion is independent of the orientation of the field, so that 
in the case of garnets with these ions the even effects rule of 
Eq. (3)  should be satisfied, whereas in the case of garnets 
with Ising ions the magnetization due to the ground doublet 
changes greatly as a result of a change in the orientation of 
the field and the even effects rule is not obeyed. 

We demonstrated earlier1' that the isotropic approxi- 
mation can be used to describe the MLB of the gallate 
Yb, Ga, 012 in which the components of the g tensor of the 
Yb3+ ion aresimilar (g, = 3.60,gy = 3.78,g, = 2.85-see 
Ref. 18). 

We shall consider Dy3A1,0,, as an example of the 
MLB in garnets with Ising ions. Theg tensor of Dy3+ in this 
garnet is strongly anisotropic (g, = 0.73, gy = 0.40, g, 
= 18.2) .I9 Then, the general formula ( 16) yields the MLB: 

where the magnetizations due to the ground doublet of the 
rare-earth ion are (per ion) 

and b, and b, are constants. Equations (18) and (19) clear- 
ly demonstrate breakdown of the even effects rule in the case 
of Dy, Al, O,, when g, H> T. 

Figure 5 shows the experimental field dependences of 
the MLB obtained for Dy3A1,0,, at 4.2 K. We can see that 

FIG. 5. Field dependence of the magnetic linear birefringence of 
Dy,Al,O,, at 4.2 K. The symbols represent the experimental results (the 
notation is the same as in Fig. 1 ). The dashed curves are calculated using 
Eq. (17). 

in the case of this garnet the application of strong fields such 
that the magnetization tends to saturation (Fig. 6) does not 
saturate the MLB (in contrast to Gd3Ga,01,, see Fig. 1 ). 
Figure 5 includes also theoretical dependences An(H) cal- 
culated on the basis of Eq. ( 17) using the experimental val- 
ues of the magnetization the ground doublet magnetization 
was deduced from the experimental dependences M(H)  by 
subtracting the Van Vleck contribution deduced from the 
slope of M(H)  in strong fields]. We can see that Eq. ( 17) 
describes satisfactorily the experimental data obtained in 
fields below 35-40 kOe, whereas the experimental depen- 
dences An (HI obtained in stronger fields vary more rapidly 
with thefield than predicted theoretically. This is due to the 
fact that in strong fields the Zeeman splitting of the ground 
doublet is no longer small compared with the energy separa- 

FIG. 6. Field dependence ofthemagnetization of Dy,AI,O,, at 4.2 K: *) 
Hll[lOOl; A) Hll[llOl;O) Hll[111]. 
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tion between the ground and first excited doublets, so that 
Eq. (17) for the MLB must include the next term of the 
expansion proportional to H '. Inclusion of this term makes 
it possible to describe the experimental results completely. 
Figure 7 gives the temperature dependence of the MLB for 
Dy, Al, O,, . We can see that it is described well by Eq. ( 17). 

The MLBs of other garnets with Kramers rare-earth 
ions (Nd, Ga,O,,, Er3A15 O,, , etc.) exhibit field and tem- 
perature dependences which are qualitatively similar to 
those of the MLB of Dy3A1,0,,. 

Ions with a quasidoublet ground state (Tb3+, Ho3+). 
The ground state of some non-Kramers rare-earth ions, such 
as Tb3 + and Ho3 + , in garnet crystals are two closely spaced 
singlets (quasidoublet) separated from higher levels by a 
large energy gap. For example, in the case of Tb3+ in Tb, 
Ga5012 and Tb3A1,O,, the ground state is a quasidoublet 
and the separation between its levels is 2-3 cm-I, whereas 
the nearest excited level is separated by 40 cm-' in the gal- 
late and 61 cm-' in the a l ~ m i n a t e . ~ . ~ ~  Approximately the 
same parameters are exhibited by the ground quasidoublet 
of the Ho3+ ion in  garnet^.^," We shall now consider the 
MLB for this case. 

Let us assume that \ A  ) and IB ) are the wave functions 
of the state of a rare-earth ion forming a quasidoublet in zero 
external field. Since these functions are not Kramers-conju- 
gates of one another, a change in the average quadrupole 
moment of the rare-earth ion in the applied magnetic field is 
then predicted in the zeroth approximation of perturbation 
theory. Therefore, the MLB of a non-Kramers quasidoublet 
appears in principle even if we make no allowance for an 
admixture of higher levels. 

It is known22 that rare-earth ions with a quasidoublet 
ground state are of the Ising type. In garnets (when the sym- 
metry of the environment of the rare-earth ion is D , )  the 
magnetization axis of the rare-earth ion coincides with some 
local symmetry axis e: . In the case of Tb3 + and Ho3 + in 
garnet gallates and aluminates, the magnetization axis is ori- 
ented along e;.  In this case the contribution made to the 
MLB by the zeroth-order terms is 

Ano(H1\ 1001 1,kJ-H) =31,AAo(~(H) --x (0)  ) C,,. 

An , (H~ l [ l l l ) ,  k ~ H ) = A n o ( H ~ ~ [ l l O ] ,  k11[001]) =0, 

Ano(HIl [IIO], k//[110]) = 3 / , ~ ~ o ( x ( ~ ~ / 1 / 2 )  -X ( o ) ) ~ , , ,  

(20) 

where x represents the magnetic susceptibility due to the 
ground quasidoublet: 

x(fI) =A-'(H)th(A (H) /2T), A (H) =(A,2+F2HZ)'",  

~ = ~ P B ~ J ( ( A ( J ~ ( B ) ( ,  Czz=<AIQzz(A)-(B(Q,,(B),  

where A, is the separation between the quasidoublet levels in 
zero field. It  should be noted that this contribution to the 
MLB has a characteristic field dependence: no tends to satu- 
ration in strong fields when pH% T and An,= - $ACz- 
tanh(Ad2Tl. 

The zeroth-order contribution is frequently insufficient 
to account for the experimental data on the MLB of crystals 
with rare-earth ions characterized by a quasidoublet ground 
state. Clearly, this is due to the similarity of the wave func- 
tions of the quasidoublet levels and due to the smallness of 
A,, so that a non-Kramers quasidoublet can be regarded 
approximately as a doublet. We need then to allow for the 
influence of excited states on the quadrupole moment of the 
rare-earth ion in accordance with perturbation theory. In- 
clusion of corrections allowing for this influence makes a 
contribution to the MLB which is analogous to that calculat- 
ed for garnets with Kramers rare-earth ions and a doublet 
ground state. 

By way of example, we shall consider the MLB of 
Tb, Al, O,, . Using the data on the wave functions of the 
Tb3+ ion in this garnet,23 we find that [C,,/ 
( A  lQzz [ A  ) z 4 X  i.e., the main contribution to the 
MLB comes from the mechanism of mixing of the ground 
states. This is confirmed by the experimental data on the 
field dependence of the MLB of terbium aluminate at 4.2 K 
(Fig. 8),which is at least qualitatively described by Eq. 
( 17). This is demonstrated particularly by the characteristic 
rise of the MLB with the field when the field is sufficiently 
strong for paramagnetic saturation of the magnetization. As 
in the case of Dy,Al,O,,, in strong fields the contribution 

FIG. 7. Temperature dependence of the magnetic linear birefringence of 
Dy,AI,O,, obtained in a field 40 keV for k1( 110) and H(I [ 1 1  1 I .  The FIG. 8. Field dependence of the magnetic linear birefringence of 
circles are the experimental results and the dashed curve is calculated Tb, Al, O,, at 4.2 K. The symbols are the experimental data (the notation 
using Eq. ( 17). is the same as in Fig. 1 ). The dashed curves are calculated using Eq. ( 17). 
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made to the MLB by the term proportional to HZ becomes 
important. We obtained similar results for 
Tb, Ga, O,, , Ho, Ga, O,, , and Ho3 Al, O,,, 

SPACE GROUP Or, MAGNETIC MODES, AND SYMMETRY OF 
THE PERMllTlVlTY TENSOR 

A rare-earth garnet differs from a classical paramagnet 
because it contains six types of magnetic ions (six sublat- 
tices) which are magnetized in different ways by an external 
field. A complete description of the magnetic state of such a 
paramagnet cannot be provided by just the magnetization of 
the material, but it is necessary to determine the magnetic 
moments of the six sublattices, i.e., to find a vector in a space 
with 18 dimensions. This generalized vector transforms in 
accordance with the reducible representation of the group 
OF, which can be expanded in terms of magnetic modes 
YJttj,each of which transforms in accordance with one of the 
irreducible representations r3, r5, r; , r i ,  r:, r(: , and 7': (the 
notation is the same as in Kovalev's handbook24). A magnet- 
ic field of arbitrary orientation generally induces all these 
modes. Each of the modes normally contributes to the MLB 
and to other even magnetooptic effects. 

From this point of view, we can represent Eq. ( 15) for 
the tensor S E ~  as follows: 

where (r(H) g r(YJt)GA are the basis functions of the tensor 
representation, representing linear combinations of the 
products Hk 'Dl?, For example, we have 

3 

v = l  

In Eq. (21), ,u = 1,6,7; A = 3,6 ,7 ,9;  i is the dimensionality 
of the representation j is the multiplicity of the represen- 
tation +; KSj are linear combinations of the constants Gqk, 
(there is a total of 15 such combinations); 

It therefore follows that the permittivity tensor is gener- 
ally determined by the space (not point ) symmetry of a cry s- 
tal and it includes a larger number of the effective constants 
kSi than that obtained from the phenomenological theory 
utGizing the point symmetry of the crystal. Transition to the 
classical description of the even magnetooptic effects occurs 
at high temperatures T (or in weak fields) when g H 4  T. 
Then, in the approximation linear in g H / T 4  1, there are 
only three nonzero modes m9j : 

I1ll:l=g,Hr/T, 1111i92='Iz(gx+gu) Wi lT .  1111i93='/2(gy-gX) HiIT. 

Then, Eq. (2  1 ) assumes the following simple form (it is 
described by three constants) : 

E , ' = c ( ~ ) H ~ / T ,  E ~ ~ = ' / ~ C ( ' ) ( H , ~ - H , ~ ) / T ,  

where 

CONCLUSIONS 

We have thus demonstrated theoretically and experi- 
mentally that the field, temperature, and angular depen- 
dences of the MLB are influenced strongly by the nature of 
the orbital degeneracy of the magnetic ion. When the orbital 
momentum of the ground state of the ion vanishes (or is 
frozen) the behavior of the MLB is generally described satis- 
factorily by the formulas of the phenomenological theory 
put forward by Akulov. A new result of the present treat- 
ment is a different dependence of the MLB on the applied 
magnetic field and temperature. 

If the orbital momentum in the ground does not vanish, 
the behavior of the MLB is very different. The magnitude of 
the MLB is then greater than for L = 0 (when other condi- 
tions are the same). 

In the case of ions with a singlet ground the MLB de- 
pends quadratically on the field, is not affected by variation 
of temperature (in the limit T-0), and obeys the same 
orientational dependence predicted by the phenomenologi- 
cal theory. There is a remarkably strong dependence of the 
magnitude of the effect on the energy W separating the 
ground state from excited levels. This confirms the general 
conclusion that the MLB of rare-earth compounds depends 
more strongly on the nature of the excited states if L #O. 

The MLB of crystals containing Kramers ions with a 
doublet ground state exhibits a strong field dependence in 
the magnetization saturation region. This is due to the fact 
that a change in the polarizability of these ions in a magnetic 
field is due to mixing of excited states with the ground doub- 
let, representing a characteristic analog of the Van Vleck 
susceptibility for the even magnetic effects. 

Crystals with non-Kramers ions with two closely 
spaced singlets (quasidoublet) in the ground state, separat- 
ed by a large energy gap from excited levels, exhibit similar 
behavior of the MLB. 

When the degree of degeneracy is higher, i.e., when the 
effective spin of the ground state is S,, > 1/2, the field de- 
pendences of the MLB (and of other even effects) should 
become saturated in strong fields in the range where the 
magnetization is saturated. This does not apply to paramag- 
netic garnets. 

There is a close analogy between the behavior of the 
MLB and magnetostriction. This is due to the fact that both 
effects are governed by the same quantity, namely by the 
field-induced change of the quadrupole moments of the rare- 
earth ions. However, in describing the magnetostriction 
(and other magnetoelastic effects) it is generally essential to 
have a larger number of phenomenological parameters than 
the number used to describe the MLB (at least in the approx- 
imation adopted in the present study). 

It should be stressed that the symmetry of the magnetic 
corrections to the permittivity tensor of rare-earth garnets is 
not determined by the point symmetry group of a crystal, but 
by the space group, i.e., it is very important to allow for the 
inequivalent positions of the rare-earth ions in the garnet 
crystal structure. There is a complete analogy with the sym- 
metry properties of the magnetoelastic energy. " Naturally, 
this conclusion does not apply just to rare-earth garnets but 
is more general. 

We considered the MLB in paramagnetic rare-earth 
garnets. Generalization of the theory to magnetically or- 
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dered rare-earth ion garnets can be made as usual employing 
the self-consistent field approximation: the external field in 
all the formulas should be replaced by the effective field 
which includes the external and exchange fields created by 
the iron sublattices. 

The main conclusions reached above can be extended in 
a natural manner to the magnetic linear dichroism. This can 
be done using the Kramers-Kronig dispersion formulas or 
calculating directly the polarizability of a rare-earth ion 
from the Kramers-Heisenberg formula, as is done in Ref. 12. 

The authors are grateful to B.V. Mill' who grew the 
majority of the investigated crystals from a molten solution, 
and to A.A. Kaminskiy, who supplied garnet crystals synthe- 
sized by the Czochralski method. 

APPENDIX 

I. A singlet is described by 

r n  n 

p,, = [z exp(-EkiT) ] - ' e r p ( - ~ . / ~ ) .  ( A l )  
k 

where Em is an energy level of a singlet (m) . 
11. A doublet is described by 

"In the case of the Fe3+ ions (d-p transitions) the quantity a ,  in Eq. (5) 
should be replaced with a; = (2/3)a,. 
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