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We have studied the temperature dependence of the resistivity for the superconducting metallic 
glasses Zr, Be, - , ( x  = 0.6,0.7) and for Zr,,Rh,, in the temperature interval T - Tk 2 Tk ( Tk is 
the superconducting transition temperature) for H = 0 and for a longitudinal magnetic field 
H = 7.4 T. The observed anomalous behavior of the resistivity of metallic glasses is adequately 
described by the theory of weak localization of electrons and electron-electron interaction (EEI) 
in three-dimensional disordered systems. At H = 0, EEI in the Cooper channel play a 
fundamental role in determining the temperature dependence of the resistivity; in the presence of 
a magnetic field, EEI in the diffusion channel play the same role. 

INTRODUCTION 

Experimental investigations of magnetoresistance 
based on contemporary theoretical ideas make it possible to 
find the parameters for inelastic, spin-orbit and other scat- 
tering processes involving conduction electrons; these pa- 
rameters in turn determine the kinetic properties in ordered 
systems. In particular, such investigations can answer fun- 
damental questions regarding the nature of inelastic electron 
scattering.-~t present there i s  a great deal of experimental 
material devoted to investigating the influence of quantum 
effects on the magnetokinetic properties of two-dimensional 
disordered systems. In recent years analogous investigations 
have been pursued in many places for three-dimensional sys- 
tems, among them the metal-metal type of metallic 
glasses. 

It has been established both theoretically and experi- 
mentally that there are a number of contributions to the 
magnetoresistivity of these systems, connected with weak 
localization effects (WLE) of the  electron^,^ electron-elec- 
tron idteractions (EEI)4'5 and spin ~pl i t t ing.~ 

It should be noted that, methodologically speaking, it is 
extremely difficult to separate these contributions in the 
course of determining the physical parameters for a specific 
electron scattering mechanism. However, this procedure is 
considerably simplified if certain interaction mechanisms 
can be suppressed, e.g., by choosing the appropriate objects 
of investigation and conditions for carrying out the measure- 
ments (e.g., choice of temperature and magnetic field inter- 
val). Such a choice ensures a correct comparison between 
theoretical predictions and experimental results. 

It is particularly interesting to analyze the anomalous 
temperature dependence of the resistivity of metal-metal 
type metallic glasses3 at low temperatures in the absence of a 
magnetic field and in the region of classically small magnetic 
fields (a,, 9 1, where w, is the cyclotron frequency and r is 
the momentum relaxation time), basing the analysis on in- 
vestigations of the anomalous magnetoresistivity and values 
obtained for 7, (the relaxation time for the phase of the 
electron wave function) and r,, (the relaxation time for spin 
due to spin-orbit interactions in elastic electron scattering); 
these dependences have long resisted explanation either by 

the Kondo effect or by electron scattering from unstable ion 
configurations (tunnelling transitions) .' 

With this goal in mind, we have investigated the tem- 
perature dependence of the resistivity in the superconduct- 
ing amorphous alloys Zr, Be, _ , ( x  = 0.6, 0.7) and 
Zr,,Rh,, in this paper, both in the absence of a magnetic 
field and in a magnetic field H = 7.4 T, over the temperature 
range from 4.2 K to 12 K. 

FUNDAMENTAL RELATIONS OF WLE AND EEI THEORY 

The conductivity of disordered metallic systems in the 
absence of a magnetic field and in a magnetic field is deter- 
mined by WLE and EEI effects over a temperature region 
which significantly exceeds Tk ( T - Tk X Tk ); in what fol- 
lows we will investigate interelectron interactions in the 
Cooper channel and diffusive channel ~eparately.~ 

The total correction to the static conductivity Sa(0,T) 
of a three-dimensional disordered metallic system when the 
condition T - Tk ) f i / k , ~ ,  ( T) holds ( k ,  is Boltzmann's 
constant) for the case H = 0 can be represented in the form9 

where 

&PE1(T)  = GoC ( T )  +GoD ( T )  +GoMT ( T ) .  

Here 6 8 ,  S d ,  Sd. are respectively the diffusive, Cooper, 
and localization corrections to the conductivity, while S P T  
is the Maki-Thompson correction. The first quantum cor- 
rection is connected with interelectron interactions in the 
diffusion channel (interactions of electrons with small ener- 
gy and momentum differences), the second with interac- 
tions in the Cooper channel (interactions of electrons with 
neighboring energies and small total momenta), and the 
third with localization of noninteracting electrons. The tem- 
perature dependences of these corrections in the absence of a 
magnetic field are determined by the following relations: 

GoD ( T )  =0.915G0 (Tl t iD) '"a,  

6oc ( T )  =-0.915G, ( T l h D )  '"Iln ( T , / T ) ,  

fioL ( T )  =cons t+G, / [D~, (T)  I">, (2) 
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where 

D is the diffusion coefficient of electrons, 

is the interaction constant of electrons for small momentum 
differences, and x2 = 4?re2v is the squared inverse screening 
length; v is the electron density of states. 

When investigating electron interactions in the Cooper 
channel, we must also separate out the Maki-Thompson cor- 
rection. This contribution to the conductivity is due to quan- 
tum interference from scattering of two electrons by one and 
the same impurity, thereby forming a fluctuation pair. In the 
three-dimensional case the correction S F  can be calculat- 
ed only to the lowest order in 1 An( Tk/T) ; it is found to be of 
order ( T, ) 112/lnZ ( T, / T )  and is small compared to the 
Cooper contrib~tion.~ 

Thus, the total correction to the static conductivity, in- 
cluding both localization and the effect of interactions (be- 
sides the contribution S P T ) ,  has the following form in the 
three-dimensional case: 

In the presence of a magnetic field, the corresponding 
quantum corrections to the conductivity have the following 
temperature dependences9: 

GoD (H,  T )  =0.915G0a(T/BD)'"+B(H) T-", 

where 

Here fl, =4DeH/& is the cyclotron frequency, w, 
= gu,H is the magnitude of the Zeeman splitting, g is the 
Land6 factor for conduction electrons, and pBH is the Bohr 
magneton. The analytic form of the function is given in Ref. 
4, and its asymptotic expansion, have the form 

Thus, we can represent the temperature dependence of 
the conductivity for fixed values of magnetic, including the 
suppression of the Cooper contribution, in the form 

60(H, T )  =AT'"+B (H) T-"+GoL ( H ,  T ) ,  (5) 

where 

Equation (5)  is written for the conditions realized in our 
experiments, i.e., T,-'+O (Ref. 3), RH/2?rT<1, ws/?rT 
4 1, t, -' <w,, T, where T, is the time for spin-flip inelastic 
scattering by paramagnetic ions, and tS- '  

= $(T,-' + T,, - l )  is the total spin relaxation time. It is 
especially noteworthy that for the three-dimensional case, in 
the presence of a magnetic field whose scale satisfies the con- 
ditions k, T > fin, > fio,, the temperature behavior of the 
conductivity within the framework of WLE and EEI theor- 
ies is basically determined by interelectorn interactions in 
the diffusive channel, which are reflected in Eq. (5).  

For the systems under investigation here, the quantities 
D, k,l ( I  is the mean free path of electrons) and T ~ ,  along 
with the temperature-dependence of T, ( T) ,  were given in 
Ref. 3. In Eqs. (3)  and (5) ,  the contribution associated with 
Aslamazov-Larkin processes is not included because, as was 
shown in Ref. 8, for T - Tk )fi/k,r, ( T) this contribution 
is found to be small compared to the Cooper correction. We 
note that this inequality is satisfied for the systems under 
study here. 

EXPERIMENT 

The alloys Zr, Be, - , ( x  = 0.6,0.7) and Zr,,Rh2, were 
prepared from electrolytically pure zirconium (99.99%) 
and pure beryllium (99.88%) and rhodium (99.95%). The 
samples were melted in an induction furnace in the suspend- 
ed state with a small overpressure of helium and through a 
dispensing setup were quenched from the liquid state on the 
external surface of a copper disk turning at a quenching 
speed of 1 O6 degreedsec. 

The amorphous samples consisted of strips of width 1-2 
mm and thickness 0.03 mm. We studied the sample structure 
using x-ray and electron diffraction techniques. The dif- 
fraction pictures of samples quenched out of the liquid state 
are typical of amorphous systems, and show that long-range 
order is absent. More detailed information on these samples 
is provided in Ref. 3. 

The resistance was measured at constant current I by 
the four-contact method on samples of length 40 mm with- 
out a field and in a longitudinal (I IIH) magnetic field to an 
accuracy now worse than lop5. The superconducting transi- 
tion temperatures Tk measured resistively, and the specific 
sample resistivitiesp(4.2 K )  of the Zr7,Rh2,, Zr6,Be,,, and 
Zr7,Be,, samples, were 2.7,3.5,4.23 K and 307,300, and 230 
pfl-cm, respectively. 

EXPERIMENTAL RESULTS AND DISCUSSION 

In Fig. 1 we show the temperature dependences of the 
normalized electrical resistivity without a field and in a mag- 
netic field H = 7.4 T in the interval, 4.2 to 12 K for samples 
of Zr,Be, -, ( x  = 0.6, 0.7) and Zr7,Rh2,. As is clear from 
Fig. 1, in the absence of a magnetic field the resistivity of the 
systems under investigation falls as the temperature de- 
creases, while it increases in a field; as Tk increases and the 
quantity p(4.2 K)  decreases, the temperature dependences 
of the samples under study become stronger at H = 0, while 
those measured in a magnetic field weaken. 

For the superconducting metallic glasses with high val- 
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FIG. 1. Temperature dependence of the resistivity of the metallic glasses 
Zr,Be,, (O), Zr,,Be,, (A)  and Zr,,Bh,, (e) without a field (the three I I 
lower curves) and in a longitudinal field H = 7.4 T (three upper curves), 5 

I 
111 

R,, = R(12 K). rVz[a-7/tn (T,/T)], K"' 

ues of specific electrical resistivity (p =: 200-300pR-cm) the 
main feature in the temperature behavior ofp(  T) in the ab- 
sence of a magnetic field is a noticeable decrease in the value 
of p with decreasing temperature for temperatures much 
larger than Tk (In( T/Tk ) < 1 ). This circumstance can in no 
way be explained by the Aslamazov-Larkin fluctuation 
mechanism, which is present when ( T  - T, )/Tk ( 1. 

Still more surprising is the behavior ofp(T) which oc- 
curs when a magnetic field is applied, in the presence of 
which a nonlinear growth in the electrical resistivity is ob- 
served with decreasing temperature. Neither of these effects 
has been explained satisfactorily in the past. 

Within the framework of WLE and EEI theories it is 
possible to give as satisfactory explanation of the observed 
temperature behavior of the electrical resistivity in a field 
and in the absence of one. With this goal in mind, in Fig. 2 we 
show the temperature dependence of the conductivity 
- [So,,, (T)  - S+(T) ] of the systems under study in co- 
ordinates appropriate to relation ( 3  ) . Here 
Sue,, ( T )  =: [p( T) - p (  12K) ]/p2( 12K). The value of the 
parameters Fand a for the systems under study are present- 
ed in the Table. From Fig. 2 it is clear that in the temperature 
range in question the experimental data are linear functions 
in the coordinates shown; for the samples with smaller Tk 
the deviation from linearity begins at lower temperatures. 
Analysis of the experimental data shows that for all the sys- 

FIG. 2. Temperature dependence of the conductivity of the metallic 
glasses in coordinates based on expression ( 3  ) : a-Zr,,Be,,, b--Zr,,Be,,, 
c-Zr,,Rh,,. 

tems under study the temperature range over which 
thelinear law holds satisfies the general condition 
4.2 K S T S  2.5 Tk, and the experimental value of the slope 
coefficient Kc,, (H = 0)  is comparable in order of magni- 
tude to the theoretical value Kt,,,, (H = 0) (see the Table). 
In order to calculate the quantity Kt,,, (H = 0), we used the 
experiment values of k, and v. The observed disagreement 
between the theoretical and experimental values of the slope 
coefficient in the absence of a magnetic field is most likely 
related to the fact that it is not possible to take into account 
properly the temperature dependence of the Maki-Thomp- 
son correction in the temperature range of interest. This as- 
sertion is confirmed by the improvement in quantitative 
agreement between the theoretical and experimental values 
of K (H = 0)  in the case of Zr,,Rh,,, for which it has been 
established13 that the Maki-Thompson contribution is sup- 
pressed by the effect of disruption of the superconducting 
pairs. 

In investigating the temperature dependence of the to- 
tal conductivity in a magnetic field, we should note that in 
the magnetic field being used the contribution to the conduc- 
tivity corresponding to Cooper channel interactions is sup- 

TABLE I. Experimental and calculated parameters of amorphous systems based on Zr. 

H = 0  H = 7 . 4 T  
System 

0.021 

6.3 1.3 
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tion of the condition T - T, b N k B ~ +  ( T ) ,  which leads to a 
relative growth of the contribution due to Aslamazov-Lar- 
kin processes. The scale of the latter was investigated experi- 
mentally in Ref. 14. 

~hkrefore, analysis of the experiment data shows that 
the observed temperature dependence of the resistivity of 
superconducting metallic glasses is due to the joint appear- 
ance of localization and interelectron effects, and is satisfac- 
torily described by the present theories. As for the processes 
which give rise to this temperature dependence, a fundamen- 
tal role is played by EEI in the Cooper channel for H = 0; in 
the presence of a magnetic field (H = 7.4 T),  these processes 
are dominated by EEI in the diffusive channel. 

The authors are deeply grateful to B. L. Al'tshuler for 
fruitful discussions and valuable comments, and also to N. 
A. Chernoplekov and Yu. M. Seidiv for support and interest 
in the work. 

FIG. 3. Temperature dependence of the conductivity in a magnetic field of 
7.4 T for the metallic glasses in coordinates based on expression (5): a- 
Zr,,Be,,, b-Zr,,Be,,, c-Zr,,Rh,,. 

pressed, and the function Sue,, (H,T) we observe must be 
determined by the interelectron interaction in the diffusion 
channel. In this case, according to the relation ( 5 ) ,  the ex- 
perimental temperature dependences of the conductivity in a 
magnetic field which are correlated with the effects of weak 
electron localization must be linear in the coordinates 
So,,, (H,T) - Sd(H,T)  versus AT1I2 + BTP3l2. The pa- 
rameters A and B for the systems we studied are presented in 
the Table. 

The experimental dependences of So,,, (H,T) for the 
systems under discussion in the coordinates described above 
are shown in Fig. 3, from which it is clear that in the tem- 
perature interval under study a linear dependence actually is 
observed with satisfactory agreement between the theoreti- 
cal values K,,,,, (H) and the experimental values K,,, (H) of 
the slope coefficient (see Table). The observed deviation 
from linearity in the region of small values of the argument 
for the Zr,,Rh2, system (Fig. 3) can be related to the viola- 
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