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The spin relaxation of impurity atoms in a crystal is studied under conditions such that quantum 
tunneling diffusion of these atoms dominates. In a strong magnetic field, with a,)  A, emax ( w ,  is 
the Zeeman transition energy, A is the width of the coherent-motion band, and lmax is the 
maximum shift of the energy levels between neighboring positions of the atom in the nonideal 
lattice), the ordinary phonon relaxation mechanism operates. In this case, the spatial profile of 
the interdiffusion coefficient of the impurity atoms can be determined from their relaxation time. 
In the opposite limit, with w, 4 A, the Bloembergen phononless relaxation mechanism operates, 
with conversion of the energy 0, into the energy of band motion. The fact that there are regions of 
both band and diffusive motion distinguishes this problem substantially from the conventional 
magnetic-resonance problems. At intermediate values of the magnetic field, a nontrivial 
phononless relaxation mechanism operates: A spin flip occurs directly during the tunneling of an 
atom into a neighboring cell. In this case the energy-level shift 6 is offset by a change in the 
Zeeman energy w,. The theoretical results are used to analyze experimental data on the spin 
relaxation of H atoms in an H, crystal and of He3 atoms in a He4 crystal. 

1. INTRODUCTION 

The quantum tunneling diffusion of impurity particles 
in a crystal has become the subject of active theoretical and 
experimental research. This effect is seen most vividly in 
such systems as atomic hydrogen in an H, matrix'., and a 
solid solution of He3 in He4 (Refs. 3-5). The quantum na- 
ture of the diffusion has a decisive effect on the kinetics of the 
spin relaxation of impurity particles since the probability for 
these processes increases sharply when particles approach to 
within small distances of each other. As a result, it becomes 
possible to bring out many aspects of quantum diffusion 
from data on the relaxation kinetics. 

In this paper we report a study of the most effective 
spin-relaxation mechanisms in the quantum diffusion of H 
atoms in an H, matrix and of He3 atoms in a He4 crystal. The 
physical picture of spin relaxation in this case is determined 
by three parameters: the Zeeman transition energy w,, the 
width of the coherent-motion band A, and the maximum 
shift of the energy levels between neighboring positions of an 
atom in the nonideal lattice, ern,, . Under the conditions 

energy conservation requires the emission or absorption of 
phonons as a result of the relaxation. The electron spin of a 
hydrogen atom in a H, matrix relaxes in a strong magnetic 
field by a phonon mechanism. At a sufficiently high concen- 
tration of H atoms, the interaction of these atoms with each 
other plays a dominant role. A specific feature of quantum 
diffusion is seen here, in the fact that the local interdiffusion 
coefficient becomes dependent on the distance between 
atoms which are converging on each other. This dependence 
can be established by comparing theoretical and experimen- 
tal data (Sec. 2). 

In a weak magnetic field, condition ( 1.1 ) no longer 
holds, and phononless mechanisms for spin relaxation be- 
come possible. A situation of this sort arises for the electron 
spin of a hydrogen atom in a para-H, crystal (with a small 
admixtare of ortho-H,) in a field H-0.1-1 T. Here the con- 

dition w, > A holds, and a nontrivial phononless relaxation 
mechanism operates: Because of the level shifts (5 = w,) of 
the hydrogen atom near an orthomolecule, the spin flip may 
occur directly during the tunneling of the atom into a neigh- 
boring cell. The level shift is offset by a change in the Zeeman 
energy in this process. Similar shifts arise from an anisotrop- 
ic interaction of an atom with an orthomolecule and by vir- 
tue of the large number of possible positions of an atom near 
an orthomolecule. They also result from the uncontrollable 
broadening which results from the interaction with other 
defects. They form a quasicontinuous band of width - 1 K. 

Under the condition o, < A, the Bloembergen phonon- 
less relaxation mechanism (Ref. 6, for example) operates. 
According to this mechanism, the spin is flipped as a result 
of fluctuations in the dipole-dipole interaction at the fre- 
quencies w, and 2wo which arise as particles move with re- 
spect to each other. In this case, the Zeeman energy w, can be 
offset by a change in the energy of the band motion. A situa- 
tion of this sort occurs in particular for He3 atoms in a He4 
crystal in a weak magnetic field. A specific feature which 
distinguishes this system from the conventional magnetic- 
resonance systems is the presence of regions of both diffusive 
and band motions. The analysis in Sec. 4 explains the experi- 
mentally observed features in the behavior of the transverse 
relaxation time T, as a function of the temperature and the 
He3 concentration. It predicts a nontrivial behavior of the 
longitudinal relaxation time T, at low temperatures, T S  0.5 
K, and also at concentrations x 2 lop2. 

2. PHONON MECHANISM FOR THE SPIN RELAXATION OF 
HYDROGEN ATOMS IN A Hz MATRIX 

For a hydrogen atom in an H, matrix the width of the 
coherent-motion band is A - ( 10-'-10-3) K, according to 
current estimates.'v8 The scale value of the level shift which 
occurs as two atoms converge on each other, or when the 
ortho-para composition of the molecules surrounding one 
atom changes, is less than emax - 1 K. Condition ( 1 ) thus 
holds for the electron spin in a strong magnetic field ( H -  10 
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T, woz  2pBH- 10 K), and the spin relaxation is of a phonon accordingly accompanied by the emission or absorption of 
nature. At temperatures T(wo, which definitely correspond one phonon with an energy w,. 
to a region of quantum diffusion, two-phonon and multi- In a strong magnetic field, the system of spin levels of 
phonon processes are ineffective, and the spin relaxation is the hydrogen atom is 

Here the symbols .t and 6 correspond to electron and nuclear 
spins. The quantity x is equal to A /4p, H4 1, where A is the 
hyperfine-interaction constant. Two types of electron transi- 
tions are possible: allowed electron transitions da and cb and 
the forbidden transition ca, whose amplitude differs from 
zero to the extent that the small parameter x does. 

Both of these transitions are due primarily to the dipole- 
dipole spin interaction of H atoms with each other and with 
orthomolecules: 

Here RV is the distance between particles; pi,  CL,., S,, 4 are 
their magnetic moments and spins; Y are the spherical har- 
monics; and S are irreducible tensor spin operators (Ref. 6,  
for example). 

1f the atomic density is sufficiently high, the time scale 
for the spin relaxation is determined by the interaction of 
atoms with each other and, correspondingly, by the competi- 
tion between relaxation and diffusion processes. Since the 
diffusion is quantum-mechanical, the local interdiffusion 
coefficient of the atoms, D, may depend on the distance r 
between atoms which are approaching each other (Refs. 8 
and 9).  

Let us find the time scale T,, for a forbidden transition 
under these conditions. We assume that we are dealing with 
a system which has atoms only in states c and a and that by 
virtue of the condition T(wo the concentration satisfies 
x, cgx, z x .  We first calculate the probability for spin relaxa- 
tion in the case in which the particles in states c and a are 
separated by a distance r. Expanding the interaction (2.1 ) in 
the relative displacements of the atoms from their equilibri- 
um positions, and evaluating the matrix element in terms of 
phonon and spin variables, we find the following expression 
for the relaxation probability: 

3xZps"03 
W (r) = ------ -- 

rG Mc,' a'. 

Here M is the mass of the hydrogen molecule, S Z 0 a 3  is the 
volume of a unit cell, and c, is the transverse sound velocity 
(we are ignoring the process involving the emission of a lon- 
gitudinal phonon, for which the sound velocity is twice as 
large). 

In a system of randomly arranged particles, the parti- 
cles are separated from each other for the most part by an 
average distance 

The quantity Win (2.2) is exceedingly small at such dis- 
tances (x 5 The possibility that the atoms will come 
close together substantially increases the relaxation prob- 
ability. The relaxation occurs most effectively at distance at 
which the time scale of the diffusive motion of the particles 
with respect to each other,?/D(r), becomes equal in order 
of magnitude to 1/ W ( r ) .  It has been established experimen- 
tally that the time scale for the spin relaxation is much 
shorter than the time scale for the recombination of atoms 
into a r n ~ l e c u l e , ~ ~ ' ~ ~ "  which is a2/D(a). This result means 
that the relaxation occurs over distances greater than one 
lattice constant. To determine T,, in this case we need to 
examine the kinetic equation for the density matrix of a pair 
of particles, incorporating diffusion along with relaxation. 
This equation is 

df(r, t)idl=div 2D(r) V f  (r ,  t)-W(r)J(r, t j .  (2.4) 

The function f(r,t) gives the probability for finding parti- 
cles c and a at a distance r from each other, and 2D(r) is the 
interdiffusion coefficient. In the limit of low atomic hydro- 
gen concentration, x ( 1 (in practice, x 5 lop4), we can use a 
quasisteady description, since the concentration of particles 
varies only slightly over the time required for the establish- 
ment of the particle profile. As a result we find the equation 

with the boundary condition 

Working from (2.5) and (2.6) in the standard way, we 
can find the flux of c particles in the direction of the a parti- 
cles, which go into the state a as a result of the relaxation; 
correspondingly, we can find the transition time T, . For an 
arbitrary power law 

we have 

According to the theory of quantum diff~sion,~.' the expo- 
nent can take on the values 8 and 10. 
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The result (2.8) can be derived on the basis of the fol- 
lowing simple arguments. The effective radius over which 
the relaxation occurs, r, , is determined by equating the dif- 
fusion and relaxation times: 

On the other hand, we have T, -4.rr(r, /a)3 W(r, ); sub- 
stituting in the value found for r, , we then find (2.8). 

It is convenient to express the relaxation time in terms 
of the two-particle-recombination time, under the assump- 
tion that the recombination radius is close to the interatomic 
distance: 

T , , - ' ~ T , ~ [ ~ ~ x w  ( a )  T , , , ] (n+1' / (n+4' ,  (2.9) 

4nx 
T , ; ~ ~  = - 

aZ 
D ( a ) .  (2.10) 

The temperature dependence of Tco is determined primarily 
by the dependence T,, ( T), since under the condition T 4 0 0  
the value of W(a) does not depend on the temperature. The 
quantity T,, is known quite well from experiments.' Ac- 
cordingly, by measuring the dependence 
Tca (7') - T:$"'4', one can in principle determine the be- 
havior of the diffusion coefficient, D ( r )  - r". 

If we were concerned with the time scale of an allowed 
electron transition, Tcb (or T,, ), we would have obtained 
precisely the same result as in (2.8), but with the quantity 
WCb = (3/8x2) Wca. The effective relaxation radius for al- 
lowed transitions is greater than that for the forbidden tran- 
sition. The times Tc, and Tco are thus related by 

not by Tcb -x2Tco as they would be in the case of totally 
immobile or very rapidly moving particles. Independent 
measurements of Tcb and Tco would also answer the question 
of the value of the exponent n. 

The time Tca, which is determined by the interaction of 
hydrogen atoms with each other, increases with decreasing 
concentration, and at small values of x the relaxation due to 
the interaction of the magnetic moment of the atom with the 
magnetic moment of a nucleus of the orthomolecule may be 
important. In this case, at an orthomolecular concentration 
x,- 1, the relaxation time would be completely independent 
of the diffusion. Going through calculations similar to those 
involved in the derivation of (2.2) (the only change is in the 
matrix element of V, in terms of the spin variables 1, we find 
the following expression for the relaxation probability when 
the atom is separated from the orthomolecule by a distance r: 

w O ( r ) z 5 / 3 ( ~ P / ~ ~ ) 2 w ( ~ ) j  (2.12) 

where p, is the magnetic moment of the proton. 
According to the relaxation mechanism under consi- 

deration here, the time T,, for a matrix with a normal con- 
centration of orthomolecules is 

where z is the number of hydrogen molecules nearest to the 
atom. Comparing this result with (2.8) and (2.9), we find 
an estimate of that atomic hydrogen concentration x* below 
which the dominant relaxation mechanism is the relaxation 

of the electron spin due to the interaction with orthomole- 
cules: 

From experiments on the recombination of atomic hy- 
drogen' we find the estimate a2/D(a) - 10-100 s of the time 
scale for the hop of a particle from one cell to another in 
neighboring coordination spheres. Taking n = 8, we find the 
following estimates on the basis of (2.8) with (2.2) and also 
(2.12) and (2.13) for the case of the H atom as an interstitial 
impurity in fields H- 5-10 T: 

The value found for Tco agrees with experimental data." If 
we assume that the H atom is a substitutional impurity, we 
find that the time T,, is significantly greater than the experi- 
mental time, but the estimate of the concentration x* re- 
mains essentially the same. 

In principle, an exchange interaction of atoms could 
also cause a ca transition. However, this interaction could be 
important only for the very nearest coordination spheres be- 
cause of the very rapid exponential decay with increasing 
distance between atoms. Again in this case, estimates yield 
Tz: - 10-'/xs. In the case of the allowed transitions cb and 
da, on the other hand, the role of the exchange interaction is 
weakened by a factor proportional to the parameter x2 and 
can be ignored. 

3. PHONONLESS RELAXATION OF ATOMIC HYDROGEN IN A 
MATRIX OF PARA-H2 

Recent experiments on the relaxation of the electron 
spin of the H atom in an H, matrix (T-  1K) with a small 
admixture of orthomolecules in fields H-0.1-1 T (Ref. 10) 
revealed a phononless relaxation mechanism. Evidence for 
this conclusion comes from the fact that the time TI is sever- 
al orders of magnitude shorter than the time dictated by one- 
phonon process (2.2) and has the opposite dependence on 
the magnetic field TI -mi. 

In the case at hand we have A < w,, and the only possi- 
bility for phononless relaxation would arise if there were 
level shifts gzw ,  in the medium. In this case the spin relaxa- 
tion could occur directly upon the transition of an atom to a 
neighboring cell, and the change in its energy as a result of 
such a transition would be offset by the Zeeman energy w, 
associated with the spin flip. In an H, crystal, such shifts 
would arise from the anisotropic interaction of the hydrogen 
atom with the orthomolecule, which would lead to a split- 
ting of the rotational states of the orthomolecule with differ- 
ent angular-momentum projections. According to calcula- 
tions in the at the interatomic distance this 
interaction is on the order of 1 K and falls off sharply with 
increasing distance between the atom and the orthomole- 
cule. Shifts of this sort could also arise from a H-(ortho-H,) 
deformation interaction, but this interaction is comparative- 
ly weak. The number of different shifts for transitions of the 
H atom in the first two coordination spheres is quite high, on 
the order of z2. This estimate is obvious when we note that 
not all the positions of an atom are equivalent. When the 
high syILXmetry of the lattice is taken into account, we see 
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that some of the states of atom near the orthomolecule have 
the same energy, but the coherent quantum tunneling 
between these states lifts the degeneracy. The characteristic 
distance between nearest values of the level shift, AE, is on 
the order of the tunneling amplitude A,(A~zA,) ,  which is - K according to estimates given below. The uncon- 
trollable broadening of each level due to the interaction with 
other lattice defects (impurities, vacancies, and disloca- 
tions) would apparently exceed AE. There would according- 
ly be a quasicontinuous band of possible values of the level 
shift, with a width r - 1 K. Another argument in favor of the 
formation of a quasicontinuous band of this sort is the pres- 
ence of the band motion of the H atom beginning no later 
than the second or third coordination sphere (A -0.1 K; 
more on this below). 

Let us consider a phononless transition of the H atom 
from a state with an energy E, to a state with E2 [in particu- 
lar, in the two-well problem we would have El,, 
= 1/2 (6 + A: ) 'I2, where 6 and A0/2 are respectively 

the level shift and the amplitude of the tunneling between 
wells] accompanied by a simultaneous spin flip due to dipole 
spin interaction (2.1 ) with the nearest orthomolecule. We 
denote by A the amplitude for such a transition. The spin 
relaxation process is characterized by, in addition to the am- 
plitude A, the lifetime T of an atom with a given spin projec- 
tion in a certain energy level, which is determined either by 
the motion of the electron through the crystal or by a spin 
diffusion process. We assume that the temperature of the 
system satisfies T 2  w,. For the relaxation time we can write 
a general expression which holds within a numerical factor 
over the entire ranges of these parameters: 

where N is the number of unit cells. By virtue of the condi- 
tion TR w, we can omit the Gibbs factor, which reflects the 
occupation numbers of El and E,, from (3.1 ), and we can 
assume that the time T is the same for atoms with different 
spin projections. The summation over El and E, in (3.1 ) 
corresponds to independent contributions to the relaxation 
from different transitions in the system formed by an atom 
near an orthomolecule. The presence of a quasicontinuous 
band of values of the level shift means that we can replacithe 
summation in ( 3.1 ) by an integration: 

(x, is the concentration of orthomolecules). We then find 

The transition amplitude A is given by 

where r is the distance from the atom to the center of mass of 
the orthomolecule, and a and a' are the spin states of the 
atom-orthomolecule system. Evaluating the matrix element 
(3.3) for the two-well situation, we find 

where g is the distance between wells. Since the angular de- 
pendence of expression (3.4) is rather complicated, it is 
more convenient to consider the quantity A = ( I  A %I2), 
where (. . .) means an average over the angles of the vectors 
r and g and also the trace over the spin variables of the ortho- 
molecule. Direct calculations yield 

It follows from (3.2) that under the condition l / r gA  
the relaxation is diffusion-controlled, while in the opposite 
limit it is totally independent of r .  It is this case which corre- 
sponds to the dependence Tl -H found experimentally. Us- 
ing expression (3.5) for the transition amplitude, we find 
( r - a )  

Taking the experimental value of TI  for various concentra- 
tions of the orthomole~ule,'~ x,, we find A,- lo-* from 
(3.6). This value corresponds to a width A - lo-' K of the 
coherent-motion band. This result agrees with the estimate 
of A from data on the recombination of H atoms. 

The condition l / r%A imposes an upper limit on the 
lifetime of an atom with a given spin projection in a cell: 
r 5 10-5 .  The reason for the order of magnitude of T may 
be, in particular, the spin diffusion resulting from an interac- 
tion with other hydrogen atoms, if their concentration satis- 
fies x 2  lo-'. 

If the atomic concentration is high, it is worthwhile to 
examine the corresponding phononless relaxation process 
caused by the spin dipole interaction of a hydrogen atom 
near an orthomolecule with an atom a fair distance away ( 1/ 
Tl - x ~ ) .  The distance between atoms must be large be- 
cause in the opposite case the existence of the strong long- 
range interaction with a second atom near the orthomole- 
cule would prevent the formation of a quasicontinuous band 
for the values of the level shift. This circumstance and also 
the concentration factor x offset to a large extent the increase 
in the relaxation probability due to the substitution y, + p B .  

In principle, this relaxation mechanism could operate 
when two H atoms far from an orthomolecule come close 
together and there is a random coincidence of a level shift 
with the value ofw,. In this case, however, the dependence of 
T ; on the magnetic field should have a sharp peak, in con- 
tradiction of the experimental data of Ref. 10. 

4. BLOEMBERGEN RELAXATION MECHANISM FOR HE3 
ATOMS IN THE HE4 CRYSTAL 

For impurity He3 atoms in the He4 crystal in a weak 
magnetic field (H 5 0.1 T) the Zeeman transition energy is 
w, g A ( A  - K; Refs. 3-5), and the Bloembergen phon- 
onless relaxation mechanism should operate, with conver- 
sion of the energy w, into the energy of band motion. In this 
case, however, the Bloembergen mechanism has an unusual 
feature, which stems from the existence of regions of slow, 
diffusive particle motion (6% A,) in addition to the region of 
band motion (6 < A,). The typical value of the level shifts 
which arise when two He3 particles come close together is - lop2 K in the first coordination sphere. If the temperature 
is sufficiently low, spin relaxation in the case of a slow clos- 
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ing (A/f- lop2) of the particles outside the region of the 
band motion would be ineffective. However, the states of a 
pair of particles separated by the interatomic distance would 
be energy-degenerate in the basal planes of the lattice by 
virtue of the symmetry of the crystal. This circumstance 
would give rise to the formation of a band for the two-dimen- 
sional motion of such a pair.5.14-16 The typical correlation 
time here, as in the case of ordinary band motion, would be 
7- 1/A, and the inverse longitudinal relaxation time 

would be independent of the t empera t~ re .~"~"~  
Relation (4. I ) ,  which is familiar, corresponds to the 

regime of "weak" collisions, in which the probability for 
relaxation in a pair, V :  (a)/A is small in comparison with 
the probability for the formation and decay of the pair, l /rD. 
the value of l/rDis related to the diffusion of particles in the 
case of pronounced shifts by a vacancy or two-phonon mech- 
anism. In practice, the parameter values of the system are 
such that the conditions under which the collisions can be 
considered "weak" hold over the entire temperature interval 
T >  0.5 K which has been studied experimentally to date." 
As the temperature is reduced, however, the diffusion de- 
creases sharply, and it becomes the process which primarily 
determines the longitudinal relaxation at T <  T*, where 

~ / T D  (T') V d 2  ( a )  /A .  (4.2) 

From this point on, the time TI satisfies 

T , - ' - z x / T ~  ( T )  , (4.3) 

and it increases sharply with decreasing temperature. The 
increase is approximately exponential, since direct estimates 
based on the experimental data show that rD (T*)  in the 
nearest coordination spheres, with f )  A, is determined by a 
vacancy diffusion mechanism. For a vacancy activation en- 
ergy To - 10 K these estimates yield 

As the temperature is reduced further from T *, the func- 
tional dependence TI (T) may become a step function be- 
cause of the possibility of band motion of a pair formed at 
two or more interatomic distances (Fig. 1). With increasing 
distance between the impurity particles, however, there is a 
sharp increase in the number of types of bound pairs, for 
each of which there are many branches in the energy spec- 

FIG. 1 .  Temperature dependence of the longitudinal relaxation time. 

FIG. 2. Concentration dependence of the longitudinal relaxation time. 

trum.18 A step function should thus be smoothed over quite 
rapidly (in practice, one could apparently observe one or 
two steps). 

If the concentration of He3 atoms is sufficiently high, 
x > x,, and the level shift at the average distance between 
atoms satisfies 

a static disruption of the band comes into play. The scale 
value of the level shift at the average distance R given by 
(2.3) is, in the case of a deformation interaction, 

Using f (a)/A- lo2, we find the estimate x, 2 lo-'. In the 
situation under consideration here, the values of the level 
shift form a continuous band with a width on the order of 
f ( R ) ,  and we can use the result (3.2) for TI. Noting that the 
condition w,< A means that the amplitude which figures in 
(3.2) satisfies A - V,, (a)  and that the characteristic correla- 
tion time at a site for shifts g- A, is l /r- A) V, (a ) ,  we find 

7 " , - L - ~ ~ V d Z  ( a )  g-' ( R )  . (4.7) 

The quantity TI determined by (4.7) determines the relaxa- 
tion time of pairs of atoms in the weak-collision regime. In 
this case the longitudinal relaxation time has an anomalous 
concentration dependence: T, -x1I3 (line 2 in Fig. 2).  

The characteristic temperature T*, below which the 
longitudinal relaxation becomes diffusion-controlled, is now 
found from the relation [cf. (4.2) 1 

T ~ - ' ( T * )  -VdZ ( a )  /E ( I I )  . (4.8) 

Expression (,4.3) remains in force for the relaxation rate. 
The temperature dependence of the transverse relaxa- 

tion time T, is characterized by a diffusive narrowing of the 
line at high Tand by a plateau which corresponds to a rigid 
lattice, 

T,-'-v,, ( R )  -nxVd ( a ) ,  (4.9) 

at temperatures for which the motion becomes quite slow, 
and the relation V, (a)?, ) 1 (see Ref. 17 and Fig. 3 of the 
present paper). 

If the interaction between particles were diffusive 
throughout the volume, T2 would remain at the plateau level 
down to T = 0. Such a situation clearly holds in the case 
x > x,, in which the band motion is suppressed over the en- 
tire volume of the crystal. 
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relaxation probability given by (4.9) becomes the same at 
Wim as given by (4.13), is 

FIG. 3. Transverse relaxation time as a function of the temperature and 
the concentration of He3 atoms. 

At x < x,, the existence of the band motion at large dis- 
tances between particles may change the picture fundamen- 
tally. Curvature of the band in the strain interaction poten- 
tial U(r) of the He3 atoms would have the consequence that 
within the framework of the band motion the particles could 
approach each other only to a distance on the order of R,, 
where 

In the region r > R,, the transverse relaxation is substantially 
lower than (4.9) because of the dynamic contraction. A 
critical role is thus played by the transition from the region 
of the band motion into the diffusive region of slow motion, 
r, R,, which is inelastic. This transition might occur by two 
mechanisms. If the impurity concentration is sufficiently 
low, the predominant mechanism would be two-phonon 
scattering, from which we find the transition probability 

where Dph -a21068, ( T / 8 D ) 9  is the two-phonon diffusion 
coefficient for level shifts ( 5  A, (8 ,  is the Debye tempera- 
ture). At temperatures below the temperature To defined by 

vci (a )  a2/4R2-Qph (To), (4.12) 

the transition probability W iven by (4.12) becomes 
ph.  f: 

smaller than relaxation probabrl~ty (4.9). In this case we 
find the relation T, =: Wph, and the time T2 begins to in- 
crease sharply with decreasing T. 

Because of the sharp decrease in Wph (T) with decreas- 
ing temperature, the other mechanism for an inelastic transi- 
tion from the region of band motion into the diffusive region, 
involving interaction with a third particle, rapidly becomes 
dominant. When one of the particles of a pair of interest 
(particles 1 and 2) interacts with a third particle, an energy 
on the order of A-ZA, can be transferred to it. The cross 
section for inelastic scattering of this sort of particle 1 (or 2) 
with a third particle satisfies -a2. Taking this result into 
account, we find the following expression for the transition 
probability: 

At temperatures T < Too where Too is determined by the con- 
dition R,, (Too) = Rim, the transverse relaxation is deter- 
mined by the probability Wim. Correspondingly, we have a 
time T2- 1/x2, which becomes independent of the tempera- 
ture. 

The value of the critical concentration 2, at which the 

This condition of course agrees with the condition To = T,. 
For x > 2, the value of T2 at the minimum level, (4.9), per- 
sists down to temperature T = 0 (Fig. 3). 

This behavior of T, as a function of the temperature and 
the concentration agrees qualitatively with the experimental 
observations of Refs. 17 and 19. The known values of the 
parameters of the theory (Ref. 8, for example) lead to esti- 
mates To ~0 .7 -0 .6  K and f -- 4 x,, in agreement with 
experimental data. 

Note that for transverse relaxation under the condition 
x < x ,  the approach of the particles simply to a distance 
a <R < R, is important-not the formation of an He: quasi- 
molecule at the interatomic distance (as was suggested in 
Ref. 19). Furthermore, in this situation the formation of a 
quasimolecule of this sort due to an interaction between im- 
purity particles would be essentially impossible (@A). 

Bloembergen's approach to determining the relaxation 
times TI and T2, which is the one customarily taken and the 
approach which we have taken in-this section of the paper, is 
only approximate since it is based on a phenomenological 
exponential correlation function. Many modifications of 
this approach have been proposed; they make it possible to 
find this function in the regime of "weak" collisions for the 
case of a coordinate-independent diffusion coefficient or a 
band motion. In principle, there is a general approach to this 
problem which would make it possible to determine the 
times T, and T2 from a kinetic equation, and for an arbitrary 
functional dependence D ( r ) .  That equation is derived in the 
Appendix to the present paper. 

We are indebted to Yu. M. Kagan for interest in this 
study and for useful discussions. 

APPENDIX 

We introduce the two-particle distribution function 
f(r) ,  which is the probability for finding two particles sepa- 
rated by a distance r (for noninteracting particles we would 
have f = x2 = const). Ths function is determined by an 
equation of the form 

aflat+f; ( f )  =o, E ( f )  = - d i ~  2 ~ v f .  (A1 

Since the spin dipole interaction is weak [ V, ( a )  <<, A], it 
cannot influence the diffusion of the particles, and we are 
justified in treating the relaxation of the spin of the particles 
against the background of a given motion of the particles. At 
a formal level, this circumstance can be incorporated quite 
easily by treating f ( r )  as a density matrix in the spin vari- 
ables and by introducing an additional interaction term in 
(A l ) :  

?+A (f) +i [vdr f]=O. (A21 

We rewrite Eq. (A2) in integrodifferential form: 

: 1 + i (7) = - i [Vd (r, t ) ,  i.1 - \ dr 1 drfG (r. r', T) 
0 

X [fd (r, t ) ,  [fd(rf, t - T), 3(r1, t - ~ ) I I ,  (A31 
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whez G is the Green's function of Eq. (A l ) ,  and 
?o =f(r,O) = const. 

The Green's function G(r,rl,t) on the right side of Eq. 
(A1 ), which determines the spatial correlations in the ar- 
rangement of a given pair of particles, changes substantially 
over diffusion times 7,. Since the concentration of impurity 
atoms is small, the relaxation of the average spin of the sys- 
tem occurs over times t ) ~ , ,  when a large fraction of the 
atoms undergo? collisions. We can thus replace the tempo- 
ral argument of f(rl,t - T) on the right side of (A3) by t, and 
we can replace the upper limit on the integration over T by 
infinity. Since the integral over dr' is taken near the point 
r' = r [as can be seen by substituting the expressions for V, 
and Ginto (A3) 1, we also replace the spatial coordinate r' in 
?(rl,t) by r. As a result we find a differential equation fo@e 
distribution function. We are 2ctually interested not in f ( r )  
but in the integral quantity 5 f(r)dr, which is proportional 
to the average spin of the system. We accordingly integrate 
Eq. (A3) over the angular variables. For the function 

we then find the equation (we are dealing with spin-1/2 par- 
ticles) 

2 a a - p4 dz dr' 
(r, t )  = -- raD (r) - f (r ,  t )  - - S - ra a? dr r3 r' 

4 

X ISq, [Sq*, ?(r, t ) ]  J eiqoozGo (r ,  r', t ) ,  (A4) 

where 

and P2(r,r1) is the LCgendre polynomial. 
To determine the time evolution of the average spin of 

the two particles, S, we multiply both sides of (A4) by the 
operator (S, + S,), and take the trace. Taking the trace by 
the standard procedure (Ref. 6, for example), we find 

as, 2 a -- --- a 
ra2D(r) -Sa 

at f  ar 3 r 

9 IL' dr' - - - { 4 ~  5 d l  Cz (r ,  r l ,  T ) F ~  ( T I )  sa, 
20 r3 , r 

From the differential equation (A5) in the quasisteady 
approximation ( x <  I )  we can find the quantities 
(dS,/dr) I,-, and (dSx/dr) 1.- _ , which determine the lon- 
gitudinal and transverse relaxation times. 

The second term on the right side of (AS) describes the 
relaxation of the spin of a pair of particles in a collision. If the 
diffusion is very fast, and G,  varies over times T, < l/wo, we 
haveFx ZF, - 10/3. In the opposite limit T, ) l/oo, it is suf- 
ficient to retain in Fx only the time-independent part: 

Fx = 1. In each of these limiting cases, the relaxation term in 
(AS) takes a particularly simple form: The integration over 
drdr' can be carried out exactly for an arbitrary power law 
D ( r )  in (2.7). In particular, with F, = 1 we find 

as, 2 a 
-=-- 

a 
r2D(r) -S,--- 

d t  12 dr 
ph s,. 

ar 8Or'D(r) (-46) 

From the solution of this equation we find the following 
expression for the reciprocal of the transverse relaxation 
time: 

where 

dr 
A=aD ( a )  j - P' 

f D ( r ) '  O d = T '  

In the limit of "weak" collisions, T; - D(a  ) /a2 9 o,, 
expression (A7) agrees to within a numerical factor with 
Bloembergen's formula, with a correlation time T = a2/ 
D(a) .  In the opposite limit, (A7) yields the result corre- 
sponding to a rigid lattice: 

'A. Ya. Katunin, I. I. Lukashevits, S. T. Orozmamatov, etal., Pis'ma Zh. 
Eksp. Teor. Fiz. 34,375 ( 1981 ) [JETP. Lett. 34,357 ( 1981 ) ] .  

'A. Ya. Katunin, I. I. Lukashevits, V. V. Sklyareskii, et al., Pis'ma Zh. 
Eksp. Teor. Fiz. 36, 391 (1982) [JETP Lett. 36,472 (1982)l .  

3R. A. Guyer, R. C. Richardson, and L. I. Zane, Rev. Mod. Phys. 43,532 
(1971). 

4V. N. Grigor'ev, B. N. Esel'son, and V. A. Mikheev, Fiz. Nizk. Temp. 1, 
5 ( 1975) [Sov. J. Low Temp. Phys. 1, 1 ( 1975) 1 .  

5M. G. Richards, J. H. Smith, P. S. Tofts, and W. J. Mullin, Phys. Rev. 
Lett. 34, 1545 (1975). 

6A. Abragarn, The Principles of Nuclear Magnetism, Oxford Univ. Press, 
London, 196 1 .  

7 Y ~ .  Kagan, L. A. Maksimov, and N. V. Prokofev, Pis'ma Zh. Eksp. 
Teor. Fiz. 36,204 (1982) [JETP Lett. 36, 253 (1982)l. 

'Yu. Kagan and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 84, 792 (1983) 
[Sov. Phys. JETP 57,459 (1983)l. 

9Yu. M. Kagan, in: Defects in Insulating Crystals. Proceedings of an 
International Conference, Riga, May 1961, Springer-Verlag, New York. 

''A. S. Iskovskikh, A. Ya. Katunin, I. I. Lukashevits, et al., Zh. Eksp. 
Teor. Fiz. 91, 1085 ( 1986) [Sov. Phys. JETP 64, 1832 ( 1986) 1. 

"A. Ya. Katunin, I. I. Lakashevich, S. T. Orosmamatov, etal., Phys. Lett. 

12 
87A, 483 (1982). 
A. Dalgarno, R. J. W. Henry, and C. S. Roberts, Proc. Phys. Soc. 88,611 
( 1966). 

"P. Sieghban and B. Lui, J. Chem. Phys. 68,2457 (1978); D. G. Truhlar 
and C. J. Horowits, J. Chem. Phys. 68,2466 (1978). 

I4J. E. Sacco and A. J. Widom, Low Temp. Phys. 24,241 ( 1975). 
I5W. J. Mullin, R. A. Guyer, and H. A. Goldberg, Phys. Rev. Lett. 35, 

1007 (1975). 
"A. F. Andreev, Zh. Eksp. Teor. Fiz. 68,2341 ( 1975) [Sov. Phys. JETP 

41, 1170 (1975)l. 
I7A. R. Allen, M. G. Richards, and J. Schratter, J. Low Temp Phys. 47, 

289 (1982). 
'%. E Meierovits, Zh. Eksp. Teor. Fiz. 69, 1325 ( 1975) [Sov. Phys. JETP 

42,676 (1975)j. 
I9J. Schratter, A. R. Allen, and M. G. Richards, J.  Low Temp. Phys. 57, 

179 (1984). 

Translated by Dave Parsons 

1210 Sov. Phys. JETP 66 (6), December 1987 N. V. Prokof'ev and G. V. Shlyapnikov 1210 


