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A theory is derived for the relaxation of a surface in a conducting crystal. This relaxation is the 
sum of an ordinary, exponentially decaying, relaxation and an oscillatory relaxation which falls 
off slowly with distance into the interior, in accordance with a power law. The oscillatory 
component is ultimately due to Friedel oscillations of the electron density, a consequence of the 
fact that there is a surface. These oscillations are transmitted to the lattice by electron-phonon 
coupling. 

1. INTRODUCTION 

Although research on the deformation of finite-size 
particles dates back quite far, this question can by no means 
be regarded as finally resolved. On the one hand, we know 
that the surface layers of a crystal are separated from each 
other by a distance different from that in the interior. It is 
generally assumed that this deformation of the lattice (sur- 
face relaxation) decays rapidly with distance from the sur- 
face. On the other hand, there is the widespread view that 
finite-size crystals experience a uniform compression be- 
cause of the Laplace pressure. This point of view is advanced 
in Ref. 1, among other places. The error of that approach 
was proved in Refs. 2 and 3, and we will not discuss that 
question here. We simply assert that the deformation of the 
lattice of a small particle, if it is not charged, also reduces to a 
surface relaxation. Only in the case of charged particles does 
a uniform bulk deformation arise. As was shown in Ref. 4, 
despite the general belief that the charging of particles al- 
ways causes them to expand, there can be situations in which 
the particles may also be compressed. 

In this paper we offer a detailed analysis of the surface 
relaxation of conducting particles. We show that in addition 
to the ordinary relaxation, which decays exponentially with 
distance into the interior, there is also an oscillatory relax- 
tion, which decays as a power law with distance into the 
interior. The physical origin of this oscillatory relaxation is 
the circumstance that the truncation of the crystal lattice at 
the surface of the crystal gives rise to Friedel oscillations in 
the electron density. The electron-phonon interaction in- 
duces analogous oscillations in the distance between atomic 
layers. These two relaxation components coexist and affect 
each other. 

An oscillatory relaxation has been seen experimentally 
in many metals (Al, Fe, V, etc.) and at various crystallo- 
graphic faces (Refs. 5-7, for example). In the theoretical 
interpretation of this relaxation in Refs. 8-1 1, however, the 
possibility that the oscillations are of Friedel origin was not 
considered (numerical calculations were carried out in those 
studies on the basis of models using the concept of a self- 
consistent pseudopotential, but the results were interpreted 
by appealing to qualitative arguments which apply more 
properly to insulators than to metals; this approach led to 
the assumption that the relaxation amplitude falls off expon- 
entially). 

2. MODELOF SURFACE RELAXATION 

In the absence of conduction electrons, the relaxation of 
a surface is caused exclusively by ion-ion interactions, and 

(as we will show below) this relaxation occurs if we go be- 
yond the nearest-neighbor approximation in calculating the 
elastic energy. In principle, for insulators having a high com- 
pressibility the relaxation caused by this mechanism could 
penetrate to a significant depth. Since this effect occurs near 
the boundary of a region of absolute stability of the lattice, 
however, it is not clear whether the resulting structure could 
be stable. It may be that this effect could be observed in 
metastable states of insulating crystals. 

It would thus be natural to expect that the surface relax- 
ation in a conductor would be the sum of the oscillatory 
Friedel relaxation and a component which falls off more rap- 
idly. The latter component, however, should also depend 
strongly on the electron subsystem. In metals, the elastic 
interactions between ions arise because their charges are 
screened by electrons, so one cannot simply introduce elastic 
constants in them without electrons. In degenerate semicon- 
ductors, the situation is different. The conduction electrons, 
along with ionized donors, simply renormalize the elastic 
interactions in the crystal. The effect of impurity atoms on 
the deformation of the lattice of a semiconductor should ob- 
viously be proportional to the concentration v of these atoms 
(we are assuming that the atoms do not form clusters and 
that the number of conduction electrons is thus equal to the 
number of donors). With regard to conduction electrons we 
note that it follows from the calculation below that the effect 
of these electrons on the relaxation is proportional to a lower 
power of v at values v-  1020-102' cmP3. We will according- 
ly ignore the effect of impurity atoms. 

The nature of Friedel oscillations may be influenced 
substantially by the electron-electron interaction, which re- 
sults in screening of the charge which forms at the surface of 
the crystal (for example, if a crystal can be thought of as a 
potential well of infinite depth, the electron wave functions 
would vanish at the surface of the crystal, so the charge of 
the positive ions would not be canceled). To simplify the 
calculations below we will assume that the thickness of the 
film is smaller than the screening radius. At a thickness of 
100 A this condition bids for heavily doped narrow-gap 
semiconductors and for several semimetals. 

The calculations below show that it is indeed possible to 
separate the surface relaxation into slowly and rapidly de- 
caying components. For semiconductors we find the relaxa- 
tion amplitude as a function of the concentration of conduc- 
tion electrons. In certain cases the relaxation is determined 
essentially entirely by the conduction electrons. 

In the calculation method which we use below, prob- 
lems associated with diagonalizing the Hamiltonian of the 
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zeroth approximation in the electron-phonon coupling in a 
crystal of finite dimensions are circumvented by using a site 
representation and by calculating the level density directly. 

For definiteness we consider a crystal with a simple cu- 
bic lattice, bounded by two (001 ) plane surfaces. We assume 
that no restructuring of the surface occurs. The problem of 
determining the crystal structure of the sample is thus re- 
duced to the one-dimensional problem of the equilibrium 
interplanar distances a, (n = 1,2, ..., L - 1; L is the number 
of atomic layers in the sample). The values of a, can be 
found by minimizing the total energy of the crystal, written 
as a function of these variables, with respect to them. The 
calculations are carried out for a simple model with the 
Hamiltonian 

+ b' (a )  2 iircli, g+6 + u (n) c&,.g (2) 
7~ g. 6 n, g 

The operators c$ and c,, in (2) are electron operators in the 
site representation; the index n corresponds to a count of the 
lattice sites along the normal to the surface; g runs along the 
surface; and S numbers the nearest neighbors along the sur- 
face. In accordance with the assumptions listed above re- 
garding the nature of the deformation of the lattice, we take 
account of the dependence of the Bloch integral B for transi- 
tions along the normal to the surface on the distance between 
the corresponding atomic planes, a,. The Hamiltonian H(,, 
given by ( 3 )  describes elastic interactions without consider- 
ation of electrons. It incorporates only the uniaxial nature of 
the deformation; the energy described by (3 ) thus depends 
on only the interplanar distances a,. In order to obtain a 
surface relaxation we must go beyond the approximation 
which incorporates the interactions only between nearest 
neighbors. We restrict the present analysis to the interac- 
tions among next-nearest neighbors [the second term in 

( 3 )  1. Finally, L f is the number of sites in each atomic layer. 
Assuming that the deviations a, of the lattice constant 

from its bulk value a are small a (a, =a, - a, 1 a, 1 <a),  we - 
write the total energy as an expansion in a, (we are leaving 
these quantities arbitrary). Determining the value of a from 
the condition that there be no terms linear in a, in the interi- 
or of a sufficiently thick sample, we find the following 
expression from ( 1 )- ( 3 ) : 

where 

and g,, has the nonvanishing elements 

The remaining terms in (4) which are linear in cr, result 
from the effect of the crystal surface. According to (5),  f, 
has additive components from both the atomic and electron 
subsystems. For the atomic subsystem we have 
f ("' = q, (2a) and q, ; (2a) = - q, ; (a)/2; the coefficients 
f r' will be calculated below (Sec. 3). 

The particular form of Eqs. (4)-(6) presupposes that 
the dependence of the electron density on the displacements 
is dealt with in the linear approximation, as usual. The effect 
is to ignore the influence of electrons on the elastic constants 
of the crystal. We will derive an expression for the electron 
energy as a function of the quantities a , ,  taking the quantum 
size effect into account in the limit of a large but finite crystal 
thickness (L $1 ). For the particular type of lattice and the 
particular type of lattice boundary which we have selected, 
the energy of a one-electron state with a wave vector 
kll  = (k,,k,) along the surface of the crystal is 
Ej (kll  = Ell  (kl l  + cj, and Ell (kl l  = 2B(cos k, 
+ cos k, ), and E~ is found from the equations for the wave 

function Y ,, = $, exp( llrllg) in the site representation: 

Here B, =B(a, ), B=B(a).  The spectral values E, are the 
roots of the determinant of system (7); we denote this deter- 
minant by Dl,, explicitly stating the interval of lattice-site 
indices which figure in Eqs. (7).  To determine D, ,  we write 
(7 )  as a second-order difference equation with boundary 
conditions 

B7t-l+n-l+Bn+n-l= (&-LTrc)$n3 

In accordance with (7) we should set I = 1 and m = L. The 

I 

general solution of (8 )  is knownI2 to depend on two arbi- 
trary constants, which can be found from one of the bound- 
ary conditions (e.g., $, = 0 )  and from the normalization 
condition. The second boundary condition, 11, + , = 0, then 
becomes an equation for E, whose solution determines the 
spectral values E, . However, since the normalization factor 
depends on E, that equation cannot be an algebraic equation 
of degree L in E; i.e., in general, its solution would contain 
extraneous roots. Using (7)  and (8),  one can easily show 
that the appearance of such roots can be avoided by adopting 
a normalization condition of the form 11, = 1. In this case, 
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$, is a polynomial of degree n - 1 in E .  In particular, $, + , 
is a polynomial of degree L in E and thus agrees to within a 
numerical factor with the determinant which we are seeking, 
Dl, 

It follows from the general properties of determinants 
that Dl ,  is a multilinear function of (Bn/B)'. In this case we 
have Dl, = DlnD,+ ,,, -Dl,,-, D,+,,, (B,/B12, where 
the determinants on the right side do not depend on B, (al- 
though they do depend on the other B, with m #n). In the 
approximation linear in a, we would have 
(B,/BI2 = 1 +A,, where A n  = ya,, and y = 2B1(a)/ 
B(a) .  Making use of the small quantities A,, we then find 

L 

where x, = - D :,, - , D I: + ,,, , and D I:, is the value of D,, 
in the case A, 0 .  

3. LEVEL DENSITY IN A DEFORMED CRYSTAL 

The number of electron states and the sum of their ener- 
gies for a Fermi distribution with a Fermi energy E, are 
calculated from the expressions 

where 

and 0(E)  is the unit step function (or Heaviside function). 
We can find an estimate of the sums ( 10) in the limit L % 1 by 
working from an equivalent expression for these sums in the 
form of contour integrals in a complex plane. For example, 
we have the standard expression 

N (EF) = (1/2ni) $ d ~  N, ,  (E,-E) a ( E )  , (11) 
C E  

where 

a ( E )  = (E-e j )  - I =  ( d 3 d E ) l n  DiI  ( E )  

is the trace of the Green's function for Eq. ( 7 ) .  In ( 11 ) it is 
convenient to transform to the new integration variable k: 
E = 2B cos k - - ~ ( k ) .  We then have 

N(E,) = (1/2ni) $ d k q  [ I , - e  ( k )  ] w ( k ) ,  (12) 
C  

where 

and C is a contour in the k plane which corresponds to a 
summation over states of a Fermi distribution with a Fermi 
energy EF. 

Specific calculations will be carried out for the case in 

which the conduction band is only sparsely populated, and 
the effective-mass approximation can be used. In this case 
we have E, (k) = E(0) + IB I ( ki + k j ) ,  where k, is the 
quasimomentum component directed perpendicular to the 
surface. It is convenient to replace E, by the Fermi momen- 
tum k,: EF = E(0)  + IB I k i .  We then find, in place of 
(101, 

where for the case EF > E(O), for example, the summation 
incorporates all k, such that the relations 0 < k, < k, hold 
and all values k, = ix, which correspond to the presence of 
surface subbands below the bottom of the interior band 
(they may also arise from deformation of the crystal). Cor- 
respondingly, in place of ( 12) we will have 

Ls2 N  (k,) = ---& dk (kF2-h2)  o ( k )  , 
8n r ,  

(14) 

where the contour Cis shown for the case E, > E(0)  in Fig. 
1 (a) ,  where the points are the spectral values k,, and the 
value z is defined in such a way that the contour C includes 
all values k, which correspond to a Fermi distribution with a 
Fermi momentum k,. In this case, z and k,  obviously lie in 
the same gap between spectral values ki, a_nd there is natural- 
ly some arbitrariness in the choice of k (k  = k, + 7, where 
17 1 is sufficiently small). Expression ( 14) simplifies sub- 
stantially when we make use of the fact that the integrand in 
(13) iseveninkin thecaseIm k = 0 :  

LSZ 2N (k,) = --;-f dk (k.'-k2) o ( h )  . 
,327 r ,  

The contour r, shown in Fig. 1 (b) ,  is symmetric about the 
origin. The integral in ( 15) is a double sum over all values 
k, > 0, so twice the value of N (  k,) appears on the left. Since 
the integrand is a real function of a complex argument {i.e., 
[w(k)]* = w(k*),  forexample), we find from (15) 

LV2 
( k ~ )  = Re dk ( k F 2  - k 2 )  w ( k ) ,  

E+ 

where + is the part of contour C which is in the upper half- 
plane. 

In calculating w (k )  below we restrict the analysis to the 
case in which we can ignore the external field Un in (7 )  and 
(8) ;  such a field might be caused by the presence of the sur- 
face. Using Laplace transforms, we then find from (8) 

Using ( 9 ) ,  we find the following expression for 
w(k) = ( l o l L  (k) ) ' :  

where 
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FIG. 1. -Yr 

cos kl-cos k  (L-2n) 
' n ( k ) =  2 s i n k s i n k ( L + 1 )  

( 19) where g:, - ,, =gz, has two nonvanishing elements: 
gg = P + 2Q, gy = Q. A solution of (23) can be written in 
the form 

1-1 

The asymptotic estimate of N(k,) at L )  1 which we are a. = x G,,,,o~(:) + G , , ~ + G ~ ~ - ~  

seeking is found from ( 16) with the help of ( 17)-( 19) : "I= l I-Q (G~P+GP+G~,~-~+G@ I , L - l  ) 
L-1 

L.' - sin ( 2 k 4  ] 
+7kF 

4n ,,=, 2kFZ 
Here and below, the quantity ii = E(n) is defined in such a 
way thatwehaveii-n at l S n S L / 2 a n d i i - L - n a t L /  
2(n<L. The details of the calculations of ( 17)-(20) are 
given in the Appendix. Working from ( 13 ) in a similar way, 
we find the asymptotic behavior of the electron energy g"': 

3 + - kFii( l-  (k,ii) -') sin (2kpii) 
2 - 

+i ros(2k,ii)). 

where G :, is the Green's function (the inverse matrix) for 
the matrix g:, , given by 

Here 

and the sign should be chosen to satisfy (8 1 > 1. Expression 
(24) is the basic result of this study. 

From (24) we can find an approximate expression for 
a, by noting that the Green's function (25) falls off expon- 
entially with increasing I n-m 1, while the oscillation ampli- 
tude f F' depends on n in accordance with a power law, and 
the frequency is relatively low. We then have 

Eliminating k, from (21 ) with the help of ( 12), and com- L-1 

paring the resulting expression with (4)-(6), we find a rela- r n=x  G,,,,o, 
tion for the quantities involved there: " I = =  1 

3 L.2 in (24), and as a result, we find 
& : * ' = [ E ( O ) + ~ ~ B ~ ~ , ' ] L . ' L V ~  (~1-k.' .  S n  

(22) a,,~r,f,'"+R,, [ f a ) IQ+ (I'o+rl)fl("' I ,  (27) 
f:) 2 

2 koE where 

Herev=NLc2/(L + I) ,  andk,=(3d~)'~~isthevalueof 
the Fermi momentum for a bulk sample (L + cu ). 

4. LATTICE DEFORMATION 

Minimizing the energy functional (4)  with respect to 
a,, we find equations for these variables. If we single out the 
translationally invariant bulk part g:, in the matrix g,, , we 
can rewrite these equations as 

L-1 

R --- ( e n - L / z + e - n t L / Z )  (e'/.+e-'h) ( e ( L - l ) / ? + e ( - ~ , t ~ ) / n  
) - I ,  

rn=(P+4Q)-l[l+ (l+O'-L ) R,].  

The behavior of the functions r, and R,  depends on the 
parameter 8, which, according to (26), depends on the ratio 
of the stiffness coefficients for the interactions of neighbors 
separated by various amounts. It is clear from physical con- 
siderations that if there is no interaction p2 between next- 
nearest neighbors we would have R, =O for all n from 1 to 
L - 1. This assertion can also be verified directly on the ba- 
sis of the expression given above for R,. Specifically, when 
we let Q-0 we have 18 1 - 1P/Q 1, according to (26); in this 
casewehave IR,I(R,I-IBI-', )eI-.a,. 
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We can distinguish three cases: 
I .~O,Q>O.Inthiscasewehave9<0(~= -&)and  

L for odd L. 

11. Q<Q,P>41QI. Inthiscasewehave9>0 (O=e*) 
and 

111. Q<O, 2lQ 1 [1 + cos n/(L - I ) ]  <P<4lQ 1 .  In 
this case we have Im O #O, 19 1 = 1, B = exp(ik) and 

Rn = - cos[k (-n+L/2) 1 
2 cos (k/2) cos [k  (L- 1) /2] ' 

The expressions in (28)-( 30) are given for those values of 
the parameters Pand Q in which the equilibrium state of the 
system is stable against small displacements of plane layers 
as a whole normal to the surface. The stability condition 
reduces to the condition 

i.e., the condition that the eigenvalues of the matrix g,, 
must be positive. 

From (20) and (27) we find the chemical potential of 
the electrons as a function of the thickness of the sample: 

This estimate was derived under the assumptions k,,S 1, 
k,&) 1, under the assumption ( 9  I R 1 in (26), and in the 
same approximations as were used in calculating expression 
(27). 

5. DISCUSSION OF RESULTS 

Equations (27 )-( 3 1 ) describe both the lattice defor- 
mation and the shift of the Fermi energy caused by this de- 
formation. Relation (27) consists of two terms. The first 
term, - r , ,  describes the lattice deformation caused by the 
nonuniformity of the electron density in a finite-size crystal. 
The physical meaning of this term can be understood quite 
easily by looking at the Hamiltonian of the electron-phonon 
interaction in its standard form: 

H ( ~ , P ~ ) -  a&-m 
9 

where p - , and a, are the Fourier components of the elec- 
tron density and the deformation. The surface makes the 
electron-density distribution nonuniform, with the result 
that the average Fourier components (p,) with q#O become 
nonzero. Singling out a term - (p - , ) in H,,,,, corresponds 
to adding to the phonon Hamiltonian a term -a, (p - ,) 
which is linear in the displacements a,. This term is elimin- 
ated by an ordinary transformation involving a displace- 
ment of normal coordinates. As a result, their equilibrium 

positions are shifted by an amount - (p - , )/a,, where o, is 
the phonon frequency. 

It can be seen from (22) that the coefficients f 2' exhibit 
oscillations superposed on a power-law decay as a function 
of distance from the surface, i.e., behavior which is actually 
of the Friedel type. The same behavior is exhibited by the 
lattice deformation induced by Friedel oscillations in the 
electron density (27). The lattice deformation induced by 
conduction electrons when an electric field is applied to a 
crystal was studied in Ref. 13. This field is screened by elec- 
trons, whose density falls off with distance from the surface 
into the interior of the crystal in accordance with a law simi- 
lar to that for Friedel oscillations. In Ref. 13, however, there 
was no deformation of this sort in the absence of an external 
field, demonstrating a substantial difference between the 
physical situations studied in Ref. 13 and in the present pa- 
per. 

The second term ( - R ,  ) in (27) results from the cutoff 
of elastic interactions between surface atoms and their miss- 
ing neighbors. In the absence of conduction electrons, this 
term would give rise to relaxation only if the interaction 
between next-nearest neighbors were nonvanishing 
Q = q  ;(2a) #O). In fact, as was shown above, in the limit 
q,-0 the coefficients R ,  in (27) tend toward zero like Q. 
The second term in (27) is thus proportional to the quantity 
f '"' = q, ; (2a), which vanishes in the case p2(r)  = 0. 

The qualitative behavior of the elastic deformation in 
the absence of conduction electrons depends on the signs of 
the coefficients P and Q. If P and Q are positive, this defor- 
mation falls off exponentially with distance from the surface, 
changing sign from layer to layer [see (28)l.  if P and Q 
instead differ in sign, the sign of the deformation is constant 
[see (29) 1 .  The depth to which this deformation penetrates 
is normally proportional to the lattice constant. Exceptional 
regions are those near the stability boundaries of a crystal: 
P=O at Q>O and P = 4 ( Q J  at Q<O. In the first of these 
cases, it is (Q /P) 'I2, and in the second it is (P/2)Q 1 - 2) ' I 2 .  

For crystals of finite thickness in the case Q < 0, there is also 
a small interval of values PS41Q I in which the crystal is 
relatively stable with respect to uniaxial deformations of this 
type. In this region, as we see from (30), the lattice deforma- 
tion oscillates but does not decay. It is not clear, however, 
whether crystals in which a uniaxial deformation penetrates 
to a large depth are stable against small deformations of oth- 
er types. It may be that in this region of values of the elastic 
parameters some other crystal structure will be more stable. 

The appearance of conduction electrons changes the 
magnitude of relaxation such as that under consideration 
here. The reason for this change is that the electrons renor- 
malize the elastic interaction between atoms. To first order 
in the displacements of the atoms-the approximation 
which we have used here-there is no renormalization of the 
second derivatives of the potentials of the interatomic inter- 
action, P= q 7 and Q = q ;. The first derivatives, 
q ; and q, ;, on the contrary, are renormalized. According- 
ly, the relaxation amplitude determined by the factor R, in 
brackets in (27) is thus also renormalized. At conduction- 
electron densities 1 0 ~ ~ - 1 0 ~ '  ~ m - ~ ,  for which we have ko- 1, 
this renormalization can be extremely significant, since rl is 
proportional to d l 3 ,  according to (22). Electrons play a par- 
ticularly prominent role in the limit Q-0. In principle, in 
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the case p, = 0 a surface relaxation would become possible 
as a result of conduction electrons alone. Physically, this 
happens because the electrons renormalize the interaction 
not only between nearest neighbors but also between more 
remote neighbors. 

To find some numerical estimates, we take account of 
the following considerations. If we link the lowering of the 
bottom of the conduction band to the bulk deformation by 
means of the relation AE, = C,AV/V, where A V/Vis the 
relative change in the volume, then we find the condition 
y = 2C,/(za(B I), where z is the coordination number of the 
lattice, for the electron-phonon coupling constant y = 2B '/ 
B. If we write the elastic energy of the crystal in the form1' 
(1/2) VC2(A V/V)', we find the relation P, Q-aC2 as esti- 
mates of the elastic constants. With ko 5: 1 and 18 1 2 1 we find 
from (22)-(27) that the displacement of the outermost 
atomic layer is a,  = a ,"' + a ,'"' , where 

Assigning C, and C2 the characteristic values C, - 10 eV and 
C2 - 5. eV/cm3, and assuming ko - 1, z = 6, and a - A, 
we find a, ('I' /a - ( 1 - 5 ) %. It is difficult to offer a specific 
numerical estimate of the quantity a,'"' . 

The difficulty is that if we adopt the estimate 8-P/Q 
for Q < P  in accordance with (26) we find 
a,(") -p ; (2a)/p ;'(a), so this estimate depends strongly 
on the structure of the potentials p, and p2. Clearly, how- 
ever, the contribution of the ion component will vanish ex- 
ponentially with distance from the surface, as we have al- 
ready mentioned, so a,'"' would normally be exponentially 
small at n = 2-3. 

According to (3  1 ), the chemical potential E, of a sam- 
ple of finite thickness differs from that of a bulk sample, E i .  
The first term describes the increase in E, for samples of 
finite size which is caused by size quantization; this term was 
found in Ref. 2. The physical reason for the increase in E, is 
an increase in the kinetic energy of the electrons due to the 
bounded size of the region in which they are localized. The 
second and third terms result from the deformation of the 
crystal. Incorporating these terms renormalizes the propor- 
tionality factor in the relation AE,/E$-L - I ,  as can be 
seen from (3  1 ) . The presence of a Friedel surface relaxation 
makes this coefficient increase, while the sign of the atomic 
contribution is the same as that of the quantity 
f '"I = p ; (2a) and can, in general, be arbitrary. The nature 
of the dependence on the last terms indicates that the effect 
of these mechanisms on E, is manifested primarily through 
a change in the size of the sample due to the deformation. It 
can be shown that a Friedel deformation leads to a relative 
increase in the dimensions of a sample, while the sign of the 
deformation due to elastic interactions will be the same as 
that off ("'. For the characteristic parameter values given 
above and for the value (B ( - 0.5 eV, we find that the second 
term in (3 1 ) is 1-5% of the first. The specific estimate of the 
contribution of the last term depends strongly on the struc- 
ture of the elastic-interaction potentials rp, and rp, in (3 ) .  
The ratio of the last term to the second is -rp (2a)/B '(a).  

The effect of a deformation on E, was estimated in Ref. 
2 by a variational method, based on the assumption of a 
uniform deformation. The analysis presented above, which 

allows for variations in the deformation of the crystal, re- 
fines the results of Ref. 2. In principle, the results derived 
above can be generalized in a qualitative way to the case of 
metal particles: It can be assumed that Friedel oscillations 
propagate away from each face of the crystal, so the picture 
of the deformations of a small particle is a superposition of 
the Friedel oscillations from the various faces. 

APPENDIX 

1. According to Sec. 1, the dependence of the determi- 
nant D 7, on the energy E agrees within a numerical constant 
with the dependence $, + , (E), found from Eq. (8 )  with B, 
= B and U,, = 0. The general solution of this equation is 
$, = C,8 'f + C,6 ;, where 8 ,,, are the roots of the "charac- 
teristic" equation B(6  + 8 -' ) = E. Since we have 6,8, = 1, 
by setting 8 = eik and making use of the boundary condition 
$ I - ,  =0 ,  we find $ , = C ( k ) s i n [ k ( n - [ + I ) ] ,  
E = 2B cos k. As a result we find 
$,+, = C(k) sin [(m - 1 + 2)k I. Fixing C(k) by means 
of the condition $, = 1, we find relation ( 17) for DO, (k).  

2. Equation (20) was derived by expanding the right 
side of ( 16) powers of L -' (L)  1 ). Let us examine this pro- 
cedure, first for the case in which there is no lattice deforma- 
tion; in thiscasewe haveR, rOandw(k )  =wO(k) in (18). 
Although each term in expression ( 19) for w0 has a pole at 
k = 0, there is no such singularity in wO( k).  In other words, 
k = 0 is not a spectral value. Making use of this result, we 
rewrite ( 16) as 

where s ( k )  = (L + 1 )ctg[ (L + 1 ) k] is the first term in 
( 19). This term is conveniently written as the sum 

In this case we have Sl(k) = L + 1 and 
A s ( k )  = (L + 1) exp [ik(L + l)]/sin[k(L + I ) ] .  
Expression (A  1 ) then becomes 

- 
dk (kFZ - k2) + AN. 

The function AZ?)(k) falls off rapidly for (L + 1) Im 
k + CC, so in calculating AN it is convenient to deform the 
contour C + by displacing its horizontal part to infinity. We 
would then have 

- - 
k+im -k+im 

L 2  Ah' =rL Re- 
4n 2ni 

To estimate (A3) we use the Laplace method, and we choose 
= k,. We then find, for example 

x \' dkAS1 ( k )  + (k,. - k2)' I 
h'=kF 

k p  '-;" 
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lip+im 

x 1 dk (b - B I )  A q l  (k) + . . ., 
k ~ f i 0  

from which we see that the leading term asymptotically van- 
ishes, and an estimate of the succeeding terms reveals 
M - O ( L  3/L). Accordingly, if we ignore small terms of 
this order in (A4) we can assume AN= 0 in (A2). The 
remaining terms in (A2) correspond to the first two terms in 
(20). 

It would seem pertinent to explain the motivation for 
choosing the value k = kF in (A3)-(A4). This choice is 
decidedly arbitrary. Specifically, the quantity N(kF ) would 
not change if we varied over the interval between nearest 
spectral values of k. The total electron energy g"'(k,) de- 
pends similarly on z. If we eliminate kF from these expres- 
sions, we find that the N dependence of g"' is in the form of 
a series in powers of L - I .  The coefficients of the series can- 
not depend on this arbitrariness in the choice of z, since the 
accuracy of the estimate found when we truncate this series 
is also independent of the choice of z. The choice can be 
made on the basis of considerations of convenience (as was 
done above). If we assume # k, in (A4), we find 
(K $ - k *) 1, = ,, #0, but this quantity is of order of magni- 
tude 0(1/L ) since we have (k, - k 1 - 1/L in the gap 
between nearest points in the spectrum. Accordingly, the 
estimate AN-0 continues to hold, in accordance with the 
discussion above. 

The asymptotic behavior for terms -A, in (18) is 
found analogously. We should find the limits as L Im k+ w 

of the functionsp, in ( 19). The differencep, and its asymp- 
totic expression will be functions which fall off exponentially 
as Im k -+ w with a decay rate -L. The asymptotic behavior 
ofp, will generally take different forms for different values 
of n: 

forn-landp, ( k ) - [ l  -exp( - 2ik)I-'forn-L/2.Al- 
though it would go beyond the accuracy of this treatment to 
incorporate the term -exp(2ikn) at n--L/2 in (A5), we 
are retaining it since we are treating (A5) as an interpolation 
for 1 5 n 5 L /2. At L /2 5 n 5 L we should bear in mind that 
M,, along with p,, is symmetric about the middle of the 
sample. Expression (20) was derived in the effective-mass 
approximation [in which we have I k 1 4 1 in (A5) ] and with 
allowance for spin degeneracy. 

' I  For a plane we would have C, = @?,( 1 - up)/ l  + up) ( 1 - 2up), 
where g, is Young's modulus, and up is the Poisson ratio. 
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