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The characteristics of the spin-wave spectra and of two-magnon absorption in multisublattice 
antiferromagnets have been analyzed systematically. Two-magnon absorption by exchange 
magnons in CuC1,-2H20 was observed experimentally. A study was made of a new type of 
dynamic critical point of the spectrum where the group velocity vanishes. These points are due to 
the interaction of spin waves with one another. It was found that the magnitude of this interaction 
governs the additional singularities in the density of states which then appear and some 
components of the effective mass tensor. 

INTRODUCTION 

A wide range of properties of magnetic materials is gov- 
erned by the structure of the spectrum and by the character- 
istics of the density of states of spin waves associated with the 
presence in their spectrum of critical points where the spin 
wave group velocity vanishes. Among these critical points 
we can identify symmetric critical points governed by the 
symmetry crystal. These critical points can be found without 
invoking model approximations,' which is particularly im- 
portant in the case of multisublattice magnetic materials. 
Additional critical points appear at certain values of the in- 
trasublattice and intersublattice exchange constants, and of 
the magnetic field inten~ity,~ in the region where the acous- 
tic and spin wave branches cross,3 and also when spin wave 
branches cross one a n ~ t h e r . ~  The presence of such critical 
points is in no way related to the crystal symmetry, so that 
they can be called dynamic.5 

In experimental studies of spin-wave spectra an impor- 
tant auxiliary parameter is the external static magnetic field, 
which causes considerable modification of the spectrum. 
However, the dispersion of all the branches of the spin-wave 
spectra of multisublattice magnetic materials have been in- 
vestigated so far only in zero field by the method of inelastic 
neutron ~ c a t t e r i n g . ~ ~  A special feature of multisublattice 
magnetic materials is the presence in their spin-wave spectra 
of exchange branches with activation energies which, in the 
absence of an external field, are governed by the intersublat- 
tice exchange interactions and remain finite in the exchange 
approximation. We recall that the activation energies of 
acoustic branches are governed by the anisotropy and vanish 
in the exchange approximation. 

One of the effects in which the dispersion dependences 
of the spin-wave spectrum are manifested is two-magnon 
absorption, which has no threshold, in contrast to paramet- 
ric ex~itation.~ The intensity of the two-magnon absorption 
is determined by the number of pairs of magnons which have 
vectors of the same magnitude, but oppositely directed when 
the sum of the magnon frequencies has a fixed value equal to 
the frequency of the incident radiation. Therefore, we can 
expect an absorption maximum in those parts of the spec- 
trum where the dependence w (k, H )  becomes flatter, either 
because of a modification of the spin-wave spectrum in a 
magnetic field or because of the quasi-one-dimensional or 

quasi-two-dimensional nature of the magnetic material. The 
latter case has been investigated sufficiently thoroughly in 
the case of two-sublattice antiferr~magnets.'~~" 

No experimental or theoretical studies have yet been 
made of the critical points in the spin-wave spectra of multi- 
sublattice antiferromagnets or of the characteristics of the 
structure of such spectra in magnetic fields or of two-mag- 
non absorption, particularly that due to exchange branches. 

These critical points were the subject of a study report- 
ed below. We selected a four-sublattice antiferromagnet 
CuC1,-2H20 for which the frequency and field dependence 
of the spectrum of the homogeneous magnetic resonance of 
the exchange modes had been investigated quite thorough- 
ly.12 

Our investigation of the magnetic-field dependence of 
the spin-wave frequencies w (k, H) of a rnultisublattice anti- 
ferromagnet established that the field drastically changes 
not only the acoustic but also the exchange branches of the 
spectrum. An indirect confirmation of the flattening of the 
dispersion curves of the exchange branches was provided by 
two-magnon absorption by exchange spin waves observed 
for the first time. The following result, important for further 
studies of exchange magnons by two-magnon absorption, 
was obtained: it was found that there were ranges of fields 
where the absorption intensity was independent of the small 
parameter D J  - ' (D describes the Dzyaloshinskii-Moriya in- 
teraction and J is the exchange), because an antiferromag- 
netic resonance the intensity of the exchange magnon lines 
were determined by this parameter." 

In the case of homogeneous precession of the magneti- 
zation a strong interaction of the exchange and acoustic 
modes of the same symmetry12 was observed also for spin 
waves. The range of wave vectors in which this interaction 
was manifested depended on the magnetic field. 

Our results demonstrated the existence of a new type of 
dynamic critical point in the spin-wave spectrum due to the 
interaction of spin waves. These points appear when two 
conditions are satisfied. In the absence of the interaction, 
they should firstly intersect at a given point in k space and, 
secondly, at this point the group velocities should be direct- 
ed along the wave vector k and antiparallel to one another. 
An allowance for the interaction (in our specific case this is 
the Dzyaloshinskii-Moriya interaction) pushes the 
branches of spin waves apart and gives rise to dynamic criti- 
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cal points. Some of the components of the effective mass 
tensor and the corrections to the density of states associated 
with such critical points then depend on this interaction. 

1. SPIN-WAVE SPECTRUM OF A FOUR-SUBLATTICE 
ANTIFERROMAGNET 

The general form of the Hamiltonian of a magnetic 
crystal subjected to an external magnetic field is as follows: 

In this expression S ',, is the ith component of the operator of 
the spin in the a th  magnetic sublattice and the nth unit cell; 
g?' is the tensor of the Land6 factors of spins in the a th  
sublattice; p, is the Bohr magneton; and the quantities K $ 
(n, m) describe the isotropic and antisymmetric exchange 
interactions as well as the relativistic interactions. 

Using the Fourier representation in Eq. ( 1 ) and intro- 
ducing linear combinations of the operators of the ion 
spins." 

we can represent the Hamiltonian of Eq. ( 1 ) in the form 

Here, Z o ( k )  also contains invariants of the components of 
the operators F(k)  and La (k)  similar to those in the k = 0 
case1,: 

+  mi ( k ) ~ . .  (-k)~..  (k)}  
0=1,2,3 

-I-ooi (k)F,(-k)L2, (k) +Do, (k) Fz (-k) L 2 x ( k )  

+Do3 (k) (-k) L3, (k) +Do, (k) Liz (-k) L3z (k) 

-N'"A ( k )  { g i H ,  ( F ,  (k) 

-I- ziL2, (k) ) +g2H,F, (k) + g J Z  ( F z  (k) +TS~?S (k) ) 1. 
(4) 

In the above equation the following notation is used: 
- 1 

gi = pBgii, T~ = gugxx , T, = gzxgzz - I .  The relationship 
between the quantities J ( k )  and D(k)  and the constants 
K$ (k)  is readily established with the aid of Eq. (2) .  The 
parameters D(k)  describing the Dzyaloshinskii interaction 
include contributions of the antisymmetric parts of K !B (k )  
(antisymmetric exchange) as well as of the symmetric parts, 
which are of purely relativistic origin.', In the case of some 
antiferromagnets the contribution of the latter may predom- 
inate. 

The nature of S Z ( k )  depends on the direction of the 
vector k and in each specific case a separate symmetry analy- 
sis is needed. In particular, at low values of k we can easily 
show that the terms occurring in S Z ( k )  are associated with 
the inhomogeneous Dzyaloshinskii interaction and with the 
purely relativistic interactions. It should be noted that calcu- 

lations of the spin-wave spectrum of yttrium iron garnet 
based on the Hamiltonian expressed in terms of irreducible 
combinations of spins (such as in the k = 0 case) agree well 
with a rigorous numerical calculation of the magnon spec- 
trum using the complete Hamiltonian of a 20-sublattice fer- 
romagnet.14 Bearing this point in mind we shall ignore the 
terms occurring in S Z (  k) .  A rigorous symmetry approach 
to determination of the structure of the Hamiltonian, utiliz- 
ing the basis functions of the irreducible representation of 
the group of the wave vector k, can be found in Ref. 15. 

In the absence of a field in CuC12.2H20 we can expect 
nonzero values of the main antiferromagnetic vector L, ori- 
ented along the a axis (in our coordinate system thex, y, and 
z axes correspond to the a, b, and c axes of the crystal sys- 
tem) and of the auxiliary antiferromagnetic vector L, ori- 
ented along the z axis and due to bending of the sublattice 
magnetizations in the x-z plane due to the Dzyaloshinskii 
interaction (z,, cc D J  - '1, ). ~inceZ,,  andz, transform in 
accordance with the irreducible representation T, of the 
symmetry group D z ,  of the paramagnetic phase of the crys- 
tal, it follows that the symmetry of the magnetically ordered 
phase is r,.,' In a magnetic field Hllx (irreducible represen- 
tation T,) there are equilibrium values of px and I,, which 
transform in accordance with the same irreducible represen- 
tation so that a collinear magnetically ordered phase T,, is 
obtained. 

When the field is HSf - (gp, ) -' (JA ) a spin-reor- 
ientation phase transition takes place and the vector L, be- 
comes parallel to the y axis, which corresponds to a magneti- 
cally ordered T,, phase or a spin-flop phase. In a field of the 
order of the exchange field a second-order phase transition 
takes place, which involves collapse of the magnetic sublat- 
tices (spin-flip transition) when L, vanishes and a magneti- 
cally ordered T, phase or a flip phase is formed. The magnet- 
ic cell of this phase in CuC1,.2H20 is identical with the 
crystallographic unit cell and the number of sublattices is 
halved, so that instead of four magnetic resonance modes 
there are only two. 

In the case of antiferromagnets, which include 
CuC1,.2H,O, the quantities J and D are related by 
J) D )  A - D ,J - I,  where A is a purely relativistic anisotrop- 
ic interaction. Hence, it follows that the auxiliary antiferro- 
magnetic vectors L, and L, are small compared with S, 
which is the sublattice spin throughout the range of exis- 
tence of magnetically ordered phases. In the problems of 
interest to us an allowance for such fine details of the mag- 
netic structure is unimportant. Therefore, we shall carry out 
specific calculations employing a rough description of the 
magnetic order on the assumption that in the case of the r, 
and r,, phases we have Z,, /4S = 1, whereas in the case of 
the r,, phase, we find that 

where HA, is the field of the antiferromagnetic exchange 
between the sublattices 1 and 3. In the case of the I?, phase, 
we have Fx /2S = 1. The form of a magnetic unit cell is 
shown in Ref. 12. Experimental and theoretical investiga- 
tions of the frequency and field dependence of homogeneous 
oscillations of exchange and acoustic modes, reported in 
Ref. 12, have made it possible to determine the ferromagne- 
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tic exchange field H, between ions 1 and 2, and the value of 
the parameter D. 

We shall calculate the spin-wave spectrum using the 
method of second quantization developed for multisublat- 
tice magnetic materials in Ref. 16. Specific calculations will 
be made in the nearest-neighbor approximation allowing 
only for the interactions between pairs of ions 12 and 13. We 
shall not discuss details of the calculations, which were car- 
ried out in Ref. 4, allowing fully for the magnetic structure, 
but simply give the frequencies of spin waves for different 
magnetically ordered phases. 

rz6 phase (collinear phase) 

The energies of the exchange branches in the spin-wave 
spectrum are described by the expressions 

In view of the above approximations, this expression is valid 
in the range of fields HA 5 H 5 Hq, where HA is the charac- 
teristic anisotropy field. We shall allow for the anisotropy 
fields only in those cases when they should give a nonzero 
acoustic mode activation energy: 

(*) 
0 3 4 1 8  (k7 H ,  = ~ - " ( B Z P Z + ~ S P S + ~ P Z J Z ~  ( ~ Z P Z + ~ ~ P S + ~ P Z ? )  ' 

-4 (qzqrpz,') (P,P,-PZ,Z) I "I1", ( 6 )  
where 

qz=Ei(k) +gHA,, ps=El (k)+gH,iz, 

p z ~ g H ,  pz=qs=Eo(k). 

Combinations of the exchange integrals 

Eot(k) =8S(J,,(k)-Ji=(O)) 

obtained using the above approximations are of the form 

1 
~ ~ ( k ) = - g { ~ I ~ , ( l + y ~ ~ ( k ) ) + H ~ ( 1 - y 1 ~ ( k ) ) ) ,  

2 

The structure factors y ( k )  are described by the expressions 

where a, b, and c are the constants of a unit magnetic cell and 
g=g1 = 1Usgxx. 

In the expressions for D ( k )  deduced from Eq. ( 4 )  we 
need retain only the contribution of the antisymmetric ex- 
change of pairs12; we then obtain 

The values of all the parameters we used are12s17+18 

FIG. 1. r,, phase, H = 4 kOe: 1 ) w:,:, 2) o:;:, 3) ol,Q, 4) oi&Q 

spin-wave spectrum the nonlinear field dependence exhibit- 
ed by the collinear phase is important only in the range 
ka ( 1. At high values of k the energies GI$$,' ( k , H )  vary lin- 
early with the field. Figure 1 shows how the frequencies of all 
spin waves depend on k in a field H = 0.4 T, plotted for the 
wave vectors klla and k(lc. 

r,, phase (spin-flop phase) 

In this phase both acoustic and exchange branches have 
the same symmetry in pairs. The Dzyaloshinskii interaction 
plays the role of the coupling parameters of these modes. The 
spin-wave energy is 

~ E 1 e  (k ,  H )  =2-'"(qr~i+qz~z-2T~* I ( q 1 p l - q ~ ~ ~ )  

+4TZE,2(0) ]'}"', 

where 

p , = ~ ~ ( k ) 6 ~ + f l ~ E 3 ( k ) ,  pz=Ei(k)6z+f12Eo(k), 

ql=E3(k), QZ=EO ( k ) ,  ( 1 1 )  

T = ~ S D [ ~ ~ ~  ( k )  -P2Haa(Ha~+H~) -'71.3 ( k )  I. 
The expression for the spin-wave energy GI!&,' (k ,H)  can be 
obtained from Eq. ( 1 1 ) by modification of the indices 1 -0 
and 2 -. 3 of the quantities p and q. We then have 

The characteristic features of the behavior of the spin-wave 
spectra of the spin-flop phase are demonstrated in Figs. 2-4 
for fields of 4, 7, and 10 T. 

The Dzyaloshinskii interaction gives rise to additional 
extrema in the spin-wave dispersion laws within the Bril- 
louin zone. The positions of the extrema depend on the mag- 

It should be noted that in the case of acoustic branches of the FIG. 2. T,, phase, H = 40 kOe: 1) a;;:, 2 )  0i2:~), 3) &Q, 4) o:~:Q 

11 86 Sov. Phys. JETP 66 (6), December 1987 Eremenko et al. 1 186 



4i 
2 k(1OO) k (000 p 
FIG. 3. r,, phase, H = 70 kOe. 

FIG. 5. T, phase, H = 150 kOe: 1 )  o,,; 2 )  w,,. 

netic field and can shift toward smaller and larger wave vec- 
tors. Since lifting of the degeneracy is due to the 
Dzyaloshinskii interaction, the smallest separation between 
the frequencies is proportional to D, as in the homogeneous 
case." Moreover, we can assume that the absence of crossing 
of the frequencies of acoustic and exchange branches of the 
same symmetry in a field H,,, and k = 0 (Fig. 3 in Ref. 12) 
represents a special case of lifting of the degeneracy of these 
frequencies in the k space in fields higher and lower than 
H,,, . The characteristic features of the density ofstates in this 
case will be discussed later. 

In the spin-flop phase there is a set of points in the k 
space where the spin-wave energy is independent of the mag- 
netic field (in the approximation we have adopted). This is 
true, in particular, of two planes of the Brillouin zone bound- 
ary perpendicular to z. 

r, phase (spin-flip phase) 

The Hamiltonian of the magnetic subsystem of a crystal 
in this phase is obtained from Eq. (4) by assuming that the 
sublattices 1 and 3 and also 2 and 4 are identical. Then, the 
constants J,, J,, D,, and D4 vanish and there are only two 
types of irreducible operators F = S, + S2 and 
L2 = S,  - S,. 

The spin-wave frequencies in this phase are given by 

The phase transition from the spin-flip to the spin-flop 
phase is of second order. The soft mode in the flip phase, 
which vanishes at the phase transition point, is the spin-wave 

FIG. 4. r,, phase, H = 100 kOe. 

frequency o,,(k,,H) with the wave vector kllz lying at the 
boundary of the Brillouin zone of the flip phase k, = rrc; ', 
where c, is the constant of the crystallographic unit cell. 
Figure 5 shows how the frequencies of the spin waves T,, 
and TI, depend on k in the flip-transition field H, = HA,. 

2. CRITICAL POINTS OF SPIN-WAVE SPECTRA OF 
MULTISUBLATTICE MAGNETIC MATERIALS AND 
SlNGULARlTlES OF THE DENSITY OF STATES 

In discussing the specific features of the density of states 
typical of multisublattice magnetic materials it is necessary 
to distinguish two sets of critical points. Firstly, there are 
dynamic critical points, the appearance of which is due to 
the interaction of spin waves with one another (obviously, 
such critical points can exist in the case of multisublattice 
magnetic materials, which are characterized by a large num- 
ber of branches of spin waves). Secondly, there are symmet- 
ric critical points that can be found without invoking model 
approximations, which is particularly important in the case 
of multisublattice magnetic materials. 

We shall begin our analysis from the symmetric critical 
points. The criterion of existence of zero-slope points in the 
spectra of quasiparticles is formulated in Ref. 1 for the case 
of magnetic symmetry groups. Table I gives the results of an 
analysis,based on the approach of Ref. 1, of the components 
of the spin-wave group velocity of vector v = &/a k at high- 
symmetry points of the Brillouin zone of our crystal, ob- 
tained for all possible magnetically ordered phases with the 
given orientation of the magnetic field. l9 (The plus sign cor- 
responds to a nonzero component of the group velocity, 
whereas the minus sign corresponds to a zero component; b,, 
b,, and b, are the reciprocal lattice vectors and the param- 
etersp and Y vary within the limits (0  <p ,  Y < 1/2.) 

It is clear from Table I that in the absence of a magnetic 
field the symmetric critical points (in the T, phase) are two 
points in the Brillouin zone: k, = 0 and k, = (b, + b,)/2. 
Application of a magnetic field Hllallx does not suppress 
these critical points of the phases T,,, T,,, and T,. The den- 
sity of states corresponding to these critical points has a tri- 
vial singularity of the lo - w,l 'IZ type. The specific nature of 
the magnetic groups of all four magnetically ordered phases 
is such that vanishing or nonvanishing of the same compo- 
nents of the group velocity occurs for all the branches of spin 
waves irrespective of their symmetry at any high-symmetry 
points in the Brillouin zone. 
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The fact that some derivatives dw(k,)/d k, differ from 
zero on transition to points of higher symmetry is due to the 
fact that degeneracy of the spin-wave energies appears at 
these points. For example, it is clear from Table I, that in the 
r,, phase the derivative in question is dw(k,)/dk{ = 0 for 
k, = pb,, whereas at the point k, = b,/2 this derivative is 
nonzero. A symmetry analysis shows that if k, = b,/2, then 
the states of spin waves transform in accordance with the 
two-dimensional irreducible representation and, conse- 
quently, the energies corresponding to them are degenerate, 
whereas if k, = pb,, all the states transform in accordance 
with one-dimensional irreducible representations. 

In a multisublattice magnetic material we may encoun- 
ter a situation in which the branches of the spectrum of mag- 
non modes considered in the exchange approximation cross 
at some point or region of the k space (this is known as the 
crossover situation). An allowance for the anisotropic inter- 
actions sometimes lifts the degeneracy at this point or region 
and pushes apart the branches of spin waves.4 In turn, this 
can give rise to extremal points of the dispersion curves 
along the direction k and cause vanishing of the correspond- 
ing component of the group velocity. Vanishing of the other 
components can follow, for example, from symmetry con- 
siderations. The positions of such dynamic critical points, 
due to the interaction of spin waves, depends on the magnet- 
ic field and may shift to the range of small or large wave 
vectors. Lifting of the degeneracy in the crossover region 
need not give rise to dynamic critical points which may hap- 
pen, for example, in some cases of a magnetoacoustic reso- 
nance or in the polariton effects. These dynamic critical 
points appear if the group velocities of two branches have 
opposite directions before allowance for the interaction. 

We shall consider the example of a crossover situation 
which occurs in the case of exchange and acoustic branches 
of spin waves w$&Q (k,H) of the r2, (spin-flop) phase of 
CuCl,.2H20 (Ref. 4).  Using symmetry considerations, we 
can demonstrate rigorously that lifting of the degeneracy in 

TABLE I. Components of group velocities of spin waves at high-symmetry points of Brillouin 
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this case is due to the Dzyaloshinskii interaction, i.e., it is 
due to the off-diagonal components of the Hamiltonian 
DSiSj ( i # j ) ,  whereas the purely relativistic diagonal aniso- 
tropic interactions do not push apart the branches.15 

If we ignore the Dzyaloshinskii interaction, then in the 
case of the energies w:AQ (k,H) and w:&Q (k,H) we have a 
crossover situation on some surface in the k space found 
from the condition 

zone of different magnetically 

k, 

k =pbl  
k = pbl+b2/2 
k = pbi+bs/2 
k = + ( b ~  i- b3)!2 
k = p b  
k = pb2+ b112 
k == p b  + bs/2 
k = p b +  (bi+bs)/2 
k = uh3 
k = pbs+ b1/2 
k - pbs + b / 2  
k = ~bs+(bi+bz)/2 
k = pb,+vbz 
k = pb2+vbs 
k = pb+vbs+bi/2 
k = pbl+vbs 
k = pbl+vbs+b~/2 
k = O  
k = b1/2 
k = ba/2 
k = b3/2 
k = (bi+bz)/2 
k = (bi+bs)/2 
k = (ba+bs)/Z 
k = (bi+bz+b3)/2 

From now on we shall distinguish two cases: a )  
P2  > HFHAFP1 or H >  H, = (H,H,,)'I*; b)  
P2<HFHAF-'.  An allowance for D pushes apart the 
branches of spin waves and gives rise to extremal points for 
each of them along certain directions (see Fig. 4 for case a 
and Fig. 2 for case b ) .  We can identify critical points among 
these extrema by invoking additional considerations (sym- 
metry or model). For example, in case a )  it follows from 
symmetry considerations that for the wave vectors k = pb, 
the group velocity components v, = dw:6Q/dkx and 
vy = dw$&Q/dk vanish, whereas the third component of the 
velocity is v, = dwi&Q/dkz because of the Dzyaloshinskii 
interaction. The remaining points in k space, satisfying Eq. 
( 13), are not critical in the case a ) ,  because in this case the 
values of v, and vy are nonzero. In this sense we are dealing 
with an isolated critical point for H > H,,, . As shown below, 
for H < H,, there are critical points located along a certain 
line in the k space, i.e., there are nonisolated critical points. 
We shall consider separately the isolated and nonisolated 
critical points. 

A.  Isolated criticalpoints k, (0, 0, k, ) = pb,. 
We shall find k,, from 

r2- 

ad,:: (k, H )  
- 

c k,c ad;a,(k,~) --- sin -,) 
9 

= O .  (14) 
d k Z  - 9713 

ordered phases. 

re r2~r2 

u , . , ~ z ; % ,  

- + -  

- + -  

- 
- + + -  

- 

- + -  

Near this critical point we can represent w:,isQ in the 
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form 

( + I 2  
a s r ae  (k, ~ ) = o ~ ( * ' ~  + (yls-~13) '/rn(*)+ xL2/my), (15) 

where x: = x; + 4, xi = 1/2kiai, wA* ' = (kozH), 
713 = Y ~ ~ ( ~ o z  1, 

We can readily see from Eq. ( 16) that m, = m' * 'w,' * ' is a 
component of the effective mass tensor proportional to the 
ratio D J  -', whereas the components m, and myy are inde- 
pendent of the parameter D. 

The correction to the density of states Sg(w) due to a 
dynamic critical point, resulting from the interaction 
between exchange and acoustic branches of spin waves, is 
described by the expression 

We can readily see that if w =:ao, we obtain the usual square- 
root singularities. Then, the magnitude of the correction 
Sg(w) is proportional to the small parameter (DJ-')'". 

B. Nonisolated dynamic criticalpoints. If H < H,, Eq. 
(13) is satisfied for the components k,  and ky lying along a 
certain line in the k, = const plane. We shall be interested in 
the value k, = 0 so that in this case we have dw:,:d/dk, = 0. 
The positions of the dynamic critical points on the k, = 0 
plane are found from the equation 

We shall now consider the most interesting situation 
when H 5 H,,, . In this case a line of dynamic critical points is 
close to a circle of radius 

xO,= (1-PZHAFHF-') I b .  

In this region we can represent by 
( * ) Z  (*I2 o ,,,, (k, H) =oo + ( ' / ,~ . , ' -x , ,~)~/K~) -t~lalK(*), (18) 

where 

(E,'") -'=iHF3HHz2/46P21iAF2D, (IE'*))-'='/ ':~~AF~~". ( 19) 

It is clear from Eq. ( 18) that a distinguishing feature of 
the case under discussion is that near the line of dynamic 
critical points there is a symmetric critical point k = 0. A 
similar situation in which there are close critical points is 
considered in Ref. 20. An analysis of the density of states of 
frequencies of spin waves described by Eq. ( 19) should be 
carried out as a function of the relationship between the pa- 
rameterswA*', x,,, m i * ' ,  and m ' * ' :  

1 ( 0 2 - o b + ) 2  - y  /%(+))'I? 6gl+)(o)= -Ai+)n-L arccos -- -- "('A 

2 ((,,?-0(+")'12 
7 

0 

where w' is a certain characteristic energy of the order of 
u; - '; 

The constant-energy surfaces corresponding to each of 
these cases are shown in Fig. 6. 

There are also dynamic critical points due to a change in 
the magnetic field, which are present also in two-sublattice 
magnetic  material^.^ They appear because at some points in 
k space the energy of spin waves is independent of the field 

FIG. 6. Sections of constant-energy surfaces plotted for 
w:AQ (k) energies near nonisolated critical points. These are 
surfaces of revolution about the vertical axis of curves identified 
as 1-5. The numbers of the curves 1-5 are the same as the 
numbers of the cases of Eq. .: 20). 
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(on the basis of the adopted model). Therefore, a change in 
the magnetic field on the dispersion curves may create addi- 
tional extrema associated with flattening of these curves. It 
should be pointed out that such dynamic critical points ap- 
pear in the case of acoustic and exchange spin waves. We 
shall not analyze them in detail, but their appearance in two- 
magnon absorption due to exchange spin waves will be dis- 
cussed in the next section. 

3. TWO-MAGNON ABSORPTION IN A FOUR-SUBLATTICE 
ANTIFERROMAGNET: THEORY 

The two-magnon absorption in the orthorhombic anti- 
ferromagnet which we investigated is of the magnetic-dipole 
nature. The part of the Hamiltonian describing the interac- 
tion of an external alternating magnetic field H, with the 
spin subsystem of interest to us is of the form 

where h,  = pBgiiHb andf,,,,  (k)  depend on the polariza- 
tion of the field H, of the ground states of a specific magneti- 
cally ordered phase and can be expressed in terms of the 
coefficients of the u-v Bogolyubov transformation of the 
corresponding branches of spin waves. In the case of one 
magnon branch vl = v,  = v the absorption coefficient is 

o 1 h, 1 cth ( A o / 2 T )  
K , ( o ,  fi) = 

2nAc I H ,  1 J d3k 1 f, ( k )  1'6 ( 2 o k V - w )  

We shall now analyze the processes of creation of mag- 
non pairs in the case of different polarizations of an external 
alternating magnetic field, and we shall do this for all the 
relevant magnetically ordered phases. 

r2@ phase 

a)  H, IIx. The structure of the Bogolyubov transforma- 
tion coefficients for this phase is such that the contribution 
of the exchange branches to the two-magnon absorption 
vanishes. 

b) H, lly. In this polarization there are no processes 
that can create magnon pairs. We shall ignore the possibility 
of magnon pair creation as a result of decay of homogeneous 
precession due to three-magnon interactions. 

C )  H, llz. In this polarization the two-magnon absorp- 
tion coefficient is small and proportional to (DJ -I)'. 

rz, phase 

a)  H, IIx. In this case the two-magnon absorption will 
be observed for any two branches of the same symmetry, 
old,' and w:,f,'; the process of absorption by the wig,' 
branch will be discussed in detail later. 

b) H, 1 1  y. In this polarization we can expect creation of 
pairs in branches of different symmetry, for example, two 
exchange branches o:,fQ and wl2fL  

C )  H, llz. In this case the absorption coefficient is small, 
in the same way as in the case of c) of the r,, phase. 

rz phase 

a)  H, IIx. Two-magnon absorption should be exhibited 
by each of the branches w,, and a, , .  

b) H, (ly. There is no two-magnon absorption. 
C )  H,JJz. The intensity of two-magnon absorption is 

low, as in the case of the corresponding cases of collinear and 
spin-flop phases. 

We shall consider in detail the two-magnon absorption 
in the spin-flop phase due to the exchange mode wlG2,  when 
an external oscillatory field H, is oriented along the x axis. 
In this case, we have 

The most important feature is the fact that the amplitude of 
such two-magnon absorption due to exchange branches does 
not contain the small factor DJ -'. We shall substitute the 
above expression in Eq. (22). Bearing in mind &/2T- 10 
and cot(&/2T) - 1, we find that simple transformations 
yield the following expression for the absorption coefficient: 

K,':; ( a ,  H )  = ( 8 g 2 H A , 2 p 2 6 4 / n A ~ ~ , )  J ( a ,  H )  , 

where 
1 I 

We have made the substitution xi = xi  ( i  = 1, 2, 3 ) .  The 
function J ( w ,  H) is tabulated for different frequencies 
throughout the full range of fields corresponding to the exis- 
tence of the spin-flop phase. Figure 7 shows how the two- 
magnon absorption coefficient depends on the magnetic 
field, ignoring the attenuation at a fixed frequency of the 
incident radiation. As expected, the absorption maximum 
appears at frequencies near twice the energy of spin waves 
with k = k, for magnetic fields corresponding to flattening 
of the spin-wave dispersion law wl,f,' (k,H), which is exactly 
where dynamic critical points associated with the depen- 
dence of the spectrum on the magnetic field appear. 

We shall consider two-magnon absorption at radiation 
frequencies w located near the double energy corresponding 
to the range of interaction of spin waves. Contributions to 
this absorption by other parts of the spin-wave spectrum will 
be ignored. Bearing in mind that (k,H) =: w:,Q (k,H) 
applies in this region and also using Eq. (7) ,  we find that 

FIG. 7. Theoretical dependence of the two-magnon absorption coefficient 
of 01G8) exchange magnons on the applied field calculated for different 
radiationfrequencies: 1) 0 = 18cm-I; 2 )  0 = 22cm-'; 3 )  w = 26cm-'. 
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f $22 (k )  is described by 

Substituting this quantity into Eq. (22), we shall consider 
the contributions made to the absorption by the parts of the 
spin-wave spectrum near various dynamic critical points. 

A.  Isolated dynamic critical point. In this case, we find 
that K' * ' is described by the following expression: 

-arccos[p!:'+ ( 1 m(*) 1 A2m"')Ib] 
+v!;) (i-y;;)2)'l>- (T;;)+ 1 m(*) 1 A2@(*)) 

x (i-[y::'+ 1 m(*)IAZm'*)]L)'h). (24) 

Here, 

A 2 0 ) ( * ' = k w 2 / ( i ~ ~ o i * ' 2 ,  KO=gZlj"6LH.,y/2xh~1:0. 

The upper sign corresponds to o > 2wA + ' and the lower to 
w<2w:,-'. 

B. Nonisolated criticalpoints. In the calculation ofK' * ' 
we shall now assume that cos2x, =: 1 - xt. We shall consider 
just two examples (a more detailed analysis of two-magnon 
absorption coefficient can be found in Ref. 19). 

Two-magnon absorption of the w:GQ mode, when 
w > 2wA + ' and A2w' + 'mi + ) <x&, is described by 

Two-magnon absorption in the mode in the case 
when o < 2wh- ' and (mi-  )(A2w' - )>x& is described by 

The upper limit to K (the value of which does not affect 
the frequency dependence of the absorption coefficient 
which we have to find) can be any value of x ,  which is large 
compared with the difference A2w'-', but yet sufficiently 
small so that the expansion of Eq. ( 18) is still valid. 

We shall now note a characteristic feature of the formu- 
las derived above. We can easily see that the contribution 
made to the two-magnon absorption coefficient by parts of 
the spectrum located in the direct vicinity of a dynamic criti- 
cal point contains the parameter (DJ - I )  'I2. This result is to 
be expected because the very appearance of such critical 
points is due to the Dzyaloshinskii interaction. 

4.TWO-MAGNON ABSORPTION BY EXCHANGE BRANCHES 
OF THE SPECTRUM OF CuCI2.2H20: EXPERIMENTS 

The two-magnon absorption spectra were determined 
at 2 K using a submillimeter pulsed spectrometer which we 
employed earlier" to study the exchange modes of an anti- 
ferromagnetic resonance in the same crystal. Our samples 
were prepared from CuC12.2H20 single crystals grown from 
a saturated solution of copper chloride. The dimensions of 
these samples were 3 x 3 x 1.5 mm and their faces were ori- 
ented along crystallographic axes. 

FIG. 8. Spectrogram of the absorption in CuCI,.2H20 at the frequency 
o = 22 cm-'. Here, His the magnetic field signal. The arrows identify the 
absorption maxima at the leading and trailing edge of the field pulse. 

The absorption spectrum was recorded in the range 12- 
15 cm- ' where the weak two-absorption bands were located 
in the wing of a strong antiferromagnetic resonance line of 
the acoustic mode w:&Q, which made the observations diffi- 
cult. It should be pointed out that, according to the theoreti- 
cal calculations, the two-magnon absorption due to dynamic 
critical points appearing in a crossover situation should ap- 
pear precisely in this range of frequencies. At higher fre- 
quencies 25-30 cm-' there should be two-magnon absorp- 
tion bands in an external static field, which could not be 
achieved using our apparatus because of high-voltage break- 
down caused by the current terminals of a pulsed solenoid 
located in a cryostat from which helium was evaporated. It 
was possible to observe two-magnon absorption bands at fre- 
quencies 17-23 cm-'. Calculations of the dispersion laws 
indicated that we could expect both and spin 
waves in this range. However, flattening of the dispersion 
law of w;$i spin waves ensured that the intensity of two- 
magnon absorption in their case was stronger than for mi&) .  
By way of example, Fig. 8 shows a two-magnon absorption 
spectrogram for the incident radiation frequency w = 22 
cm- ' in the presence of an external magnetic field Hlla with 
the H, Jla polarization. The spectrum was scanned with a 
pulsed magnetic field. The observed positions of the absorp- 
tion bands (identified by arrows) were in agreement with 
the theoretical predictions for the two-magnon absorption 
by the pure exchange spin wave w:$& The change in the 
polarization of the radiation weakened the bands, which was 
again in agreement with the theory. It should be stressed 
that, to the best of our knowledge, this was the first observa- 
tion of two-magnon absorption by exchange magnons. The 
large difference between the energies of the acoustic w&: 
and exchange wi&: branches was the reason why the contri- 
bution of the states of acoustic magnons to two-magnon ab- 
sorption by exchange magnons could be ignored. 

The observed absorption spectra were asymmetric rela- 
tive to the leading and trailing edges of the magnetic field 
pulses. For example, the spectrogram in Fig. 8 had absorp- 
tion band maxima, identified by arrows, in fields 70 kOe (at 
the leading edge) and 84 kOe (at the trailing edge). This 
asymmetry could be due to the heating of a sample by a 
magnetic field pulse. Moreover, the investigated absorption 
was of low intensity and the spectra were obtained at the 
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maximum amplification of the spectrometer. Therefore, the 
experimental results could not be used in a quantitative com- 
parison with the theory and should be regarded as purely 
preliminary. Our aim is to record the two-magnon absorp- 
tion spectra using improved apparatus. 

"These linear combinations are the basis functions of the transposition 
representation of the space symmetry groups of magnetically ordered 
phases at k = 0. 
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