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The stability of the resistive state of two-dimensional superconductors against perturbations of 
the plane fluxoid density is studied by linear analysis of the stability of the differential equations 
for the vortex plasma density. The system stability loss current and equilibrium value of the 
vortex plasma density, about which the instability develops, are determined. 

In two-dimensional superconductors a low-tempera- 
ture phase transition is associated with the decay (dissocia- 
tion) of molecules from vortex fluctuation structures with 
overall zero vorticity into individual fluxoids at the Koster- 
litz-Thouless temperature1 T,,. The possibility of detecting 
both the state of the gas of vortex molecules ( T <  T,, ) and 
the plasma arising from the dissociation of the fluxoids 
( T >  T,, ) implies (as this takes place in a type-I1 supercon- 
ductor at a high magnetic field exceeding the lower critical 
field) to an Ohm's-law variation in the voltage across the 
sample.2 In the low-temperature phase this effect can be ne- 
glected, since the density of thermally generated free flux- 
oids is exponentially small.3 To establish the existence of 
molecules from the vortex structures below T2, it is neces- 
sary t;, first disrupt the molecules, and then determine the 
contribution of the vortices released to the resistance to the 
superfluid electron current flow. For sufficiently large trans- 
port currents theory4 predicts a nonohmic behavior of the 
current-voltage characteristics. 

In the present work we investigate the stability of the 
resistive state of two-dimensional superconductors for tem- 
peratures below the phase transition at T,,. To this end a 
system of self-consistent equations is written down which 
determines the value of the vortex plasma density in the re- 
sistive phase of the sample in terms of the value of the trans- 
port current. We estimate the magnitude of the threshold 
current (below which the system is stable) and the back- 
ground value no of the equilibrium density of the vortex plas- 
ma. 

The conductive state of two-dimensional superconduc- 
tors below T,, is metastable; this is connected with the exis- 
tence of a potential barriei equal in magnitude to the forma- 
tion energy of two free plane f lu~oids .~  Proceeding from a 
kinetic treatment of the evolution of Gibbs nuclei (in this 
case a pair from the vortex structures with zero total vorti- 
city) in a first-order phase transition (see Ref. 5), we have 
for the rate of production r of nuclei of the critical dimen- 
sion (that is, in fact, of free fluxoids) 

Here the quantity D plays the role of coefficient of size diffu- 
sion of the nuclei. Following Ref. 6, in which the process of 
fluctuation formation and subsequent growth of vortex rings 
in superfluids is investigated, it is easy to see that in our case, 
when the nuclei represent a pair from the plane vortex struc- 
tures, the coefficient D in Eq. 1 is the vortex diffusion coeffi- 
cient. 

In relation (1) a ( R )  is the equilibrium distribution 
function of the pairs as a function of size R, normalized per 
unit distance between fluxoids forming a pair, and per unit 
area. In a current situation, according to Refs. 1 and 6, it can 
be written in the form (in the non-interacting pair model) 

where a is a coefficient of order unity, 6 is a correlation 
length, Io(x)  is a Bessel function of imaginary argument, 
and E(R)  is the energy of a vortex pair oriented along the 
direction of the velocity us in which the condensate is mov- 
ing, 

E ( R )  = q Z  ln (RlE)-pus+ 2p. (3) 

Here q = (?rfi2ns/2m ) ' I 2  is the effective "charge" of a vor- 
tex (n, is the two-dimensional condensate density, m is the 
electron mass), p = 2mRq2ii-' is its momentum, and /I is 
the energy connected with formation of the vortex core. 

Using Eq. (2)  for the flux r, we get (the integral is done 
by the method of steepest descents) 

where 

a=(2~)'"D~-k(q~lkT)'"I,(~~/kT) csp  ( - q 2 / k T ) ,  

j, = k n ,  /2m{ denotes a pair-breaking current density and j 
is the two-dimensional transport supercurrent density. 

As long as q 2 / k n 4  holds, where the equal sign corre- 
sponds to the transition point, we can use the asymptotic 
expression for I,(x) at large n. We then get for the coeffi- 
cient a a value =: aD{ -4. 

The process of establishing equilibrium in a plasma of 
free vortices, generated by destruction of vortex pairs, is de- 
scribed by the following equations for the densities n+, n- of 
fluxoids of different polarity: 

Here the second term on the right-hand side represents the 
destruction of free vortices by recombination ( y  is the re- 
combination coefficient). This process is associated with the 
generation of a vortex pair with zero total vorticity. Insofar 
as the behavior of a vortex plasma is analogous to the behav- 
ior of a two-dimensional Coulomb gas,' one can calculate 
the recombination rate directly from the recombination di- 
ameter d for vortex collision (in a two-dimensional situa- 
tion) so that 

1160 Sov. Phys. JETP 66 (6), December 1987 0038-5646/87/121160-03$04.00 @ 1988 American Institute of Physics 1160 



where v is the relative speed of the incident vortices of oppo- 
site polarities. 

An important difference in relation (6)  compared to 
the expression for y for the Coulomb gas is the lack in (6) of 
an averaging process over a Maxwellian distribution of 
speeds v. This fact is intimately connected with the zero mass 
of the vortex structure. In ideal superconductors, where the 
fluxoids are not pinned by inhomogeneities in the sample, a 
vortex flow rate is established in the direction of the Lorentz 
force: 

cD0  "* = *-- [jn]. 
crl 

Here Q0 is the magnetic flux quantum, n is the unit vector 
along the direction of a vortex with positive vorticity, 17 is the 
coefficient of viscosity of a vortex taking its depth into ac- 
count, and c is the speed of light. 

Taking d = 2Rk (R, is the critical pair radius, at which 
a pair dissociates1' which according to equation (3 )  can be 
evaluated as Rk = {( jc/j), we get 

The physical prerequisite for the onset of instability is 
hidden in the sensitivity of I' to the density n = n+ + n-. 
With an increase in n, because of the presence of the normal 
core, the actual condensate density n, = n,J(n) 
[n,, = n, (n = 0); f (n)  is a function characterizing the vari- 
ation of n, with nI2' decreases, as does D, and the effective 
vortex charge (q2 -n, -I, D-n, - ', ( -n, -' ). Therefore 
the variation in the rate of generation of vortex fluctuations 
because of change in the free vortex density ST/Sn is oppo- 
site in sign to the variation in the rate of fluxoid annihilation 
due to recombination. Thus the transition of a film specimen 
from the resistive to the normal state will be determined by 
the level of the perturbation n in the film. Let us suppose that 
due to internal or external factors a density n arises. This 
leads to a reduction of n,, that is, the initial perturbations of 
the vortex plasma density give rise to a free-vortex produc- 
tion rate different from the initial value. For certain currents 
this can avalanche and lead to discontinuities in the current- 
voltage curves for two-dimensional superconductors. 

The stability of the resistive state of a thin film for an 
initial small perturbation of the density n has been investi- 
gated by linear analysis of the stability of Eqs. (5).3' The 
characteristic equation for our system can be written in the 
form 

(io+yn,-2bI?/fin) 6n=0. 

Here n, is the background value of the equilibrium vortex 
plasma density, satisfying the equation 

The magnitude of the threshold current jk corresponding to 
a change in sign of the imaginary part of the frequency obeys 
the condition yn, = 2ST/Sn, from which (with use of Eq. 
(4) to determine r) it follows that, on the other hand, no is 
the solution of the equation 

The index on q2 and on j, signifies these are the magnitudes 
fern+ = n -  =O.  

With an increase in the vortex plasma density of n -c -' 
the function f(n), characterizing the variation in n, due to 
the presence of the normal framework, must go to zero. In 
the absence of vortices f(n)  must equal unity. A good ap- 
proximation of this behavior is given by the dependence 
f(n) = 1 - ( ~ n g ~ ) ~ .  We note that for small fluxoid densi- 
ties at large values of the Ginzburg-Landau parameter x, 
when the vortices are clearly defined, the exponent #I can be 
taken as unity. However, as calculation has shown, the theo- 
retical value of the density no on which instability will arise is 
such as to show that the approximation of well-localized 
vortices is not justified. It is important that in strong mag- 
netic fields the resistivity of a superconducting sample is not 
directly proportional to the density of the vortex lattice, but 
grows significantly faster as the field increases.' Taking this 
fact into account, we assumep < 1. Then from the definition 
off it follows that 

Substituting these relations in equations (8)  and (9),  we 
find that an instability in the resistive state of two-dimen- 
sional superconductors arises for current densities 

where the magnitude off is given by solution of the equation 

In the region of temperatures near absolute zero, we 
have fz 1, which we can write it in the form 1 - 6, where S is 
the small deviation off from unity. Expanding the left-hand 
side of equation ( 11 ) in S, we get S~4kT/pq$ .  Using this 
result, we find that for T = 0 the threshold current in a two- 
dimensional superconductor is e times less than j,,. This 
value of j corresponds to the boundary beyond which for 
T = 0 we find an avalanche increase in free fluxoids. How- 
ever, at low temperatures the basic process governing the 
production of free fluxoids must be not the fluctuation 
growth of nuclei (vortex-antivortex pairs) to the critical 
size, but sub-barrier quantum-mechanical tunneling to the 
state with two free fluxoids of opposite polarity. Taking ac- 
count of this fact would lower the theoretical value of the 
threshold current j, for T- 0. 

At temperatures near the phase transition temperature 
T2, we can assume qO2/kT = 4. In this case equation ( 11) is 
exactly solvable. For 0 = 1, assuming a = 1, we get 
f = 0.72, For p = 4, f = 0.64. For these values of f, 
j, - 10-'j,,. The background value of the vortex plasma 
density for which the development of small perturbations 
will take place is no- 10-I Since the coefficient a in 
formula ( 1 1 ) is inside the logarithm, the resulting f will be 
relatively insensitive to it. 

We note that in our calculations we take a uniform dis- 
tribution of transport current across the film. This is possible 
only for a superconducting specimen in the form of a cylin- 
drical film. The choice of a convenient sample geometry also 
excludes the influence of edge effects. 
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"The critical size R ,  satisfies the condition 6 E  / 6 R  1. = Rk = 0 
''The resistance of two-dimensional superconductors is determined by the 

unpaired fluxoids; therefore the contribution to n, of the vortices partici- 
pating in a dissipative response to a constant electrical current is taken 
out. 

3'Calculation has shown that instability arises first for a uniform perturba- 
tion of the vortex plasma density; therefore, in the initial equations (4) 
the gradient terms (the terms describing vortex diffusion) are dropped 
for simplicity. The Maxwell equations, which would supplement rela- 
tions (4) if a local magnetic induction were present, are also omitted. 
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