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We present a theoretical investigation of the I- Vcharacteristics of thin samples of metal for large 
values of current I ,  in which the characteristic radius of curvature of an electron orbit in the 
intrinsic magnetic field of the current is smaller than the sample thickness. We establish that in 
compensated metals the differential resistance increases as the current goes up, independent of 
the sample shape: in films, Vis proportional to the square of the current, while for wires Vm I 3. We 
show that two spatial regions appear in the sample, whose conductivities differ significantly. In 
the central region the current is transported by electrons which are "trapped," with a 
conductivity on the order of the bulk metallic conductivity a,. Because of this, a phenomenon can 
occur in the metal which is analogous to the pinch effect: the current density in the central part of 
the conductor significantly exceeds the density on the periphery. This is due principally to the fact 
that the pinch effect in electrically neutral metallic media is not related to any redistribution of the 
electric charge density. We study the characteristics of the pinch-effect for metallic films and 
wires. 

1. INTRODUCTION 

An electric current flowing in a metal gives rise to a 
magnetic field, which is associated with the electron dynam- 
ics and consequently with the sample conductivity. The re- 
sulting feedback serves as a primary source of nonlinear elec- 
tromagnetic effects in metals at low temperatures. In the 
static situation, this magnetodynamic nonlinear mechanism 
causes the current-voltage ( I -  V) characteristics of a metal to 
deviate from Ohm's law. The nonlinearity appears most 
strikingly in samples with diffuse boundaries under classical 
size-effect conditions, when at least one of the dimensions of 
the sample transverse to the current is much smaller than the 
electron mean free path I .  

A theoretical analysis of magnetodynamic nonlinearity 
in the static conductivity was first presented in Refs. 1 ,2  for 
the case of a thin metallic film. In Refs. 1 ,2  it was noted that 
a principal role in the development of these nonlinear effects 
is played by a group of "trapped" electrons. This group of 

_electrons appears in the sample because of sign alternation in 
the distribution of the intrinsic magnetic field of the currents 
transverse to the film. The trapped electrons bend across the 
plane where the magnetic field changes sign, and do not col- 
lide with the diffuse boundaries of the film; in effect, these 
electrons interact with the electric field over their entire 
mean free path. For values of the total current I small 
enough to ensure that the inequality 

holds, the relative number of trapped electrons is of order 
( d  /R ) ' I 2 .  Here R is a characteristic radius of curvature of 
the electron trajectory in the current's intrinsic magnetic 
field, H = ~ ~ T I / c D  is the value of the magnetic field at the 
film boundary, e and p ,  are the charge and Fermi momen- 
tum, c is the velocity of light, and d and D are the thickness 
and width of the film. The conductivity of the trapped elec- 
trons 

grows with increasing current, and becomes important in the 
region 

(a, is the static conductivity of a bulk sample). For this 
reason, the linear part of the I- Vcharacteristic, which holds 
when 

d<l< (Rd)'",  

becomes a square root in the interval 

In metallic wires, because of the finiteness of the sample 
in two dimensions, the relative number of trapped electrons 
is proportional to d /R N I  and the nonlinearity of the I- V 
characteristics is manifest in the form of effective stabiliza- 
tion of the ~ o l t a g e . ~  We note that in contrast to other nonlin- 
ear mechanisms, the magnetodynamic nonlinearity leads to 
a decrease in the resistivity of metallic samples in the low- 
current region ( 1.1 ). This effect has been observed experi- 
mentally in zinc4 and gallium,' and was investigated in detail 
for t~ngsten.~. '  In Refs. 6, 7 it was pointed out that as the 
ratio d / D  increases, the maximum change (up to 50%) in 
the differential resistivity is observed when the sample's 
shape approximates a wire. 

The magnetodynamic nonlinearity leads to various 
physical consequences even in the weak-current region 
( 1.1 ). For example, in Refs. 8,9, a decreasing portion of the 
I- V curve was predicted theoretically; the I -  V curve itself 
can have both an N-shape and an S-shape. It is clearly inter- 
esting to study these nonlinear processes at larger current 
values, where the inequality ( 1.1 ) reverses, i.e., 

In this situation, an increase in the sample resistivity is ob- 
served experimentally as the current goes up, accompanied 
by oscillations in the I -V and by time-dependent 
voltage oscillations, whose spectral composition is very sen- 
sitive to the value of 1.7 

Let us note two circumstances which play an extremely 
important role in the development of nonlinearity under 
conditions (1.6). We are discussing compensated metals 
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here, in which the Hall effect has no influence on the phe- 
nomenon discussed above. The first circumstance concerns 
the conductivity of "Larmor" electrons, moving in the 
strong magnetic field of the current through a near-circular 
orbit whose radius is on the order of R. It is well-known that 
a magnetoresistive effect occurs in a strong uniform magnet- 
ic.field since the conductivity of the Larmor electrons is pro- 
portional to the parameter (R /1)2. The nonzero value of the 
latter is related to electron scattering, which leads to diffu- 
sion of the orbit centers in an electric field. The strong gradi- 
ent in the intrinsic magnetic field of the current causes an 
additional motion of the orbit centers." Therefore, there 
must be "gradient" terms in the Larmor electron conductiv- 
ity, which take into account drift of the orbits in the inhomo- 
geneous magnetic field. The magnitude of these gradient 
terms is of order a,(R /A)2, where A is the spatial scale of 
variation of the current's intrinsic magnetic field. Thus, 
there appears a competition between two conductivity 
mechanisms for the Larmor electrons, one of which is relat- 
ed to diffusion of the orbit centers due to collisions of elec- 
trons with scatterers, while the other is related to drift be- 
cause of gradients in the magnetic field produced by the 
current. 

The second circumstance which must be taken into ac- 
count is the fact that under conditions ( 1.6), despite the high 
current, the trapped electrons do not disappear. It is clear 
that for any arbitrarily large value of I there exists a small 
region near the center of the sample where the magnetic field 
is quite weak. As the current increases, the size of this region 
decreases; however, its conductivity, which is determined by 
the trapped electrons, remains constant. From Eq. ( 1.2) it is 
clear that for R -d, the conductivity ofthe trapped electrons 
is of order a,,. This estimate for the conductivity of the cen- 
tral region of the sample remains valid for R <d.  At the same 
time, the conductivity of the peripheral region, which is de- 
termined by the Larmor electrons, is much smaller than a, 
and proportional to I - 2 .  In other words, a phenomenon oc- 
curs which is analogous to the pinch effect in gaseous dis- 
charge plasmas" and semiconductors'2: the current density 
is found to be highest at the sample center. 

This pinch effect in metals possesses a number of inter- 
esting features. First of all, we note that the requirement of 
electrical neutrality, which is specific to metals, ensures that 
the pinch effect is not accompanied by a redistribution of the 
electron density. A question which requires a special investi- 
gation is the following: in what region does the basic current 
flow-in a filamentary region with high conductivity, whose 
size decreases with increasing current, or in the peripheral 
region whose size increases while its conductivity falls? 

In this paper, we will study the spatial distribution of 
the current density and the intrinsic magnetic field in thin 
metallic films and wires under conditions ( 1.6), and also 
calculate their I- V characteristics. We present an interpola- 
tion formula for the I- Vcharacteristics, which is valid both 
for small ( 1.1 ) and large ( 1.6) values of current. We show 
that in films the transport is basically due to trapped elec- 
trons concentrated near the middle of the sample. In wires, 
the principal concentration to the current is given by the 
Larmor electrons. However, the distribution of the intrinsic 
magnetic field in a wire has a form characteristic of the pinch 
effect: as the distance from the axis increases, a sharp rise in 
the field is observed, followed by a decrease. In both films 

and wires, in the region ( 1.6) the resistivity of the sample 
increases as the current I increases. 

2. STATEMENT OF THE PROBLEM: ELECTRON DYNAMICS 
AND CURRENT DENSITY 

Let us discuss a film of compensated metal, along which 
flows a current I. The y-axis we direct along the current 
while the x-axis is perpendicular to the film edge; we choose 
the plane x = 0 at the film's center. The current's self-mag- 
netic field H ( x )  is parallel to the z-axis. The dimensions of 
the sample in the direction D are assumed to be much larger 
than either its thickness d or the elctron mean free path I. 

We will present an analysis of the current density distri- 
bution in the film and the resulting magnetic field for the 
case of an isotropic metal: the electron and hole Fermi sur- 
faces we will take to be identical spheres. The masses and 
mean free paths of electrons and holes we also take to be the 
same. In this situation there is no Hall effect in the metal, i.e., 
the off-diagonal components of the conductivity tensor are 
identically zero. We note that for an arbitrary electron dis- 
persion law, in general there will appear off-diagonal compo- 
nents of the conductivity which leads to complications in the 
calculation but which do not influence the final result. 

For the geometry chosen here, the magnetostatic equa- 
tion has the form 

wherej(x) is the current density; the prime denotes a deriva- 
tive with respect to the coordinate x. The boundary condi- 
tions to use with Eq. (2.1 ) are the following: 

From the Maxwell equation curl E = 0 it follows that the 
electric field Ey = E within the sample is spatially homo- 
geneous. 

We now discuss the dynamics of charge carriers in a 
strong inhomogeneous magnetic field H(x ) .  Because within 
the model we have chosen the electron and hole trajectories 
differ only in the sign of their radii of curvature, we will 
discuss only electron dynamics; it should be kept in mind 
that the contributions of electrons and holes to the diagonal 
components of the conductivity add together while those to 
the nondiagonal components compensate each other. 

Let us pick a gauge for the vector potential of the form 
X 

A = { o ;  A ( x ) ;  0 ) ,  A ( x ) =  J & ' H ( X ' ) .  (2.3) 
0 

Then inequality ( 1.6), which determines the maximum val- 
ue of the field, can be rewritten in the form 

Integrals of the electron motion in the field H ( x )  give the 
total energy, which equals the Fermi energy E ,  =pF2/.2m, 
as well as the generalized momenta p, =mu,  and 
py = mu, - eA(x)/c ( m  is the electron mass and v, and vy 
the components of its velocity). The component u, equals 

From the condition that the quantity under the radical (2.5) 
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FIG. 1. Coordinate system; trajectories of trapped ( l ) ,  Larmor (2) ,  and 
surface ( 3 )  electrons in a metal film. 

be nonnegative, we find the attainable values of the electron 
integrals of motion: 

In Fig. 2 we illustrate the region (2.6); the coordinates used 
arep, ,x. From this figure it is clear that the conduction elec- 
trons in the sample can be divided into three groups accord- 
ing to the characteristic form of their trajectories: 

a) Trapped electrons. These move along trajectories of 
type 1, as illustrated in Fig. 1. The half-period of their mo- 
tion along the x-axis is 

=a 
dx' ~ = j  

Z l  I v x  (x') I 
The turning points x ,  <x, are roots of the equation 

py- (x) = p,, . From Fig. 2 it is clear that the trapped elec- 
trons have momentap, that lie in the interval 

This group of electrons is present only in the region 1x1 <xo, 
where x, is the positive root of the equation 

b) Larmor electrons. These have trajectories of type 2 in 
Fig. 1. The half-period of their motion is determined by Eq. 
(2.7); however, the turning points x, <x, are roots of the 
equations 

The Larmor electrons occupy the following region: 

FIG. 2. Phase space (p , ,x)  and regions where various groups of electrons 
exist: I-trapped electrons, 2-Larmor electrons, 3-surface electrons. 

c)Surface electrons. Their characteristic trajectories are 
illustrated in Fig. 2 above the number 3. The region in p, 
they occupy is 

In the case we are investigating, i.e., diffuse reflection, 
the contribution of surface electrons to the current is found 
to be small for R /Z<  1. Therefore, we will not include them 
in the calculation of the current density which follows. 

The current densities for the corresponding groups of 
particles are rather simple to calculate with the help of stan- 
dard methods of solving the kinetic equation. This equation 
is linearized with respect to the electric field, while the entire 
nonlinearity is due to the magnetic field H ( x )  in the Lorentz 
force. Leaving aside the calculations, we present the equa- 
tion for the current density of trapped and Larmor electrons: 

{ idx' vv (x') (x') sh (vz (x; x') ) 
5, I v.(xf) I 

(2.12) 
Here Y = vF/Z is the collision frequency, and O,, 1 is the 
region in phase space occupied by trapped (2.8) or Larmor 
(2.10) electrons, E, = E, - p5/2m = pf/2m, 

C 

dx' 
,r(x1;x)= i 

X l  I v+(xf) I ' 
In Eq. (2.12) we retain the dependence of the electric field E 
on the coordinate x ,  so that calculation of the current density 
will be useful when we also investigate the dynamic situa- 
tion. 

If in the Larmor electron current denisty (2.12) the 
small parameter YT- R /Zg 1 is set equal to zero, and if we 
neglect the x-dependence of the electric and magnetic fields, 
then the quantity j ,  (x)  reduces to zero. Expanding (2.12) 
in powers of YT and including the x-dependence of the fields 
shows that the Larmor electron current under condition 
(2.4) can be cast in the form of a sum of two terms: 

Expression (2.13) was obtained under the assumption of 
weak field gradients, in which the characteristic scales of 
variation of E and Hare  small compared to R (x )  : 

Equation (2.13) reflects the competition of the two conduc- 
tivity mechanisms for Larmor electrons described in the In- 
troduction. The first term in (2.13) corresponds to the mag- 
netoresistance effect and is caused by the diffusion of the 
centers of electron orbits in the crossed electric and magnetic 
fields. The second gradient term is related to drift of the 
electron orbits due to the field gradients. 
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The asymptotic expansion of the current density of the conductivity of trapped electrons does not contain a small 
trapped electrons begins with a term which in the case of parameter, and its magnitude is on the order of a,: 
strong currents ( 1 . 6 )  depends neither on the quantity 
VT-R /I4 1 nor on the size of the field gradients. Thus, in j,=ooE. ( 2 . 15 )  

contrast to the weak-field case ( 1 . 1  ), the contribution to the 
p,-integral in (2 .12)  is determined by electrons at arbitrary Thus, the asymptotic behavior of the current density in 
angles with respect to the plane x  = 0. For this reason, the the case of ( 1 . 6 )  has the form 

j ( x )  = E (x) ( x )  2  
R 2 ( x ) f i ( E ) "  , X ~ < ~ X ~ < ~ I ~ .  

L2 5 E H  

We note that in the static situation where the electric field is 3. SOLUTION TOTHE MAGNETOSTATIC EQUATION: I - V  

homogeneous, Eq. ( 2 . 9 )  for the boundary x,  of the region CHARACTERlSTlCSOFA FILM 

wherethe trapped electrons are located can be replaced by a 
simpler equation. Actually, according to ( 2 . 16 )  the current 
density in the region 1x1 < x ,  does not depend on position. 
Consequently, the magnetic field in this region varies linear- 
ly with x,  while the vector potential satisfies 
A ( x )  = H ( x ) x / 2 .  As a result, ( 2 . 9 )  can be written in the 
form 

In the static situation the distribution of magnetic field 
in the film is found by solving the Maxwell equation (2.1 ) 
with the current density ( 2 . 1 6 ) ,  ( 2 . 17 )  and the boundary 
conditions ( 2 . 2 ) .  Thus, from the Maxwell equation curl 
E = 0  it follows that the electric field E, is homogeneous, 
and the derivatives E ' and E " in ( 2 . 16 )  must be set equal to 

The general solution (3.1 ) to this second-order nonlinear 
differential equation contains two unknown constants. In 
addition, it is necessary to determine the value of the electric 
field which enters into ( 3 . 10 )  as a parameter. There are only 
the two boundary conditions ( 2 . 2 )  available to find these 
three unknown quantities. The role of the third condition is 
played by requirement ( 2 . 14 )  that the magnetic field distri- 
bution be smooth in the regionx, < 1x1 < d / 2 ,  which is neces- 
sary in order to replace the integral conductivity operator 
( 2 . 12 )  by the differential operator ( 2 . 13 ) .  

Equation ( 3 . 1 )  can be solved by the method of succes- 
sive approximations. In the zeroth-order approximation the 
magnetic field in the region Ix 1 > x,  is homogeneous, and all 
the variation in H ( x )  comes from the central part of the film 
1x1 <xo:  

This solution exhibits the pinch effect: the current density 
for 1x1 > x,  equals zero, and all the current I is transported 
by the trapped electrons, which are present in the region 
1x1 < x o  (Fig. 3 ) .  Including the magnetoresistive effect gives 
rise to small corrections of order R d  / I  in the magnetic field 
and current distribution, while the gradient terms in (3.1 ) 
are manifested in higher-order terms in the expansion. We 
note that the corrected current A1 transported by Larmor 

I 
-- 

electrons in the region x,  < 1x1 < d / 2  does not depend on I: 

The I- Vcharacteristic of the metallic film in the strong cur- 
rent region is parabolic. From ( 3 . 3 )  it follows that 

where L is the sample length and V the voltage. 
Let us recall that we have obtained Eqs. ( 3 . 2 )  for the 

current's magnetic field distribution and ( 3 . 5 )  for the I-V 
characteristic using an isotropic model, in which the off- 
diagonal components of the conductivity tensor are identi- 
cally equal to zero. Let us discuss what possible influence the 
Hall effect, which occurs for arbitrary dispersion laws for 
the charge carriers, will have on the phenomena discussed 
here. The presence of a Hall component to the conductivity 

FIG. 3. Schematic form of the magnetic field distribution (dashed curve) 
and current density (continuous curve) in a film. 
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leads to the appearance of a normal component to the elec- 
tric field Ex,  and also to renormalization of the diagonal 
conductivity ayy due to the quasineutrality condition jx = 0 

We note that the presence of Ex does not change our conclu- 
sion that the electric field Ey is homogeneous, becuase 
aEx/ily = 0. In the current filament region 1x1 <x,, the con- 
ductivity renormalization plays no role. Here the quantities 
uyy and uxx are determined by the trapped particles, and, as 
we showed above, are of order u,,; the nondiagonal compo- 
nents uxy and ayx in a compensated metal are always much 
smaller than uO.l3 On the periphery x, < 1x1 < d /2, where the 
conductivity is due to Larmor particles, the magnetic field 
(3.2) is large (R g d  41) and homogeneous. In such a situa- 
tion, it is well-knownI3 that the off-diagonal conductivity 
components uxy and uYx also cannot exceed uyy and ax, : 

Thus, in the worst case the renormalization (3.6) changes 
the numerical coefficient in front of the R '/I ' term in the 
current (2.16). This variation in the current on the periph- 
ery obviously is not dependent on the homogeneity of the 
magnetic field (3.2) in the region x, < 1x1 < d /2 and will not 
affect the character of the pinch effect. Thus, the Hall effect 
in a compensated metal with an anisotropic current-carrier 
dispersion law is not a controlling factor in the phenomena 
we discuss here. 

To conclude this section, we present an interpolation 
formula for the I- V characteristics of a metal film, which is 
valid both for small ( 1.1 ) and for large ( 1.6) currents: 

For small currents 14i Ohm's law holds. Here the conduc- 
tivity is caused by the so-called "drift" electrons, which 
move in almost straight lines and scatter diffusively off the 
film boundaries. Their conductivity is described by the well- 
known Fuchs equation.14 As the current continues to in- 
crease, an ever-larger number of electrons are trapped by the 
intrinsic magnetic field H(x) .  In the region i, 414 i2  or 
d 4  (Rd) 'I2 41, the distance transversed by the trapped elec- 
trons significantly exceeds the path (Rd) 'I2 of the transit 
electrons. Therefore, the conductivity of the film is entirely 
determined by the trapped electrons, and the I- Vcharacter- 
istics (3.8) originate from the square-root portion V /  
u = ( I / i l )  'I2. Starting with currents I = i,, the radius of 
curvature of the electron trajectories become smaller than 
the film thickness. Thus, the transit electrons disappear, and 
a group of Larmor electrons appear in the sample. Because 
the trapped electron current is pinched the I- V characteris- 
tics coincide with the parabola (3.5). 

4. MAGNETOSTATICS OF A METALLIC WIRE 

When condition ( 1.6) is fulfilled in a metallic wire with 
diameter d41, two distinct spatial regions form, just as in a 
thin film. Near the axis of the wire, the conductivity is deter- 
mined by a group of trapped electrons, while on the periph- 
ery it is determined by Larmor electrons. The calculations 
for the asymptotic behavior of the current density are malo- 
gous to the procedure described in Sec. 2. In a cylindrical 
coordinate system (r, p, z)  with thez-axis along the wire axis 
the current density j, ( r )  = j ( r )  is described by the expres- 
sions 

j ( r  = a R r R2 ( r )  - 2 H' 2 H  E " 
lz  + - J [$ + --(> - 5)- (%) 1, ro<r<d/2, 

I 

where remark that these terms clearly depend on r, and reduce to 

ro=2R(ro ) ,  Hr=dH/dr ,  H- -Hq( r ) ,  E--E, (r ) .  zero as r+  CC. Passing to this limit implies that the conduc- 
tivity in a sample having the shape of a tube with large radius 

The current density of the Larmor electrons (4.1 ) in the p > I with a wall thickness d 4 1 coincides with the conductiv- 
wire contains additional terms compared with the analogous ity of a film. 
expression (2.16) for the film, terms caused by the curvature Substituting the current density (4.1) into the Maxwell 
of the lines of force of the current's self-magnetic field. We equation leads to a nonlinear magnetostatic equation 

The boundary conditions for Eq. (4.2) have the form E = -  - - 
5n 72 ( p,cz ) 13. (4.5) 

H (0) =0, H ( d / 2 )  =4l /cd .  (4.3) 
The magnetic field distribution (4.4) has a form characteris- 

The solution to the problem (4.21, (4.3) is given by the ex- tic of the pinch effect in a gas discharge plasma: a rapid rise 
pressions of the field in the region r < r, is followed by a decrease for 

r<ro-R ( R l d )  '" r, < r < d /2 (see Fig. 4 ) .  However, the current I, following 
(4.4) in the central region r <ro is small compared to the total 

t current I when the parameter R /d< 1. Thus, the magnitude 
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FIG. 4. Schematic form of the magnetic field distribution (dashed curve) 
and current density (continuous curve) in a wire. 

of the current I, does not depend on the total current I: 

Let us recall that in the metallic film, thanks to the pinch 
effect, the total current I is basically concentrated in the 
central portion, while at the periphery a small current AI 
flows which does not depend on the magnitude of I .  In the 
case of the wire the opposite holds: in its central region a 
small current I, flows which does not depend on I,  while the 
main part of the current I is carried by the Larmor elecrons 
at the periphery. Thus, in contrast to the film, the principal 
terms in the Larmor electron current density (4.1 ) are the 
gradient terms. 

Hence, the I-V characteristic of a wire in the high-cur- 
rent region is entirely determined by the gradient terms in 
the conductivity of Larmor electrons. From (4.5) it follows 
that 

We introduce an interpolation formula for the I- V charac- 
teristic which is valid both for small and for large currents: 

In a metal wire, the linear part of the I- Vcharacteristic shifts 
to the saturated portion for currents I >  I , ,  at which the 
characteristic radius of curvature of the electron trajectories 
becomes smaller than the mean free path I. In the region 
I >  I, Larmor electrons appear in the sample with orbital 
radii R < d  and the I-V characteristic (4.8) reduces to the 
cubic portion (4.7). 

5. CONCLUSION 

The pinch-effect phenomena in metals which we have 
investigated in this paper is a consequence only of the mag- 
netodynamic nonlinearity mechanism. As far as we know, 
this is the first example of a pinch effect in an electrically- 
neutral medium which does not result from redistribution of 
the charge carrier density. 

1. The results obtained in the previous sections for the 
I- Vcharacteristic of thin films and wires agree qualitatively 
with the experimental data of Refs. 5-7. In these experi- 
ments, an increase in the differential resistivity of the sample 
is observed in the current region (1.6); the dependence of 
d V/dI on current is linear for the film and becomes approxi- 
mately quadratic as the parameter d / D  increases. We note 
that the growth in resistivity begins at a fairly small value of 
current I 2  I,, where the nonlinearity is connected only with 

the magnetodynamic mechanism. It is not difficult to verify 
that under the experimental conditions of Refs. 5-7, the cur- 
rent I, equals 10 amperes in order of magnitude. Thus, the 
Joule heating per unit area of the sample surface comes to 
0.05 W/cm2, and can easily be removed in liquid helium. 

2. Let us turn our attention to a number of circum- 
stances which play an important role in the creation of the 
nonlinear I- V characteristic, and which determine the cur- 
rent distribution in the metal. First of all, consider the char- 
acter of electron reflection off the sample surface: in this 
paper, we have discussed the most interesting case of diffuse 
scattering. In the weak current region ( 1.1 ) an increase in 
the degree of specular reflection off the sample boundary 
results in an increase in the "transit" electron conductivity. 
For this reason, the nonlinearity, which is connected with 
the set of trapped electrons, appears at larger values of the 
current.15 Thus, an increase in the specular-reflection pa- 
rameter leads to constriction of the interval i l  < I < i, (for a 
wire, I, < I  < I,), over which the resistivity decreases with an 
increase in the current. 

In the high-current region ( 1.6), as the degree of specu- 
lar reflection increases the surface electrons play an even 
greater role (for diffuse scattering we neglected these elec- 
trons; see Sec. 2) .  

In the case of ideally specular reflection, the surface 
electrons lead to a significant redistribution of the current in 
the sample, and are found to influence the form of the I-V 
characteristic. In metallic films the surface electrons are 
concentrated in a layer of thickness 2R near its boundary, 
and the conductivity in this region is on the order of u,. For 
this reason, when the reflection is specular the picture of the 
pinch effect in the film becomes extremely peculiar. The cur- 
rent flows essentially in three regions which are considerably 
separated from one another: in the central region, it is due to 
trapped electrons, while near the boundaries it is due to the 
surface electrons. Thus the I-V characteristic remains para- 
bolic: Vw12. 

In the wire, the role of the surface electrons is found to 
be still more important: namely, they carry most of the cur- 
rent for the case of specular reflection. The magnitude of this 
current is of order u&.2?rdR, which exceeds the Larmor 
electron current o&(R /d) 2d by a factor d /R % 1. For this 
reason the increase in specular reflection at the boundary of 
a wire indicates that the I-V characteristic changes over 
from cubic Vw I to parabolic Vw I ,. 

3. In the weak-current region ( 1.1 ), the current density 
distribution in the sample and the form of the I- Vcharacter- 
istic do not depend on whether or not the metal is compen- 
sated. For strong currents (1.6), however, the question of 
compensation is important. In this paper, we have studied 
the case of a compensated metal; in an uncompensated metal 
the condition that the current normal to the boundary equal 
zero leads to a significant renormalization of the longitudi- 
nal conductivity uy,, (for the wire, a,, ). 

As a result, in the region ( 1.6) the effective conductiv- 
ity is on the order of a,, and the I- Vcharacteristic is linear in 
lowest approximation. Thus, in an uncompensated metal, 
for I <  i,, I, the I-V characteristic is linear, while for i,, 
I, < I <  i,, I, a decrease in the sample resistivity is observed; 
for I >  i,, I, the I- Vcharacteristic again goes over to a linear 
portion. 

4. In this paper we have investigated the pinch effect in 
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thin metallic samples with d 4 I. In a bulk compensated met- 
al the magnetodynamic nonlinearity arises only in the 
strong-current region for R < I(d.  Here the conductivity of 
the Larmor electrons is determined by the magnetoresistive 
effect: a = a$ 2/1  '. As in thin films, the bulk current distri- 
bution is quite inhomogeneous: in the central part of the 
sample, where the intrinsic magnetic field is small, and also 
near the sample boundary (for near-specular reflection) the 
current density is large. However, it is clear that for suffi- 
ciently large sample dimensions the role of these regions of 
increased conductivity becomes insignificant, and the I-V 
characteristic is entirely determined by the group of Larmor 
electrons. Independent of the sample shape, the I- V charac- 
teristic has the form of a cubic parabola VmZ3. 

5. The principal means of affecting the shape of the non- 
linear I- V characteristic and the current distribution is an 
external magnetic field. For example, if an external field ho is 
parallel to the self-magnetic field of the current in the film, 
then ho will shift the plane where the total magnetic field 
changes sign. As a result, it becomes possible to shift the 
current filament within the sample. 

6. Superposed on the increasing portion of the I-Vchar- 
acteristic, one observes in experiment7 a small (on the order 
of a few percent) time-dependent voltage oscillation in the 
fixed current regime, and also an oscillation in the I- Vchar- 
acteristic which is related to this phenomenon. In a theoreti- 
cal paper (Ref. 16) it was shown that it is possible in princi- 
ple for an instability to appear in the static current 
distribution of the metal. However, the conclusions of Ref. 
16 are inapplicable in the case we investigate here, since in 
Ref. 16 the metallic conducitivity is assumed to depend lo- 
cally only on the value of the current's intrinsic magnetic 
field, not on its gradient. In addition, the stability analysis 
given in Ref. 16 was carried out in the fixed-voltage regime. 

The authors of Ref. 7 made an experimental attempt to 
explain the instability of their static solutions by invoking 
motion of the boundaries of the current filament. However, 
in their analysis they did not include the variations in electric 
field in the filament region which must necessarily accompa- 
ny such motion; these authors were thus led to an erroneous 
conclusion. We investigated the static solutions (3.21, (3.3 ) 
for the film and (4.4), (4.5) for the wire for stability in the 

fixed-current regime, and obtained a negative resistance de- 
crement. In other words, the system is found to be stable 
relative to infinitesimal fluctuations. 

We propose that the time-dependent voltage oscilla- 
tions observed in experiment arise either as a result of "hard 
switching" (that is, the oscillations develop when the fluctu- 
ations exceed some critical value) or are a result of processes 
we have not included in our model (e.g., inhomogeneous 
sample heating). To solve the problem of such oscillations 
would require a special investigation. 

The authors are grateful to B. E. Meierovich for useful 
discussions. 
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