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The Leggett equations for 'He-B are expanded in small frequencies and gradients about the 
periodic spatially uniform solutions found previously. Equations are obtained which describe the 
low-frequency spin dynamics superposed on the Larmor precession-in particular, the spin- 
current flow and other phenomena observed recently by Borovik-Romanov et al. superposed on 
this precession. Equations describing the low-frequency dynamics of the textures are also 
obtained, and the low-frequency precession of the axis of the order parameter anisotropy in a 
magnetic field is considered. The dispersion law is found for spin waves propagating on the 
background or precession with a frequency exceeding the Larmor frequency. 

1. INTRODUCTION 
In the superfluid B phase of 3He a class of phenomena in 

which the decisive role is played by superfluid spin currents 
has recently been discovered and investigated. These phe- 
nomena can be interpreted theoretically w by starting direct- 
ly from the complete system of equations for the spin dynam- 
ics of the superfluid phases of 3He-the Leggett equations.' 
It is possible, however, to simplify the description substan- 
tially by using the fact that all the observable phenomena are 
long-wavelength phenomena, i.e., the scale I, characteriz- 
ing the spatial nonuniformity of the structures arising in the 
experiments is large in comparison with the characteristic 
lengths appearing in the Leggett equations. There are two 
such lengths-the dipole length 1, -c/R, and the magnetic 
length I, -c/wL, where c is the spin-wave velocity, R is the 
longitudinal-resonance frequency, and w, is the Larmor fre- 
quency corresponding to a constant magnetic field H,.  The 
dipole length ID - 10 - ' cm, and the magnetic length I, de- 
pends on the magnitude of the field. In experiments, usually, 
w, 2 0, and therefore, I, 5 ID and it is sufficient to require 
that the inequality I, %ID be fulfilled. The experiments of 
Refs. 1-4 were performed by a pulsed NMR method, i.e., all 
the phenomena were played out against the background of 
spin precession with frequency close to the Larmor frequen- 
cy. Of greatest interest here are those motions of the spin and 
order parameter for which the deviation from precession is 
characterized by frequencies wv that are small both in com- 
parison with w, and in comparison with R. Thus, in the 
problem there appear small parameters ID /Iv and w,/R in 
terms of which the Leggett equations can be expanded. In 
Sec. 2 of the present article we describe a procedure for this 
expansion, and by means of this procedure obtain two equa- 
tions in place of the original six; these two equations de- 
scribe, in the leading approximation in ID /I, and wv/fl,the 
motions of the spin and order parameter in 'He-B that are 
superposed on the Larmor precession. These equations 
make it possible to describe in a unified manner the larger 
part of the observed phenomena and to compare them with 
analogous phenomena that can be observed in other super- 
fluid systems. A brief account of the application of the equa- 
tions thus obtained to the description of the stationary flow 
of spin current along a long channel has already been pub- 
lished.' 

It was shown previously9 that the Leggett equations 
have four types of stable stationary solutions describing the 
joint precession of the spin and order parameter with a speci- 
fied angular frequency w,; these solutions were denoted as 
Ia), Ib), IIa), and IIb). In particular, the above-mentioned 
Larmor precession is described by the solution Ib). The ex- 
pansion procedure described in Sec. 2 is, with slight changes, 
also applicable to the other three types of stationary solu- 
tion. Here we must bear in mind that for solutions of type 
IIa) and IIb) fixing the frequency w, determines the solu- 
tion to within the initial phase of the precession, i.e., there is 
degeneracy with respect to one parameter, whereas for a 
unique determination of the stationary solutions of types la )  
and Ib) for a fixed w, one must specify two parameters. 
Thus, the degeneracy space of the IIa) and IIb) solutions is a 
one-parameter space, and that of the Ia) and Ib) solutions is 
a two-parameter space. As a result of expanding to leading 
order in I, /Iv and w, /R for each stationary solution, equa- 
tions describing the motion of the order parameter through 
its degeneracy space are obtained. For the Ia) and Ib) solu- 
tions these are equations for two independent variables, 
while for the IIa) and IIb) solutions they are equations for 
only one variable. 

The Ia) solutions describe spatially uniform static tex- 
tures of the anisotropy axis n of the order parameter of 'He- 
B. The expansion of the Leggett equations about these solu- 
tions is performed in Sec. 3 of the present paper. As a result, 
two equations describing the low-frequency dynamics of the 
textures are obtained. As an example of the application of 
the equations obtained we consider the slow precession of 
the vector n in a magnetic field. 

In Sec. 4 we obtain the equations of the long-wavelength 
dynamics against the background of the IIb) solution de- 
scribing the stationary precession of the spin in a magnetic 
field at tilt anglesP> 8, = arccos( - 1/4). Using the equa- 
tions obtained we find the spectrum of the small long-wave- 
length oscillations on the background of this precession. 

Since the main aim of the paper is to derive the equa- 
tions, and not to apply them, we have considered only the 
simplest examples that do not require long calculations. All 
the equations have been obtained without dissipative terms, 
although the expansion procedure makes it possible to take 
direct account of dissipation as well, if the latter is small. 
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2.THE EXPANSION PROCEDURE 

The order Rarameter in 3He-B is proportional to the 
rotation matrix R (n, 8) ,which depends on three parameters, 
e.g., the rotation-axis direction n and rotation angle 8. On 
the scale of energies of the order of the characteristic Coo- 
per-pairing energy A in 'He there is degeneracy in n and 8. 
The motion of the order parameter through this three-pa- 
rameter degeneracy space is described by the spin-dynamics 
equations-the Leggett equations.' An important role in the 
spin dynamics of the superfluid phases of 3He is played by 
the spin-orbit or dipolar interaction UD, which lifts the de- 
generacy of the order parameter referred to above. A B- 
phase feature of importance in what follows is the fact that in 
this phase the dipole energy 

depends only on 19, and the degeneracy with respect to the 
direction n is not lifted. Because of this property, in 3He-B 
there exist those degeneratefamilies of stationary solutions 
that were mentioned in the Introduction. 

In the following it will be convenient to describe the 
motion of the order parameter by means of Euler angles, 
which are defined in the usual way: 

with the z axis oriented in the direction opposite to H,. The 
Leggett equations can be written as Hamilton equations, by 
choosing as the variables the angles a ,  0, @ = a + y and the 
following combinations (canonically conjugate to these an- 
gles) of spin projections: P = S, - S*, Sp, Sb, where S, is 
the projection of t2e spin onto the z axis, Sc is the projection 
onto the axis 5 = Re, and So is the projection onto the line of 
nodes. As b e f ~ r e , ~  we choose the units so that ,y = g = 1, 
where x is the magnetic susceptibility of a unit volume of 
'He, and g is the gyromagnetic ratio for the 3He nuclei; then 
the spin will have the dimensions of frequency, and the ener- 
gy will have the dimensions of frequency squared. In these 
variables and units the Leggett Hamiltonian has the form 

The form of the gradient energy Fv is established from sym- 
metry considerations''~": 

where 

o,E=-a,, sin p cos y+PqI sin y, 

02;=a,e sin P sin y+fiS5 cos y, o , ~ = a , ~  cos p+y,:, (4)  

a,, = aa/ax,, etc., and cf and c: are the squares of the ve- 
locities of the two types of spin waves (see Ref. 5). The dipo- 
lar potential in the variables a ,  fl, @ has the form 

it does not depend on a ,  and reaches a minimum UD = 0 on 
the line 

cos p+cos Q+cos B cos Q='/,. ( 6 )  

Both these properties are an expression, in the variables a ,  b', 
a, of the lack of dependence of UD on the direction n. The 
equations of motion generated by the Hamiltonian ( 2 )  have 
the form 

ap an as, 6% -=- -=-- 
at as, ' at 6P ' 

am an as, 8% -=- 
at as, ' at 6@ ' 

where the symbol S denotes the variational derivative; e.g., 

n a% a (a : )  aa? 
a (aF:)  

-=--- - I--- - 
6a 8a dxt da, da ax, aa, ' 

In the spatially uniform case (Fv = 0 )  the Hamiltonian 
(2)  does not contain the variable a ,  and as a result the angu- 
lar momentum P conjugate to a is conserved. This leads to 
the existence of stationary solutions of the system (7)  (Ref. 
9 )  : 

ag a @  ap as, as, - _--=__= 
at at at at at 0, (8) 

If in place of a we introduce the variable $ = a + w,t, which 
transforms the Hamiltonian into 

the solutions described by (8) and (9)  will also be stationary 
in $: d$/at = 0. By virtue of the system (7), in the spatially 
uniform case these solutions are extrema of the new Hamil- 
tonian with respect to all the arguments. 

In order to expand the system (7)  in ID /I, and w,/fl, 
we must separate the Hamiltonian (10) into two parts: 

= 2"' + V, where is that part of 2 that is inde- 
pendent of the coordinates and spatial derivatives. Included 
in the perturbation Yare the gradient energy Fv and also all 
small terms that give rise to spatial gradients of the solutions 
or to a slow dependence of the solutions on the time. Thus, if 
the magnetic field is nonuniform, then 

where wiO' is the value of the Larmor frequency at any par- 
ticular point of the volume under consideration. Here *''' 
is taken at w, = w p ) .  In the perturbation V we can also in- 
clude an oscillatory pumping field, a term proportional to 
(II-H,)~ that lifts the degeneracy in n, and other small cor- 
rections. Henceforth, for definiteness, we shall consider a 
perturbation of the form ( 1 1 ) . We now rewrite the system 
( 7 )  in such a way that terms containing the perturbation V 
and time derivatives are in the right-hand sides of the equa- 
tions: 
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a%(0) as, sv -=---- 
d m  d t  6 m  ' 

a 2 ( 0 )  ag 
-E- 

asp at'  (16) 

In the zeroth approximation we must replace all the right- 
hand sides by zero, and we return to the system of equations 
for the stationary solutions. As the initial form of the solu- 
tion we choose the stationary solution Ib), which is of great- 
est interest in connection with the experiments of Refs. 1-4. 
For this solution, w, = o,, and, in addition, 

cos (D= ('/2-c0s B)t(l+cos 1). (18) 

The formulas ( 18) describe the stationary precession of a 
spin tilted through angle from the equilibrium direction. 
The angle P varies in the interval O@< B,= arc- 
COS( - 1/4). Direct substitution of the solution (18) into 
the formulas ( l o )  and (2)  gives 

i.e., the Hamiltonian P ' O '  is degenerate in 0. In a uniform 
magnetic field the solution Ib) is realized only for one value 
wp = w, . If, however, the field is nonuniform, the choice of 
w, becomes nonunique. Depending on the actual conditions 
in the experiments, either the precession frequency w, is 
specified directly, or J P d V s  9' is specified, where the inte- 
gration is performed over the volume occupied by the 3He. 
The change from the Hamiltonian P to in accordance 
with Eq. (10) is a change variable from 9' to w, and is 
analogous to the change from a description with a fixed 
number of particles to a description with a fixed chemical 
potential in thermodynamics. In the following we shall as- 
sume that the frequency w, is specified. The determination 
of the value of wp corresponding to a given 9 does not give 
rise to difficulties; see Ref. 5. 

To derive the first-order equations we must substitute 
the zeroth-order solutions (18) into the right-hand sides of 
Eqs. ( 12)-( 17); as a result, the latter will be expressed in 
terms of the two variables $ andp. Equation ( 12), without 
further transformations, gives one of the equations for these 
variables. To obtain the second equation we must represent 
all the variables except $ in the form of expansions: 

where a''', P'O', etc. are the zeroth-approximation solu- 
tions, and substitute these expansions into the left-hand 
sides of Eqs. ( 13)-(17). Thke  will be no zeroth-order 
terms, and the first-order terms will give a system of linear 
equations for p" ', @ 'O', ... . To simplify the notation we de- 

note the variablesp, a ,  P, Sp, S E  by q ,, q ,, ... , q ,, respective- 
ly; then the system for the first-order corrections will have 
the form 

where A, are the right-hand sides of Eqs. ( 13)-( 17). The 
determinant of the system (2 1 ) is equal to zero. This is easily 
seen by differentiating the relation ( 19) twice with respect to 
u = cos B. As a result we obtain 

Earlier it was shown9 that the solution Ib) is stable against 
small spatially uniform perturbations. This means that 
among the eigenvalues of the matrix d2&"'0' /dqidqk there 
are no negative ones. Therefore, it follows from the equality 
(22) that there is at least one zero eigenvalue. On the other 
hand, it is known that after the separation of the angle a (or 
$) degeneracy remains in only one variable; therefore, the 
zero eigenvalue is the only one, and dqi'O'/du is the eigen- 
vector corresponding to the zero eigenvalue. The condition 
for solvability of the system (21 ), 

is the second equation connecting the variables $ andP. For 
the solution of ( 17), 

which leads to the equation 

In this equation the arguments qi of the perturbation V are 
expressed in terms of u by the formulas ( 18), i.e., 

V = V ( u ,  $)=V(ql(0)  ( u )  . . . q5(O' (u), I$), 

and hence 

which makes it possible to write Eq. (25) in the form 

Analogously; Eq. ( 12) can be rewritten in the form 

The equations (27) and (28) foim a closed system describ- 
ing the slow variation of the variables $ and u (or a and P )  
against the background of the stationary precession of the 
spin with angular frequency w,. The equations have the 
Hamiltonian V(u, $) with respect to the canonically conju- 
gate variables $ and wp cos P. 

We can give Eq. (28) the form of the law of conserva- 
tion of the longitudinal spin component S, = wpu. For this it 
is necessary to write out the expression for Vexplicitly. The 
gradient energy appearing in this expression has different 
forms, depending on whether $ and u are varying in the 
direction of the magnetic field (thez axis) or in the direction 
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perpendicular to the field. Suppose first that the variables 
depend only on the longitudinal coordinate z; then, substi- 
tuting Eqs. (4) into ( 3 ) ,  after simple transformations we 
have 

In this expression the angle $does not appear explicitly, and 
in this case Eq. (28) has the form 

~ ( o ~ u )  ai,, -- +-=o, 
d t  d z  

(30) 

where 

~Fv,, i., = - - 
dl42 

is the flux of S, in the direction of the z axis, induced by the 
nonuniformity of the order parameter; it is customarily 
called the zz-component of the superfluid spin current. I 2 - l 3  

In the case when $ and u depend on the transverse co- 
ordinates x and y, the expression (3)  for the gradient energy 
contains sines and cosines of the angle a. Because of this, in 
Eq. (28), besides the term with the divergence d(dFv/  
a$, )/axk, there remains the derivative aFv /a$. This deriv- 
ative, however, oscillates with frequency w,. In accordance 
with the van der Pol procedure, Eq. (28) can be averaged 
over a period of the oscillations, causing the oscillating term 
to vanish. This averaging only affects terms of the next or- 
ders in w,/w,, and so does not reduce the accuracy of Eq. 
(28). After the averaging, that part of the gradient energy 
which depends on the transverse derivatives has the follow- 
ing form: 

1 
FVJ. =-(l-u) I (1-u) cIlZ+ ( 1 + ~ )  ~ . ~ ~ l $ , k $ , k  

2 

Here, summation over k = 1, 2 is implied. In this case too, 
Eq. (28) expresses the law of conservation of S,: 

a ( u p u )  ajrb + - = o .  
at  

(33) 
8 %  

For the transverse components of the spin-current tensor we 
obtain the following expression: 

d$ j Z k = ( u - l )  [ ( I - U ) C ~ , ~ + ( ~ + ~ L ) C ~ ' ]  
ax,, 

In the case when u and $ depend on all three coordinates the 
divergence in Eq. (33) will contain derivatives of the three 
current components (3 1 ) and (34). We note that both ex- 
pressions for the spin-current components, like all the equa- 

tions in the present paper, are written with the assumption 
that the 3He is stationary." 

The system (27), (28 is analogous in many respects to 
the equations of "time-dependent Ginzburg-Landau theo- 
ry" for a neutral superfluid liquid. The role of the square of 
the modulus of the order parameter here is played by the 
conserved quantity 

while that of the phase is played by the angle It should be 
noted, however, that the energy density V ,  unlike the Ginz- 
burg-Landau functional, does not contain terms propor- 
tional to the fourth and higher powers of the order param- 
eter. Because of this, in the spatially uniform case 
equilibrium can be reached only on the boundaries of the 
range of variation of u, i.e., for u = 1 or u = - 1/4, depend- 
ing on the sign of the difference o, - w,. In particular, this 
circumstance leads to the appearance, in a nonuniform mag- 
netic field, of a two-domain precessing ~ t r u c t u r e ' ~ ~ ~ ~  that has 
no analog in superconductors. The equations describing the 
stationary two-domain structure are obtained by equating 
the time derivatives in Eqs. (27) and (28) to zero, which 
leads to equations coinclding with those considered pre- 
v iou~ly .~  The system (27), (28) with time derivatives makes 
it possible to describe the dynamics of the two-domain struc- 
ture as well. 

3. THE LOW-FREQUENCY DYNAMICS OFTHE TEXTURES 

We now consider, as the initial stationary solution Ia), 

This solution is realized for w, = 0 and is therefore static. It 
describes static textures-spatial distributions of the rota- 
tion axis n that are determin by the competition of boundary 
energies with volume energies. In the statics of the textures 
an important role is played by the volume eriergy termxii(n, 
H)' that orients n along the magnetic field. This term is 
small in comparison with the dipolar energy, by the factor 
(wL/A12. In the dynamical case, from symmetry consider- 
ations we can also add to the Hamiltonian terms of the form 
[n.(S - H )  ] * and (n-H) [n*(S - H) 1. For motions with 
frequencies that are small in comparison with wL these terms 
are small in comparison with   OH)^, and we shall omit 
them. When the above is taken into account the perturbation 
V in the dynamics of the textures has the form 

When Vis substituted into the equations of motion, nf must 
be expressed in terms of the Euler angles. For the solutions 
Ia) and Ib), cos 8 = 1/4, and 

From a comparison of formulas ( 3 5) and ( 18 ) it can be 
seen that the solution Ia) is obtained from Ib) by interchang- 
ing the spin projections S, and Sc. It is natural to expect that 
in this case the angles a and y conjugate to these projections 
will also exchange roles. Therefore, as the initial variables we 
choose the following pairs: y and Q = Sc - S,; Band Sg; @ 
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and S,.  The Hamiltonian &"O' with w, = 0 coincides with 
A?''' expressed in the new variables. Thus, the starting sys- 
tem of equations has the following form:. 

a%'u' d b  dV 

a s B  a t  a s ,  ' 

a m  dV -- ---- 
a s ,  at as,' 

As in the preceding section, to obtain the equations of the 
first approximation in I, / I ,  and w,/n we must express all 
the variables in the right-hand sides of Eqs. (38)-(43) in 
terms of y and u by means of the formulas (35). Equation 
(38) will then be one of the equations for y and u, and to 
obtain the second equation we must substitute the variables 
p, @, . . . in the form of the expansions (19) into the left- 
hand sides of Eqs. (39)-(43) and write out the system of 
equations for the first-order corre~tions,k?'~', @ "', . . . . The 
solution of the corresponding homogeneous system in this 
case will be 

The condition that the right-hand sides of Eqs. (39)-(43) be 
orthogonal to this solution gives the second equation for y 
and u. After transformations analogous to those carried out 
in the preceding section, the system of equations for y and u 
is brought to the form 

This is the system describing the low-frequency dynamics of 
the textures. The projections of the axis n are expressed in 
terms of y and u = cos p, n is determined from the formula 
(37), and the transverse projections are found from 

n,ltin,=i-&(Is) - sin P,cos @ esp  { ~ i ( y - - @ / 2 ) ) .  (47) 

The cartesian projections of the spin are expressed in terms 
of the time derivatives of the angles y and P: 

It iS easy to convince oneself that in the case when y and 

u depend only on the longitudinal coordinate z the gradient 
energy F, does not depend on y. Equation (46) in this case 
takes the form of the law of conservation of Q or Sc = wLu: 

a u  d j t ,  
oL-+-=O, (50) a t  az 

where 

is the current of the f-component of the spin in the z direc- 
tion. If there is also dependence on the transverse coordi- 
nates x and y, the angle y appears explicitly in the expression 
for the gradient energy. In contrast to the case considered in 
Sec. 2, this angle cannot be eliminated by averaging, and Eq. 
(46) now does not have the form of a conservation law. 

As an example of the application of the system (45), 
(46) we shall consider a spatially uniform stationary solu- 
tion of this system, of the form au/dt = 0, dy/at = - 5,. 
From Eq. (45) we have 5, = 4iioL/5, i.e., 

According to the formula (47), this solution describes 
precession of the vector n with angular frequency 5, about 
the direction of the magnetic field. According to the experi- 
ments of Ref. 14, near the melting curve we have ii - 5.10 -6, 
so the precession frequency is small; for a field - 1 kOe, 5, - 100 rad/sec. The precession of n leads to the appearance of 
transverse components of the spin, and this can be used to 
excite such precession by a transversely polarized oscillating 
magnetic field. In the continuous NMR spectrum we should 
observe a weak line at w = 5,. The limiting angle P = 8, 
corresponds, according to formula (37), to tilt of n through 
90" from the magnetic-field direction. Upon further increase 
of the anglep the system goes over to the solution IIa) (see 
Ref. 9) and the precession frequency will be determined by 
the dipolar energy. Thus, the situation is analogous in many 
respects to that which obtains in spin precession. In a nonun- 
iform field an initially uniform precession of n should also go 
over into two-domain precession. In one of the domains n is 
parallel to H,, while in the other domain n is perpendicular 
to H,. In this case the domain-wall thickness 
A - (c2/iiw, VwL ) ' I 3 ,  which, for H, = 100 Oe and VH, - 1 
Oe/cm, gives A - 1 cm. It should also be borne in mind that 
the influence of the walls on the orientation of n penetrates 
over large distances into the liquid, and in vessels of realistic 
size it is practically always necessary to take this influence 
into account.15 For d$/dt = 0 and du/dt = 0 Eqs. (45) and 
(46) go over into the equilibrium equations, from which, by 
specifying the boundary conditions, one can find the static 
textures. 

4. DYNAMICS SUPERPOSED ON PRECESSION WITH 
FREQUENCY EXCEEDING THE LARMOR FREQUENCY 

Uniform precession with frequency w, > w, is realized 
for p >  8, and is described in the notation of Ref. 9 by the 
solution IIb), i.e., 
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S t = o L  C O S  p + o p  (1-cos  P ) ,  (55) 

It can be seen from formula (53) that specifying the preces- 
sion frequency determines cos p= u = u (w,) uniquely. 
Therefore, the low-frequency dynamics on the background 
of the solution IIb) should be described by an equation in 
only one free variable-the angle $. Substitution into Eq. 
( 12) of P, u, and @, expressed in terms ofw, by means of the 
formulas (53)-(56), leads an equation describing the sta- 
tionary flow of the conserved combination P = S, - SC of 
spin projections: 

where j,, = - JFv /a$, is the flux of the quantity P. In the 
expression for Fv in the leading approximation there remain 
only terms containing of the angle $. As a result, for the 
components of j we obtain the following expressions: 

where 
r.ll=(1-u) [ ( l - u ) ~ , , ~ + ( l - t ~ ~ ) c ~ ~ ] ,  

Substitution of (58) into (57) leads to an equation for the 
angle $: 

which can be reduced to the Laplace equation by a change of 
scales. Thus, the stationary flow of the spin current for 
P> 0, differs from the stationary flow of an ideal incom- 
pressible liquid only in the anisotropy of the "densities" p. 
The formulation of the correct boundary conditions on Eq. 
(59) requires separate analysis. These conditions should de- 
pend both on the properties of the surface and on the magni- 
tude and direction of the magnetic field. It is evident that a 
satisfactory condition for most surfaces is the requirement 
that the spin-current component normal to the surface van- 
ish. The simplest solutions of Eq. (59) are 

and describe stationary one-dimensional flow of the spin. 
The anisotropy ,u leads to the result that the direction of the 
current coincides with the direction of h only if hll& or hlZ. 

In order to obtain equations which for w, > w, also de- 
scribe the time variation of the spin currents, we must write 
out for this case the system of equations (21) for the first- 
order corrections P"), u"', s<"', Sp"', and @"'. In the 
right-hand sides of these equations we must retain only the 
terms depending on derivatives of the angle $: 

where 
d2U n,,= (1 -u2)  - + wL2+2 ( I + u )  w p  ( w p - m L ) .  a uZ 

The part of a& /au that depends on the derivatives of $ has 
the form 

We now express P"' and u"' in terms of the space and time 
derivatives of $ by means of Eqs. (61 )-(63): 

where for brevity we have introduced the notation 

Substituting the expressions (67) and (68) into Eq. (12) 
and keeping the terms with the leading derivatives, we ob- 
tain the following equation for I/: 

In the leading approximation in w,/fl and I, /Iv, Eq. (69) 
coincides with the wave equation with an anisotropic veloc- 
ity of propagation. The accuracy of the procedure makes it 
possible, however, to retain also the fourth, nonlinear term 
in Eq. (69). Below it will be shown that allowance for this 
term leads to spin-wave drag by the spin current. 

As an example of the application of Eq. (69) we shall 
consider the propagation of small oscillations of $ super- 
posed on a state with V$ = h = const. Setting $ = h.r + $, 
linearizing Eq. (69) in $, and substituting $ - exp [i(k*r - wt) 1, we obtain the following dispersion law 
for such oscillations: 

It can be seen from the formula obtained that for h = 0 the 
spin waves on the background of precession with w, > w, 
have a linear dispersion law; s, is the velocity of propagation 
of such waves if k lies in the plane perpendicular to the mag- 
netic field. But if k is parallel to the field, for the wave-propa- 
gation velocity we have 
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For 4wL this velocity goes over into the velocity obtained 
previously,'6 while for u -+ - 1/4 it goes over into the veloc- 
ity of propagation of "torsional" oscillations of the two-do- 
main s t r ~ c t u r e . ~ . ~  The terms proportional to the components 
of h in Eq. (70) describe the entrainment of spin waves by 
the spin current; the expression (dp,, /du) (BsL2h,/p, ) 
plays the role of the velocity of the spin current for hIIZ, while 
the expression (dp,/du) (Bs: h /p, ) plays the analogous 
role for hlz. In the region of applicability of the approach 
used here, this correction to the velocity of the waves is small 
in proportion to sh / a .  

Equation (69) cannot be applied in the immediate vi- 
cinity of the angle0 = 13, or for w, close tow .. For applica- 
bility of Eq. (69) it is necessary, in any case, that the correc- 
tion u'" be small in comparison with lu + 1/41, i.e., 
according to (68 ), 

Using the estimate a$/& - w, we obtain from this 

Using the formula (53) we can formulate this condition as a 
restriction on the frequency: 

Analogously, estimating V$ as $/I, we arrive at a condition 
on u: 

oronw, -aL: 

The right-hand sides of both criteria (73)  and (74) contain 
small quantities, and, therefore, there exists a region 

1 I uf 'I; (Bc'IQ'~~' ,  wLmr-Q2. 

and this makes it possible to go over to the limit u -. - 1/4 in 
expressions that do not have a singularity at u = - 1/4--in 
particular, in Eq. (7 1 ). 

The stationary solution IIa) is obtained from IIb) by 
the replacement S, s S c ,  and the angles a and y then ex- 
change roles. One can go over from the low-frequency dy- 
namics superposed on the solution IIb) to the dynamics su- 
perposed on the solution IIa) in the same way as was done in 
Sec. 3 of the present paper for solutions oftype I. It should be 
noted, however, that the spatially uniform precession of the 
vector n, described by the solution IIa), has still not been 
observed experimentally, and therefore a detailed discussion 
of the dynamics on the background of this solution is prema- 
ture. 

5. CONCLUSION 

In the present paper we have obtained the equations of 
motion of the spin only in the leading approximation in 

I,/I, and w, /a. For the interpretation of certain phenome- 
na, e.g., oscillations of the two-domain ~ t ruc ture ,~  we re- 
quire the equations of the next approximation. The scheme 
developed in Sec. 2 makes it possible to obtain such equa- 
tions in a natural manner. 

An important qualitative feature of the equations ob- 
tained is their similarity to the hydrodynamic equations of a 
superfluid. This makes it possible to use them to interpret 
and predict the analogs for the 3 ~ e - ~  spin system of the 
phenomena observed in other superfluid systems. It should 
be noted, however, that the form of the equations of the low- 
frequency dynamics depends on the degeneracy space of the 
system under consideration. In this sense, only for solutions 
of the type I1 (Sec. 4) is there an analogy with ordinary 
superfluid systems, since in both cases the degeneracy space 
is a circle. For the solutions Ia) and Ib) the degeneracy space 
is equivalent to a hemisphere, and this leads .to differences 
from the hydrodynamics of an ordinary superfluid liquid 
and to the appearance of phenomena that are specific for this 
case. 

To describe real phenomena we must take into account 
dissipative terms in the equations of motion. The inclusion of 
dissipative terms in the scheme developed in Sec. 2 does not 
give rise to difficulties in the technical sense, but the equa- 
tions of motion obtained as a result have an important quali- 
tative difference. In the absence of dissipation, in almost all 
the cases considered, one of the equations has the form of a 
conservation law for a certain combination of spin projec- 
tions. This combination thereby appears in the equations in 
the same way as the density of the liquid. When dissipation is 
taken into account the conservation law fails to hold, by an 
amount determined by the magnitude of the dissipative 
terms. The result is a form of fluid dynamics with a noncon- 
served mass. The situation is closer to normal for the solu- 
tions Ia) and Ib), where, in the uniform case, dissipation is 
absent and arises only in proportion to the deviation of the 
motion of the order parameter from the original stationary 
motion. 

We note, finally, that irrespective of whether or not 
there exists an analogy with ordinary superfluid systems, the 
equations obtained are useful for describing the situations 
realized in experiments. The dynamics superposed on the 
solution Ib) has essentially already been ~ s e d . ~ ~ * * ' ~  The dy- 
namics of the textures is also important, since in experiments 
with 3 ~ e - ~  one practically always has to take into account 
the influence of the specific texture on the result. In this 
connection, e.g., the question of the time in which the equi- 
librium texture is established is of interest. This question can 
be analyzed by adding dissipative terms to Eqs. (45) and 
(46). 
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