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The turbulence spectrum in the dissipation range is investigated using a diagram technique. It is 
shown that for this interval the Chandrasekhar equation is approximately valid (in the coordinate 
representation). This equation, continued into the complex plane, has singularities, and analysis 
of the isolated singularity closest to the real axis makes it possible to determine the short- 
wavelength asymptotic form of the turbulence spectrum and show that it depends on one free 
parameter. Integral relations are given that make it possible to establish uniquely the dependence 
of this parameter on the constant appearing in the Kolmogorov-Obukhov "5/3 law", and thereby 
to determine the point at which the asymptotic form is joined with the power-law part of the 
spectrum. After this joining the spectrum obtained agrees well with the published experimental 
data over the entire range. 

1. INTRODUCTION. BASIS OF THE MODEL 

The fully-developed-turbulence spectrum predicted in 
the inertial range by the theory of Kolmogorov and Obuk- 
hod4  has been studied in detail in experiments5-' (see also 
Ref. 8) both in the inertial range and in the dissipation range. 
However, as is well known, the problem of explaining its 
behavior on the basis of the equations of hydrodynamics, 
even assuming time-independence, homogeneity, and local 
isotropy, encounters difficulties that are typical for systems 
with strong coupling: It has not been possible to represent 
such a system in the form of a set of noninteracting (or weak- 
ly interacting) subsystems for each of which the problem 
posed could be solved exactly, thereby yielding a starting 
solution, albeit in the form of a series in a real small param- 
eter. As a result, we can write down only a formal expression 
for the spectrum in the form of an infinite series, the combin- 
atoric structure of which is described in the language of 
Wyld  diagram^.^ Such series are usually formal solutions of 
equations of the Dyson type. In particular, when the prob- 
lem is posed with a random external force the Dyson equa- 
tion acquires the form 

In it there appear exact values of the spectral density (the 
thick dashed lines), exact Green's functions (the thick solid 
lines), exact vertices (the heavy points), and the spectral 
density of the external force (the rectangle); the series (not 
given here) corresponding to the exact vertices and exact 
Green's functions are also formal. In order to give meaning 
to such series, one often uses  assumption^'^^^ of the scaling- 
hypothesis type, which, in a certain sense, fulfill the function 
of a small parameter specifying the manner in which the 
diagrams are to be summed. It is clear that the necessity for 
this is a matter of principle, and does not depend on the 
specific description of fully developed turbulence (e.g., by 
means of the Hopf equation in variational derivatives for the 
characteristic f ~ n c t i o n a l , ' ~ , ' ~  or, equivalently, by means of 

the corresponding path integral.I5 It is natural, therefore, 
that the results which are based entirely on the hydrodynam- 
ic equations (e.g., those of Refs. 16-19), while undoubtedly 
being of great interest, are, in the main, very far from direct 
contact with experiment. One should specially note Refs. 20 
and 21, in which, in particular, the asymptotic nonunique- 
ness of the solutions of the time-dependent Navier-Stokes 
equations, which leads to turbulence, is proved; for the aver- 
ages a closed system of equations is presented and a unique- 
ness theorem is proved. 

However, most of the theoretical papers that aim to ex- 
plain the experimental data either have a phenomenological 
character or rest on model assumptions. For example, ac- 
cording to the theory of Kolmogorov and ObukhovI4 the 
spectral density of the energy is 

where g(x) -const as x = vk-0. 
We focus on the result of Ref. 22, in which the "5/3 

law" was obtained, together with the constant C,  appearing 
in it, on the basis of a certain reduction of the Navier-Stokes 
equations in the discrete cascade system proposed by Obuk- 
hov for the description of cascade processes in fully devel- 
oped t ~ r b u l e n c e . ~ ~ - ~ ~  (We use the following standard nota- 
tion: E is the rate of dissipation of energy, v is the kinematic 
viscosity, and 77 = is the Kolmogorov scale. For 
r >  77, according to the Kolmogorov-Obukhov law, the longi- 
tudinal structure function is DL, ( r )  = C(EI) 2/3. For vk 1 
the three-dimensional spectrum, integrated over the angles, 
is E ( k )  = C, &'l3k - 5/3. The one-dimensional longitudinal 
spectrum is given by ELL ( k )  = The constants 
C, C, ,  and C, are connected by the relations C ,  
= 55C/27r(1/3) r0.760Cand C2 = 18C, /55r0.327Cl . )  

From the papers relating to the investigation of the 
spectrum for v k >  1 we note the model result of Ref. 26, 
based on the assumption that the interaction of small-scale 
vortices is unimportant: 

E ( q k ) - c s p { - ( q k ) ' )  for 1lL>1. ( 3  

The most systematic investigation (in the sense of providing 
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support for the starting equations) is the investigation of the 
short-wavelength asymptotic form carried out in Ref. 27. In 
this paper it was shown that, for g k > l ,  in the right-hand 
side of (1)  one can replace the exact vertices (the heavy 
points) by bare vertices (points). In addition, since for 
g k >  1 the turbulent viscosity coincides with the molecular 
viscosity, one can also replace the exact Green's functions 
(the heavy solid lines) by bare Green's functions (thin 
lines), after which we go over to the equation 

In (4)  the first term of the right-hand side of ( 1) has been 
omitted, since it is assumed that the spectrum of the external 
force is concentrated in the region g k <  1. But the same diffi- 
culties are also encountered in solving the simplified equa- 
tion (4),  since its right-hand side is a series without a small 
parameter. At the same time, in systems with strong cou- 
pling the situation is often such that, in the region of interest, 
the first term of the formal diagrammatic series, being itself a 
sum of an infinite number of subdiagrams, gives a largely (to 
within a few tens per cent) correct answer, to judge both 
from comparison with the experimental data and from an 
estimate of the contribution of the next diagram. This situa- 
tion is encountered, e.g., in quantum chrom~dynamics ,~~  
and also in the calculation of critical exponents in the theory 
of second-order phase  transition^.^^ If we argue on the basis 
of Ref. 27, it is apparent that this situation also obtains in the 
present case. In fact, in Ref. 27 it is shown that the leading 
asymptotic term of the solution of the equation 

for gk- cu gives for the spectrum the expression 

while allowance for the second diagram in the right-hand 
side of (4)  causes the coefficient 30 in (6 )  to be replaced by 
23. The possibility of such a solution was first pointed out in 
Ref. 30. 

In the present paper, on the basis of the above argu- 
ments, we too shall adhere to the assumption that the asymp- 
totic form determined from Eq. (5)  is close to the true 
asymptotic form of the spectrum. The principal parameter 
of the asymptotic form is the exponent in formula (6) ;  in 
fact, in Ref. 27 this exponent was not determined, since a 
more detailed analysis3' points to the possibility of making in 
formula ( 6 )  the replacement g --r[g, e - qk+e - c q k ,  where [ 
is an arbitrary number. According to the experimental data, 
this number can be very significant. Below, on the basis of 
Eq. (5) ,  we shall give an estimate of { and refine the pre- 
exponential factor in ( 6 ) .  At the same time, using certain 
integral relations, we succeed in establishing a relationship 
between the quantity c and the value of the dimensionless 
constant C,  appearing in the Kolmogorov-Obukhov "5/3 
law". This makes it possible to determine uniquely the point 
whc-icthe asymptotic forms of the spectrum for gk- cu and 
for gk-0 join. The short-wavelength asymptotic form ob- 
tained is in good agreement with experiment for values of gk 
greater than - I/{ ([E lo ) ,  and, together with the known 
power-law asymptotic form for gk-0, gives a smooth ap- 
proximation of the entire spectrum. 

2. ASYMPTOTIC FORM OF THE SPECTRAL DENSITY FOR 
qk- oo . THE BASIC EQUATION 

In accordance with what has been said above, the spec- 
tral density decays exponentially in the region g k > l .  The 
problem that we set ourselves in this section is to estimate the 
exact value of the exponent for the spectral density and to 
refine the pre-exponential factor. Both the possibility of 
solving this problem and the method of solution stem from 
the following considerations. The exponent in the k-repre- 
sentation is determined by the position of the isolated singu- 
larity (in r = Irl in the coordinate representation) nearest to 
the real axis. The pre-exponential factor is determined by the 
character of this singularity. At the same time, the position 
and character of the singular point can be studied using Eq. 
(5  ), written in the r-representation for an arbitrary correla- 
tion function') BLL (r,t). This equation, as noted in Ref. 8, 
coincides with the Chandrasekhar equation, the validity of 
which in the region r < v  was already noted in Ref. 9. 

We turn to the realization of this program. If we intro- 
duce the dimensionless variables p = r/g, T = vt /g2, 

2 -2  b(  p , ~ )  = g Y BLL, the Chandrasekhar equation can be 
rewritten as 

The function b( p, T) is related, by a Fourier transformation 

to the dimensionless one-dimensional longitudinal spectral 
density EL, ( x , ~ ) .  For T = 0 it coincides with the purely spa- 
tial spectral density ELL (%), which is what is usually mea- 
sured in experiments. From the inversion formula 

OD 

it follows that the asymptotic form ofEL, for x - cz is deter- 
mined by that isolated singularity of the function b( p, T)  

which is nearest to the real axis in the region of complex 
values ofp. We shall determine from (7)  the possible form of 
this singularity. If we assume that in the neighbourhood of 
the singular pointp = ipo (T)  (it will be shown below thatp; 

b ( p , ~ )  h a s t h e f ~ r m b ( ~ , r ) - ( ~ - i ~ ~ ( ~ ) ) - ~ , t h e n ,  
taking into account that the left-hand side contains fifth- 
order derivatives with respect t o p  while the right-hand side 
contains third-order derivatives with respect top, we obtain 
il + 5 = 2il + 3, whenceA = 2. Thus, near the polep = ipo 
we can write an expansion of the form 

+bz ( t )  [ p - i p ,  ( t )  l + i b , [ p - i p o  (TI I '  

Substituting (10) into (7) ,  in both sides of the equality we 
obtain poles of up to seventh order. Comparison of the coef- 
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ficients of the poles, from seventh-order to third-order, gives 
the relations 

. . 
I6812 bo2 po 

bi ( T )  = - +-+-, 
2197pu3 po 4 

We substitute the resulting expansion ( 10) into ( 9 )  and dis- 
place the contour of integration for x > 0 upward. Then the 
residue at the point p = ip, gives the leading term of the 
asymptotic expansion: 

4 
ELL(., r )  =60 [a + - ] r - a ( r ) + .  . . . 

1 3 ~ 0  (7 )  
(12) 

The regular part of the expansion ( 10) gives an exponential- 
ly small contribution in comparison with (8 ) ,  since it is es- 
sentially a series expansion, at the point p = ip,, of the con- 
tributions of the singularities lying above the point ip,. 
Since, by definition, @!, = ELL, it follows from ( 12) thatp; 
= p,. We note that the function g ( x ) ,  which gives the three- 

dimensional isotropic spectral density, is connecteds with 
BLL by the relation 

With the notation 

po(0) = E ,  
4 

( a )  -60 ( x  + 131) t?-''+. , . =I$(%) + . 
this leads to the asymptotic formula 

The formula (6 )  can be obtained from this with f = 1, if we 
neglect the second term in the pre-exponential factor. 

3. ESTIMATION OF THE EXPONENT OF THE EXPONENTIAL 
DECAY OFTHE SPECTRUM FROM THE NORMALIZATION 
CONDITION 

To estimate f we shall make use of the well-knowns 
integral relation 

which expresses the definition of the quantity E in terms of 
ELL. In the region x <  1, according to the Kolmogorov- 
Obukhov law, we have for ELL ( x )  the expression 

On the basis of the experimental data analyzed in Ref. 7, and 
from the theoretical estimate of Ref. 22, the constant C ,  is of 
the order of 0.42-0.45. In the region x% I, for ELL the 
asymptotic estimate ( 14) is valid. We shall divide the region 
ofintegration in ( 16) into the segments (0, x, ) and (x,, w ). 

On the first of these we substitute into (16) the function 
p ( x )  defined by formula ( 17), and on the second we substi- 
tute the function $ (x )  from (14).  Then the relation (16) 
takes the form 

or, if we perform the integration and denote fx, = a, 

If in (19) we now fix a definite value of x,, we obtain a 
transcendental equation for f ,  which is easily solved numeri- 
cally. To estimate x,, and hence f ,  in the first approximation 
we make use of the fact that for the values of C, of interest, in 
the region in which Eq. (19) has a solution, the functions 
p ( x )  and $ (x )  do not intersect. Therefore, it is natural to 
choose as x, that value of x for which p ( x ) / $ ( x )  = min, 
i.e., for which on a logarithmic scale (see the figure below) 
the distance between the asymptotic expansions ( 14) and 
( 17) is a minimum. This leads to the condition 

and when this is taken into account ( 19) can be rewritten in 
the form 

The solution of Eq. (2  1 ) turns out to be stable against varia- 
tions of C 2 .  Thus, { = 11.10 for C2 = 0.45, and f = 10.85 
for C2 = 0.42 (see Sec. 5, in which this result is compared 
with experimental data). 

4. REFINEMENTOFTHE DEPENDENCE c=c(C,) WITH 
ELIMINATION OF THE ARBITRARINESS IN THE CHOICE OF 
THE POINT WHERE THE ASYMPTOTIC FORMS JOIN 

Above, we obtained an estimate of 6 based on an entire- 
ly natural but nevertheless arbitrary assumption about the 
position of the joining point x,. In this section we get rid of 
this arbitrariness and obtain a unique (in the framework of 
the model under consideration) dependence f = {( C, ) . We 
shall start from the relation 

f )  Of) 

where the integration is performed over a closed contour in 
the complex p-plane around the point p = ip, ( 7 ) .  The rela- 
tion (22) is an exact consequence of Eq. ( 7 )  : Since the func- 
tion b( p, r )  after complete passage around the pole takes its 
original value, the integral of the total derivatives of the 
functions b( p,  T)  over the closed contour is equal to zero. 
We substitute into (22) the expansion ( 10). Here we must 
take into account terms of up to fourth order, inclusive, in 
p - ip, (7).  One can then obtain the following relation, 
equivalent to the vanishing of the residue of the integrand of 
(22) at the point ip, (7)  : 

We note two important circumstances. First, the rela- 
tion (23) does not contain derivatives with respect to T; i.e., 
r appears in it as a parameter. Second, the quantity b, 
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(which for the Kolmogorov-Obukhov spectrum is found to 
be infinite) does not appear in (23). This can be seen imme- 
diately from the second equality in (22), since it contains 
only derivatives of b with respect top, in which the quantity 
6, does not appear. In addition, the quantity b, also drops 
out of (23). 

We set r = O  in (23). Thenp,(O) = f ,  and we obtain 
the relation 

The relation (24) turns out to be equivalent to a certain 
integral relation for the spectral density ELL (x ) .  In order to 
obtain this, we shall consider the function 

This function is analytic in a neighborhood of the point 
p = i l .  Differentiating (25) with respect top three, four, and 
five times, and, after this, setting p = if, we obtain the for- 
mula 

and analogous formulas for b2 and b,. At the pole Imp = ,$ 
the function b( p )  can be represented by a Fourier integral: 

rn 

Since the relation 
rn 

hold, we have 

- ( j2ELL ( x )  +ELL1'(x) ) cos ( X P )  

We separate out here the factors eiXP and e j K P .  Then - 
(p-ib)'b ( p )  ='I, [G'+' ( x )  etv-G(-) ( y )  e-'w]dx, (28) 

0 

where we have introduced the notation 

We note an important property of the function G'-' (x ) :  If 
ELL ( x )  has the formzLL ( x )  = (a + bx)exp( - xf) ,  then, 
according to (29), G' - ' ( x )  = 0. Therefore, the leading 
term of the asymptotic expansion of g L L ( x )  makes 
G'-'(x) vanish, while the next terms, which are of order 
O(ecXc) ,  uponsubstitution into (28) not only do not lead to 
a divergence of the second term at the point p = if but give 
an exponentially small contribution. Therefore, the formula 
(28) in fact determines the explicit form of the analytic con- 
tinuation of the function b ( p )  onto the singular point 
p = ig. 

We substitute (28) into (26), and then substitute the 
coefficients b, , b,, and b, thus obtained into (24). This leads 
to the relation 

-3 

3 ( x  j )  [ e-IXG(+' ( x )  (100f 50gxf 13jZxZ) 
(I  

+et"G'-' ( x )  (100-50jx+13~2x2) ]ax=-240.2250/13. 

(30) 

As in the preceding section, we divide the region of inte- 
gration in (30) into the segments (0, x,) and ( x ,  a, ), and 
use on these segments the approximations p ( x )  and $(x),  
respectively (here the integral of the second term from x, to 
a, vanishes). Then Eq. (30) takes the form 

2(jC,jvsA(a) +9.240B ( a )  =9.240.2250, (31) 

where we have introduced the notation 
a 

A ( a )  = x"[ (5000+840x2) ch x 
0 

sh x - (4~0+2920x~+117x~)-]  dx. (32) 
X 

m 

B ( a )  = e-2x(169x'+533x5+850x'-9001') dx. (33 ) 
a 

Solving Eq. (3  1 ) for C21s'3, we obtain 

The equation (34) is the second integral relation [in addi- 
tion to ( 19) ] connecting <, a ,  and C, ; unlike ( 19), it is valid 
only in the framework of the Chandrasekhar equation. To- 
gether with (19) it makes it possible to determine uniquely 
the point where the asymptotic forms join, and to find the 
dependence { = f (C, ). Substituting C, = f (a)l8I3 from 
(34) into ( 19), we obtain an equation containing only f and 
a. From this equation we easily find 

Finally, substituting (35) into (34), we have 

The pair of equations (35), (36) specifies in parametric 
form the dependence f = f (C2 ) .  

The quantities A ( a ) ,  B ( a ) ,  and f (a) appearing in 
(35) and (36) have been calculated numerically. It is found 
that A ( a )  > 0 for a < a ,  ~ 2 . 6 ,  whereas B ( a )  < 2250 for 
a > a, ~ 0 . 9 5 .  Thus, a positive solution for C2f8/3 exists in 
the interval 0.95 < a  < 2.6. In the interval 2.48 < a  < 2.53 the 
quantity C2 determined by the formulas (35), (36) varies 
from 0.36 (for a = 2.48) to 0.49 (for a = 2.53), which en- 
compasses the entire range of values of C, obtained both 
from the experiments of Refs. 5-7 and from the theoretical 
estimates of Ref. 22. In this range of a the dependence 
f = f(C2 ) specified by Eqs. (35), (36) can be represented 
by the approximating formula2' 
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which gives five significant figures coinciding with those ob- 
tainedfrom (35), (36). 

For C, = 0.42 we have f = 10.78, while for C, = 0.45 
we have = 11.04. We see that they differ only very slightly 
from the values 10.85 and 11.10 given in the preceding sec- 
tion. We note also that the value a r 2.6 adopted in the pre- 
ceding section lies above the point at which A (a) = 0. Until 
we take into account the restrictions stemming from (22), 
small variations of a are unimportant. But when the conse- 
quences of the relation (22) are taken into account the re- 
sults become sharply dependent on the choice of a. In this 
connection we draw attention to the fact that the experimen- 
tally admissible values of C, correspond to a very narrow 
range of a-from 2.48 to 2.53. This is the reason why, if we 
wish to make the results of the calculation of the dependence 
f = f(C2 ) consistent with (22), it is necessary to make an 
extremely accurate determination of the position of the point 
where the asymptotic forms join; the value a ~ 2 . 6  adopted 
in the preceding section is found to be incompatible with 
(22). 

5. COMPARISON WITH EXPERIMENT 

We shall compare the expressions obtained with the re- 
sults of experiment. - In Ref. 7 a composite graph of the de- 
pendence ELL = ( x )  is plotted on the basis of three inde- 
pendent experiments carried out in water and in air (the 
graph is reproduced in Ref. 8).  The constant C,, determined 
from the power-law segment of this function, is equal to 0.42, 
so that the corresponding value of 6 is 10.8. In the figure we 
give both the experimental points and the functions (17) 
(curve 1 ) and ( 14) (curve 2). We emphasize that in plotting 
curve 2 we have not used any adjustable parameter. If, ignor- 
ing the relation (22), we introduce the point x, at which the 

FIG. 1. Comparison of the results of the calculation and the results of 
measurements of the longitudinal turbulence spectrum. *, A, and 0 are 
experimental values from Refs. 5,6,  and 7, respectively; 1) the power-law 
asymptotic form for x ( 1, and 2 )  the asymptotic form ( 14) for the region 
x S  1, fr- the value l=  10.85. 

two asymptotic forms join, this has only an insignificant ef- 
fect on the value of f .  The magnitude of these discrepancies 
characterizes the accuracy of our estimate of the quantity l. 
We note also that fully satisfactory agreement of the experi- 
mental and calculated data is also observed for the quantity 
x2 ELL, which is more sensitive to the form of the spectrum 
in the region x % 1. 

6. CONCLUSION 

We shall summarize the paper. Analysis of the equa- 
tions of the diagram technique leads to the conclusion that in 
the region v k >  1 the Chandrasekhar equation (7)  is valid 
for the space-time correlation function. Investigation of the 
singular point of this equation nearest to the real axis makes 
it possible to establish the general asymptotic form of the 
turbulence spectrum; this form contains one free parameter 
6, characterizing the exponential decay of the spectrum for 
v k )  1. For a first estimate of this parameter we use the exact 
integral relation ( 16), which determines the dependence off 
on the constant C, in the Kolmogorov-Obukhov "5/3 law" 
and on the joining point xo of the asymptotic forms of the 
spectrum for yk -0 and v k  - cc . An important point is that 
the estimate of f depends only weakly on the choice of the 
point x,. This first estimate already leads to good agreement 
with experiment. The arbitrariness in the choice of the point 
x, is removed by using the second integral relation (34), 
which, unlike (19), is valid only in the framework of the 
adopted model, describable by the Chandrasekhar equation. 
This makes it possible to determine the joining point x0 
uniquely, and thereby to determine the dependence 
f = f (C, ). Thus, the constant C, plays the role of a "bound- 
ary condition" in the determination of the form of the spec- 
trum in the dissipation interval. 

It might appear that, having determined the joining 
point x, in a natural manner (as was done in Sec. 3) ,  one 
could use these two integral relations to determine both f 
and C, simultaneously. However, this is impossible because 
of the instability of the dependence C, = C, (x, ) . Evidence 
for this is the fact that, near the value x, E 2.6/$ chosen a 
priori in Sec. 3, the function A ( a )  appearing in the second 
integral relation vanishes. At the same time, the inverse pro- 
cedure, including the determination of xo, turns out to be 
stable. 

One further circumstance should be noted. Into the sec- 
ond integral equation for v k >  1 we have substituted the 
asymptotic solution ( 14), which is in fact a consequence of 
the Chandrasekhar equation. However, the power function 
used in this integral relation for v k <  1 is not a consequence 
of the Chandrasekhar equation. Therefore, in substituting 
the power function into (34) we are, generally speaking, 
making a certain error, which is difficult to estimate. 

Evidently, in evaluating the reliability of the result ob- 
tained above we must appeal first of all to the agreement of 
the calculated and experimental results. 

The authors express their deep gratitude to V. V. Ta- 
tarski'i, who carried out the necessary numerical calculations 
and independently checked on the computer the cumber- 
some analytical transformations. 

"Here r is the distance between the points at which the velocities are 
taken, and t is the time interval between the observation times. 
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"In the interval 2.48 < a  < 2.53 the results of a numerical calculation of 
the function can be represented with a relative error less than 2.10 -4by 
means of the approximation formula A ( a )  = 260.81 - 2824 
(a - 2.5055) - 3909.7 ( a  - 2.5055)>. For B ( a )  we have the exact 
expression B ( a )  = e 2 "  (169a6/ 
2 + 520a5 + 1725a4 + 3000a3 + 4500a2 + 4500a + 2250). 

'A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941) [C. R. 
Acad. Sci. URSS 30, 301 ( 1941 ) 1. 

'A. N. Kolmogorov, Dokl. Akad. Nauk SSSR32,19 ( 1941 ) [C. R. Acad. 
Sci. URSS 32, 16 (1941) 1. 
%. M. Obukhov, Dokl. Akad. Nauk SSSR 32, 22 ( 1941) [C. R. Acad. 
Sci. URSS32, 19 (1941)l. 

4A. M. Obukhov, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 5, 453 
(1941). 

'H. L. Grant, R. W. Stewart, and A. Moilliet, J. Fluid Mech. 12, 241 
(1962). 

'S. Pond, R. W. Stewart, and R. W. Burling, J. Atmos. Sci. 20, 319 
(1963). 

'V. A. Sandborn and R. D. Marshall, Local isotropy in wind tunnel tur- 
bulence, Technical Report, Fluid Dynamics and Diffusion Laboratory, 
Colorado State University ( 1965). 

'A. S. Monin and A. M. Yaglom, StatisticalFIuid Mechanics, MIT Press, 
Cambridge, Mass. ( 197 1 ), Part I1 [Russ. original, Nauka, Moscow 
(1964) 1. 
'H. W. Wyld, Jr., Ann. Phys. (N.Y.) 14, 143 (1961). 
''A. Z. Patashinskii and V. L. Pokovskii, Zh. Eksp. Teor. Fiz. 46, 994 

(1964) [Sov. Phys. JETP 19,677 ( 1964) 1. 
"A.M. Polyakov, Zh. Eksp. Teor. Fiz. 55,1026 ( 1968) [Sov. Phys. JETP 

28,533 (1969) 1. 
I2G. A. Kuz'min and A. Z. Patashinskii, Zh. Eksp. Teor. Fiz. 62, 1175 

( 1972) [Sov. Phys. JETP 35,620 ( 1972) 1. 
I3E. Hopf, J. Ration. Mech. Anal. 1, 87 (1952). 

14R. M. Lewis and R. H. Kraichnan, Commun. Pure Appl. Math. 15,397 
(1952). 

"V. I. Tatarskii, Zh. Eksp. Teor. Fiz. 42, 1386 ( 1962) [Sov. Phys. JETP 
15,961 (1962)l. 

I6A. A. Konstantinov, Teor. Mat. Fiz. 42,79 ( 1980) [Theor. Math. Phys. 
(USSR) 42, 52 ( 1980) 1. 

"S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, G. A. Khomenko, and V. V. 
Yanovskii, Zh. Eksp. Teor. Fiz. 85, 1979 (1983) [Sov. Phys. JETP 58, 
1149 (1983)]. 

"A. V. Tur and V. V. Yanovskii, Dokl. Akad. Nauk SSSR 292, 1368 
(1987) [Sov. Phys. Dokl. 32, 147 (1987)]. 

I9S. F. Edwards, J. Fluid Mech. 18,239 (1964). 
'OV. P. Maslov, Teor. Mat. Fiz. 69, 361 (1986) [Theor. Math. Phys. 

(USSR) 69, ( 1986) 1. 
"V. P. Maslov, Usp. Mat. Nauk 41, 19 (1986). 
I2E. B. Gledzer, Zh. Eksp. Teor. Fiz. 91,818 ( 1986) [Sov. Phys. JETP 64, 

483 (1986)l. 
23A. M. Obukhov, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 17, 1235 

(1981). 
24A. M. Obukhov, Gerlands Beitr. Geophys. 82,282 ( 1973). 
"A. M. Obukhov, Usp. Mat. Nauk 38, 101 (1983). 
26E. A. Novikov, Dokl. Akad. Nauk SSSR 139, 331 (1961) [Sov. Phys. 

Dokl. 6,571 (1961)l. 
"G. A. Kuz'min and A. Z. Patashinskii, Zh. Eksp. Teor. Fiz. 76, 2075 

(1979) [Sov. Phys. JETP 49, 1050 (1979)l. 
"M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B147, 

385 (1979). 
29K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974) [Russ. transl., 

Mir, Moscow ( 1975)l. 
30R. H. Kraichnan, J. Fluid Mech. 5,497 (1959). 

Translated by P. J. Shepherd 

1141 Sov. Phys. JETP 66 (6). December 1987 M. M. Dubovikov and V. I. Tatarskil 1141 


