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The steady-state solutions of the linear theory of the stability of shock waves for small 
perturbations of a front, with weak waves moving away from the front (so-called sound 
generation), do not satisfy the causality principle for all possible orientations of these waves. This 
circumstance is manifested in particular in an instability of the solutions with respect to local 
perturbations. The existence of "resonances" does not produce enough feedback between the 
front and the flow behind the front to destabilize a plane shock front. Those results were derived 
without consideration of kinetic (dissipative) processes at the shock. The stability of the one- 
dimensional structure of a shock for which the parameter L has values in region I11 thus requires a 
special study. 

The theory of the stability of shock waves'-3 distin- 
guishes among three regions of values of the parameter 
L=J2(du/dp), [ J  is the mass flux across the front of the 
shock wave, and (du/dp), is the derivative of the specific 
volume u with respect to the pressure along the shock adia- 
bat], in which qualitatively different solutions are found. 
These regions are defined by the inequalities 

I. -I<L<Lo, Lo=(l-MZ-OM2) (1-M2+0M2)-', 
11. L<-l, or L>1+2M, 
111. L,<L<I+ZM, . . 

where M is the Mach number of the shock wave with respect 
to the flow behind it, and 0 is the degree of compression in 
the shock wave. 

In case I, small perturbations of the surface of the shock 
front decay. In case 11, according to linear stability theory, 
perturbations of the surface of the wavefront grow exponen- 
tially. In region 11, however, the shock can always be decom- 
posed into other (stable) elements in the manner of an arbi- 
trary shock, and it apparently decays quickly (see Ref. 4 and 
the bibliography there). In the case of a decay of this sort, 
the linear analysis does not reflect the actual evolution of a 
perturbation even in the early stage, since that analysis rests 
on an unperturbed basis which does not exist.4 

Under the inequalities 111, the linear analysis yields 
steady-state solutions (steady-state in a moving coordinate 
system) which correspond to a rippled shock front from 
which sound waves are propagating (so-called sound gener- 
ation by a shock wave'). The behavior of perturbations in 
the pressure and other properties as functions of the coordi- 
nates and the time in such solutions is determined by a factor 

between L and y (see the equations given in Refs. 4 and 7 ) .  
As L is varied from Lo to 1 + 2M, the angle y corresponding- 
ly changes from yo-arccos M to a, spanning the entire 
range of values of y for outgoing sound waves. 

The stability of a shock wave in region I11 and the ques- 
tion of the physical meaning of the solutions ( 1 ) with outgo- 
ing waves are studied in Refs. 7 and 8. It was shown7 that as 
the pressure amplitude (pf ) of the incident wave approaches 
zero for an angle of incidence near the resonant angle the 
pressure of the reflected wave, p,, also approaches zero (in 
proportion to p: /2 ) .  Small perturbations of the flow behind 
the front, including fluctuating (noisy) perturbations, thus 
do not destabilize the shock wave in region I11 when reflect- 
ed once (we will have more to say about multiple reflec- 
tions). 

It was shown in Ref. 8 that the solutions ( 1 ) and their 
analog-three-wave configurations (an unperturbed shock 
wave, a perturbed shock wave, and a weak outgoing com- 
pression or rarefaction wave; Fig. 1 )--do not satisfy the cau- 
sality principle at angles 

We can show that the solutions ( 1 ) and the correspond- 
ing solutions for three-wave configurations also fail to satisfy 
the causality principle in the region 

This region, combined with (2),  spans the entire interval of 

2 
with real values of k, I, and w. (Thex and y axes run along the r 
shock front and normal to it, respectively.) From the stand- 
point of the theory for the reflection sound by a shock wave, 7 ,  
these solutions correspond to an infinite reflection' coeffi- A' 
cient (a "resonance" in the terminology of Refs. 5 and 6).  3 
Corresponding to each value of the parameter L is a definite i 

orientation ofthe sound waves, characterized by the angle 
= arctg(k, /k, ) (this is the angle between the FIG. 1 .  Three-wave configuration with a weak outgoing wave 3 ( y < yo). 

1-Unperturbed shock wave; 2-perturbed shock wave; T-tangential 
normals to the shock front and the front of an outgoing shock: A.  A * indicate sectors: arrowairection of the streamlines ahead 
sound wave). In region 111 there is a one-to-one relationship of the shock front in the coordinate system with a fixed point 0. 
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angles (yo < y < r )  in which waves 3 (Fig. 1 ) are outgoing. 
Formal proof follows immediately from the fact that 

according to ( 1) and the corresponding solutions for three- 
wave configurations4 an acoustic signal would be able to 
propagate along the shock front at a velocity 

V,=c(l-M cos y)/sin y, (4) 

which would satisfy the inequalities 

c(1-MZ)'"<V,<c 

for angles (3); here c is the velocity of sound behind the 
shock front. However, we know that the sound propagation 
velocity along the surface of a shock front is c( 1 - M ') ' I 2 .  

Consequently, even for angles (3)  a weak perturbation (a  
signal) would actually propagate at a supersonic velocity 
according to ( 1 ), in contradiction of the laws of linear gas- 
dynamics. 

More specifically, the violation of the causality princi- 
ple in the case of angles (3)  is seen in the circumstance that 
although the normal drawn to front 3 through point 0 in Fig. 
1 does fall in sector A, in contrast with the situation in case 
(2)  (Ref. 8 ) ,  it does not pass through the region of the flow 
behind the front for front 3: the region which lies between 
front 3 and the contact discontinuity (sector A * in Fig. 1 ) . 
Perturbations from sector A * do not reach point 0, so the 
motion of this point and the state of the matter at it are not 
causally related to the parameters of the flow in sector A *. 
The normal to the perturbed shock front 2 drawn through 
point 0 does not pass through the region of the flow behind 
the front for shock 2, regardless of the orientation of front 3. 
In other words, it does not pass through the region which lies 
between front 2 and the tangential discontinuity. The reason 
is that wave 2 is always outgoing. It arises from the effect of 
the external perturbation source on shock 1. 

Some phenomena consistent with causality associated 
with the solutions ( 1 ) were pointed out in Ref. 8 for angles 
(3).  These effects are flows which arise from the interaction 
of the shock wave with (a )  sound waves arriving from the 
region behind the front (or ahead of it) with a pressure am- 
plitude which is quadratic in the amplitude of wave 3 and 
(b)  an infinitely thin piston (or a system of such pistons) 
Chich pushes against the point 0 (Fig. 1 ) and slides along 
the tangential discontinuity. 

There is no mechanism for the effect in the linear ap- 
proximation ( 1 ), but in these cases [ (a)  and (b)  ] such a 
mechanism does indeed exist. If the mechanism vanishes, 
then its consequences-the flow described by ( 1 ) or by the 
analogous solution for a three-wave configuration-also 
vanishes. 

All these phenomena that are consistent with causality 
corresponding to ( I ) ,  apply equally to angles (3)  also; i.e., 
they are pertinent to the entire angular interval yo < y < .R in 
which weak waves are outgoing. 

Since the order of magnitude of the small perturbations 
decreases when they are reflected near a resonance point, 
however, it is also legitimate to pose the question of the sta- 
bility of a shock wave in the following way: As a small per- 
turbation-either a random perturbation or one deliberately 
produced by some one-shot external agent-of the flow be- 
hind the front (with a pressurepf ) overtakes the shock front 
at an angle close to the resonant angle, it is reflected from it 
in the form of acoustic and entropy waves whose small val- 

ues are of a lower order ( - p y ;  Ref. 7).  The interaction of 
these waves generates an incoming wave which is a small 
quantity of higher order ( -pf). As this wave is reflected, 
the order of the small quantities can again decrease to pf-/2; 
etc. Would a process of multiple reflections of this sort not be 
divergent in the perturbation amplitude? To answer this 
question we need to take a look at two different types of 
initial incoming perturbations. 

1)  The perturbation (with a pressure pf)  is a wave 
which is oriented at an angle so close to the resonant angle 
that the reflected acoustic wave and the reflected entropy 
wave are quantities of a lower order, p y .  The new incoming 
wave generated by the interaction of these waves is a small 
quantity of orderpf. However, this new wave is oriented in a 
direction far from the resonant direction. (The orientation is 
determined by the law of specular reflection of the sound 
wave from the nearly plane entropy inhomogeneity, and the 
coincidence of the angle y and the resonant angle y, would 
be an unlikely chance event.) The reflection of such a wave 
from the front of the shock wave would not change the order 
of magnitude of the small perturbation, so this process of 
successive reflections of the perturbation would die out. 

2) The initial perturbation is not a "single-angle" per- 
turbation; it is an integral superposition of plane waves in 
various orientations ( a  Fourier integral over the wave vector 
k ) .  The pressure amplitude of partial waves with wave vec- 
tors whose magnitudes lie in the infinitesimal interval dk is 
proportional to dk in this case (i.e., it is also proportional to 
the differential of the angle, dy) .  It is thus infinitely small. 
Everywhere except at the one resonant point, y = y,, the 
amplitude of the wave reflected from the shock front will be 
a small quantity of the same order as the incident wave, and 
it can be written in the form7 

where yf and y, are the values of the angle y for the incident 
and reflected waves, respectively, and the value of the coeffi- 
cient a is of no importance to the discussion below. We refer 
the reader to Ref. 7 regarding the behavior of $ as a function 
of y and the parameters characterizing the thermodynamic 
properties of the medium and the shock adiabat. The impor- 
tant point regarding this function for the discussion below is 
that it vanishes only at the resonant reflection angle: 
y, = y,, . Near the point y,, we have 
$( yI. ) = const (y, - yr,L ) .  The pole y = y,, in (5) does 
not cause the total pressure p,, of the reflected wave, to di- 
verge because of their interference. Accordingly, in calculat- 
ing p, we should understand the integral in its principal- 
value sense: 

Consequently, again in case (2)  a perturbation reflect- 
ed from the shock front remains a small quantity of the same 
order, so the process of multiple reflections of the perturba- 
tions dies out. 

According to Ref. 9, incoming waves generated by non- 
linear interaction of outgoing waves give rise to infinite am- 
plification of perturbations of a shock front if the shock adia- 
bat from region I11 has a certain shape. " 
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FIG. 4 Damping of various perturbations (a  and b)  in region I of values of 
the parameter L (the notation is explained in Figs. 2 and 3 ) .  

FIG. 2. Perturbed three-wave configuration with a weak outgoing wave 3. 
1-Unperturbed shock wave; 2-perturbed shock wave; 0'-point at 
which the front 1 intersects the continuation of the unperturbed rectilin- 
ear section of front 3; 3,-weak reflected wave; y-the angle formed by 
line 1 and the tangent to line 3 at point 0; arrow--direction of the stream- 
lines ahead of the shock front in the coordinate system with fixed point 0'. 

That result, however, refers to waves of finite amplitude 
incident at the resonant angle and all of the same harmonic 
(it does not refer to a fluctuational "white noise"). Nonlin- 
ear analysis7 shows that the picture of the interaction of 
weak waves of finite amplitude which are incident at the 
resonant angle and which are of alternating sign in terms of 
pf, on the one hand, with a shock front, on the other, does not 
reduce to a simple four-wave configuration (the incident 
and reflected weak waves and the unperturbed and per- 
turbed shock waves). 

These arguments essentially complete the proof that 
spontaneous steady-state perturbations (i.e., perturbations 
not driven by an external agent) of a shock front, with sound 
waves of the type ( 1 ) propagating away from it, cannot exist 
anywhere in the entire angular interval yo < y < T. 

It is interesting, however, to examine the problem of the 
existence of the solutions ( 1 ) or of the equivalent solutions 
for three-wave configurations (Fig. l ) ,  again from the 
standpoint of the stability of such solutions. We see that the 
results of such an analysis are fundamentally different in 
cases I11 and I, i.e., in the cases of outgoing (yo < y < T) and 
incoming (0 < y < yo) sound waves. It is convenient to carry 
the analysis out in the terminology of three-wave configura- 
tions. 

We consider a three-wave configuration with an outgo- 
ing wave 3, which is perturbed in a small neighborhood of 
the point at which the fronts intersect, in such a way that 
front 3 takes the form of a convex curve (Fig. 2),  while wave 
3 would become an incoming wave near the point at which 
the fronts intersect. According to (4) ,  the velocity V, at 
which the point 0' moves along the surface of the shock front 
is a minimum in the case y = yo. This minimum value is 

FIG. 3. Position of front 3 at the times t,,t, = t, + At, and t ,  = t, + 2At. 
The points 0 and 0' have the same meaning as in Fig. 2. The subscripts 1-3 
correspond to the times t,, t,, and t,. 1-Unperturbed shock wave. Defor- 
mations of the shock front are not shown. 

C (  1 - M 2 ,  ' I 2 .  The angle yo is the boundary between incom- 
ing and outgoing waves. If the unperturbed three-wave con- 
figuration is to be reconstructed, point 0 must overtake point 
0' (Fig. 2) ,  and the angle y must pass through the value y,. 
Front 3 propagates through the medium at the sound veloc- 
ity c, and this front is convex according to the Huygens prin- 
ciple. An element of front 3 approaches the shock front more 
slowly, the larger the value of the angle y, for this element 
( y, is the angle formed by the outward normals to the ele- 
ments of front 3 and to the shock front). The angle y thus 
increases over time, approaching yo. However, y cannot be- 
come larger than y,, since those elements of the front of wave 
3 which are oriented at angle y, >yo  do not overtake the 
shock front (for y, > yo, the elements of the front wave 3 are 
outgoing). Figure 3 gives a qualitative idea of the subsequent 
evolution of front 3, for which the relation y=: yo holds. 

The initial perturbation in the case of a three-wave con- 
figuration with an outgoing wave 3 (case I11 for the param- 
eter L )  thus occupies a progressively larger region as time 
elapses, and the orientation of the fronts deviates more and 
more from the unperturbed orientation. 

It is important to note that the intensity of the perturba- 
tion does not increase without bound over time in this case. 
If an initial rectilinear front 3 and, correspondingly, a recti- 
linear segment of front 2 are of bounded size, then the 
rarefaction waves which propagate out of the region of the 
unperturbed flow behind the front (from left to right in Fig. 
3) lead to complete damping of wave 3-the perturbation of 
the original shock wave-as time elapses. 

In the case of a three-wave configuration with an in- 
coming wave 3 (case I for the parameter L),  it is simple to 
show (by arguments analogous to those presented above) 
that a perturbation of the initial configuration which is local- 
ized near the front intersection point evolves in time in such 
a way that the configuration of waves with large rectilinear 
sections in their fronts approaches the original configura- 
tion. Figure 4 shows versions of these perturbations and 
their qualitative development. 

These results of a qualitative analysis of the stability of 
three-wave configurations, i.e., of solutions of type ( 1 ), also 
agree completely with the conclusions reached above on the 
basis of the causality principle regarding the conditions for 
the existence of steady-state perturbations of a shock front. 

However, the stability of the shock waves was discussed 
above without consideration of the structure of the front 
(without considering dissipative processes at it). The stabil- 
ity of a one-dimensional structure of a shock in region I11 of 
the values of the parameter L requires further study. 

We can thus draw the following conclusions. 
1. Solutions describing steady-state perturbations of a 

shock wave with outgoing weak (sound) waves do not satis- 
fy the causality principle for all possible orientations of such 
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waves (yo < y < T ) .  They thus do not correspond to physical 
reality. This circumstance is manifested, in particular, in the 
instability of these solutions with respect to local perturba- 
tions. 

2. These solutions acquire a real meaning only if the 
perturbations moving away from the shock front are genera- 
ted by an external source: by weak waves coming in at an 
angle close to the resonant angle from the side of the flow 
behind the front or ahead of the front (or generated by some 
sort of "piston").8 The pressure amplitude of such incoming 
waves is quadratic in the pressure of the reflected waves, p,, 
and the cause of the effect thus remains "out of the picture" 
in the approximation linear in p, . 

3. The presence of "resonances" does not give rise to 
feedback between the front and the flow behind the front 
strong enough for the onset of an instability of a plane shock 
front. 

4. The results presented above were derived without 
consideration of the structure of the shock front (without 
consideration of the dissipative processes in it). 

" It was assumed in Ref. 9 that the original perturbation is an outgoing 
wave. The autonomous motion of such a wave along a shock front does 
not satisfy the causality principle. A physically well-posed formulation 
of the question requires the specification of the original perturbation in 
the form of incoming waves. From the mathematical standpoint, how- 
ever, in astudy of the nature ofthe feedback between the shock front and 
the flow behind it, the particular direction of the initial perturbation 
(toward the front or away from it) is of no fundamental importance. 
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