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Near the adsorption point, polymer chains with different random monomer sequences begin to 
acquire very different configurational properties over distances N- ellA , where A is a measure of 
the dispersion of the energy of the interaction with the surface (in units of kT) of the monomers of 
the various species. Expressions are derived for the distribution function of the monomers near 
the surface and for the moments of this distribution, averaged over all possible sequences. 
Expressions are also derived for the dispersion of these quantities. Over distances N)el/A these 
expressions are universal in the sense that they do not depend on the parameter A, which 
characterizes the inhomogeneity. If the fractal dimensionality of the adsorbing surface is greater 
than 2 (if the surface is rough, if there are pores, etc.) the length scale will be determined by a 
power-law, rather than exponential, dependence. The three-dimensional interaction of the 
monomers generally enhances the effects caused by the heterogeneous nature of the chain. 

1. INTRODUCTION 

The adsorption of a polymer chain is one of the classic 
problems in polymer physics. Its importance stems from the 
circumstance that the adsorption transition is similar in 
many ways to coil-globule transitions, which are the basic 
types of conformational transitions in linear polymers. As- 
sociated with these transitions are many aspects of the func- 
tioning of polymers in living organisms and many technolo- 
gical applications. Many chromatographic methods for 
studying polymers have been developed on the basis of these 
transitions. Although numerous theoretical papers have 
been published on adsorption (see the review by Binder') 
and on the coil-globule transition (see the reviews by Lif- 
shits et and Grosberg and Khokhlov3), these papers 
have been restricted to a study of so-called homogeneous 
linear polymers. This term is applied to polymers which con- 
sist of monomers of a single species or of a sequence of mon- 
omers of different species which is repeated many times, e.g., 
A-B-C-A-A-B-C-A-B-C- . . . . In nature, on the other hand, 
the vast majority of polymers-DNA molecules and protein 
molecules-are aperiodic. Correlation analysis of such se- 
quences reveals no large-scale regular behavior of any sort in 
them. This conclusion means that knowledge of the first n 
terms is of no help in predicting the (n + 1)st term. In other 
words, from the statistical standpoint such sequences may be 
regarded as a realization of a random process. 

One might ask whether coil-globule phase transitions 
and adsorption transitions occur in the same way as for some 
homogeneous polymer with average characteristics or 
whether distinctive individual features arise for each ran- 
dom polymer sequence and persist in the limit N-. CO. In a 
previous study4 we showed that the critical dimensionality 
of the space for the coil-globule transition is d, = 3. For 
d > 3, the geometric and thermodynamic characteristics of a 
random heteropolymer are self-averaged as N-. CZJ . For 
d<3, any arbitrarily small inhomogeneity gives rise to a rela- 
tive dispersion - 1 in the values of observable quantities in 
the transition region at a large scale. 

A corresponding situation arises for the adsorption 

transition. We denote by d ' the dimensionality of the entity 
on which the adsorption occurs. Thus d ' = 2 would corre- 
spond to the adsorption of a polymer on a plane, d ' = 1 to 
adsorption of a polymer on a line, and d ' = 0 to adsorption 
on a point." There can also be cases in which the dimension- 
ality d ' is not an integer. For example, if the adsorption oc- 
curs at the inner surface of a porous material or on a highly 
irregular surface then such a surface could be characterized 
by a fractal dimensionality d ' in the interval 3 > d ' > 2. We 
will show below that d ')2, i.e., in the situations which are 
physically most realistic, no self-averaging of observable 
quantities occurs at the adsorption point of a random hetero- 
polymer. 

The relative dispersion in observable quantities for dif- 
ferent random sequences of monomers increases with the 
length of the polymer chains, and at a a certain scale it 
reaches a value on the order of unity. The substitution of one 
single monomer or the interchange of monomers in a chain 
affects the observable quantities characterizing the given 
chain to a far greater extent than the corresponding substitu- 
tion in a homogeneous polymer would. The three-dimen- 
sional interaction of monomers amplifies these effects. 

The adsorption transition, like the coil-globule transi- 
tion, can therefore be used as a sensitive mechanism for se- 
parating heteropolymers with different sequences of mon- 
omers. In a living cell a mechanism operates to select certain 
protein sequences by comparing these sequences with a com- 
plementary matrix. (This is essentially again the adsorption 
of a heteropolymer, but on the complementary polymer mol- 
ecule, rather than on a surface. This transition is distin- 
guished in several important ways from the transition with 
which we are concerned in the present paper; in particular, 
fluctuation effects are important only at short range.5) The 
mechanism for the separation of polymer sequences which 
we are proposing here differs from the mechanism which 
operates in a living cell because it involves the collective in- 
teraction of many monomers. It is thus a more global and 
less single-valued mechanism. On the other hand, the mech- 
anism which we are proposing here is substantially simpler, 
and it makes possible a separation in a large mass of polymer 
chains simultaneously. 
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2. DESCRIPTION OF THE MODEL; DIMENSIONALITY 
ESTIMATES 

Since we are interested in the properties of long chains, 
for which many details of the microscopic structure are un- 
important, we consider a simplified model of a polymer 
chain: as a chain consisting of small spheres or beads of dif- 
ferent species, connected in series by flexible bonds of identi- 
cal length2' (Fig. 1 ). We assume that the beads differ only in 
the energy w, of their interaction with the adsorbing wall, 
and for the time being we will ignore the interaction of the 
beads with each other in space. We take up the effects of 
three-dimensional interaction at the end of the paper. We 
assume that the sequence of beads of different species along 
the chain is random. 

Let us briefly review results on the problem of the ad- 
sorption at a wall of a homogeneous chain without three- 
dimensional interactions for the case in which one end of the 
chain is fixed to the wall. It is not difficult that this problem 
is equivalent to that of adsorption on a permeable "attract- 
ing plane" (Fig. 2). Although this problem has been solved 
e x a c t l ~ , ~  we will content ourselves with some dimensionality 
estimates here. Specifically, with any configuration of the 
chain which arises in the problem of adsorption on a perme- 
able plane we can associate a configuration from the problem 
of adsorption on a impermeable wall, which can be found 
through mirror reflection through the permeable plane of 
the part of the polymer coil in the left-hand half-space. We 
can do this only if we ignore the spatial interaction energies 
of the two parts of the polymer coil which coincide in the 
right-hand half-space, i.e., only if we assume an ideal poly- 
mer chain. To each configuration of the problem of adsorp- 
tion on a wall correspond 2N configurations from the prob- 
lem of adsorption on a permeable plane, where N is the 
number of adsorbed monomers. 

In order to deal with the difference in configurational 
entropies, we must require that the adsorption energy of a 
single monomer in the problem of adsorption on a wall be 
smaller by kTln 2 than the corresponding energy in the 
problem of adsorption on a permeable plane.3' In the latter 
problem, the adsorption point is obviously w, = 0; at this 
point the polymer coil is purely Gaussian (Fig. 2a), and we 
have (R ') - N. The average density of monomers in the coil 
isp - N/R and there are a total ofpR - N 'I2  monomers in 
the adsorbing plane. 

If wf 0, the total energy of the interaction of the coil 
with the surface is on the order of 1 w 1 N '". If this energy is 
smaller than kT, the wall has little effect on the Gaussian 

FIG. 1 .  Model of a heteropolymer as a chain consisting of beads of differ- 
ent species connected by flexible bonds of identical length. 

FIG. 2. Adsorption of a homogeneous polymer chain with one end fixed 
on a permeable plane. a-w = 0 is the adsorption point; b-w > 0 is a 
desorbed state: c-w < 0 is an adsorbed state. 

nature of the structure of the coil. If I wI N 'I2 > kT, the struc- 
ture of the coil changes. We partition the polymer chain into 
regions of length m (blobs) in such a way that we have 
'1 w 1 ml" -- kT. At scales smaller than r* =; m 'I2, the chain can 
then be treated as Gaussian again, but as we increase the 
scale of the treatment in units of blobs of length scale r* the 
chain becomes completely desorbed or adsorbed, depending 
on the sign of w. 

For the polymer chain as a whole, the adsorption transi- 
tion occurs in a narrow interval of adsorption energies, - kT/N 'I2, or of temperatures, - T/N 'I2. (We recall that 
the adsorption point in the problem with an impermeable 
wall is w, = - k T  ln 2, and this point may be passed as the 
temperature changes. We will replace the two variables T 
and w by the single variable w, assuming k T  = 1.) 

If the adsorption occurs on a surface with a fractal di- 
mensionality d ', the number of monomers of a Gaussian 
polymer coil on the adsorbing surface at the adsorption 
point is 

The width of the adsorption transition is determined in this 
case by the relation 

We now return to the problem of an inhomogeneous 
chain consisting of a random sequence of monomers with a 
desorption energies w f Aw. According to the estimates 
above, over length scales smaller than the correlation length, 

all the monomers of a selection of the chain participate in the 
adsorption identically. The number of such monomers is 
m - (r*)'. Since the composition of this section of the chain 
is random, the numbers of monomers of the different species 
are not exactly equal to each other; they differ by amounts - m112. The average adsorption energy per monomer in this 
section of the chain is [see (2)  ] 

It follows from this estimate that ford ' > 2 the relative mag- 
nitude of the correction for the inhomogeneity diverges at 
the adsorption point (as w + 0). This statement means that 
for a long polymer (N- co ) and for small values of w the 
leading role is played not by the general attraction or repul- 
sion but by effects which arise from the inhomogeneity of the 
chain. Let us estimate the chain length n, and the length 
scale r, -n;", over which effects due to the inhomogeneity 
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reach a magnitude of order unity in the case w = 0. Replac- 
ing w by Awn; ' I2, in estimate ( 3 )  of the correlation length, 
we find 

At the adsorption point in the case d ' > 2 the polymer chain 
can thus be partitioned into sections of length n, for each of 
which either an adsorption condition or a desorption holds. 
With d '  = 2, as we will see below, the situation is logarith- 
mic, and the length scale n, depends on Aw exponentially, 
rather than in accordance with a power law. 

The balance of this paper is ordered in the following 
way. We are focusing primarily on the case of adsorption on 
a plane ( d '  = 2). In the following section of the paper we 
derive and solve an equation for the probability for the ad- 
sorption of an nth monomer of a random polymer chain as a 
function of the probability for the adsorption of all preceding 
monomers. We then derive an expression for quantities aver- 
aged over all possible polymer sequences and also for the 
dispersion in these quantities. 

We then take up the question of the sensitivity of the 
measured quantities for some specific chain to a substitution 
of an arbitrary monomer by a monomer of another species 
and to the interchange of two adjacent monomers. We also 
examine the case of an absorbing surface of arbitrary fractal 
dimensionality d ' > 2. We conclude with a discussion of the 
role played by effects of the three-dimensional interaction of 
monomers. 

3.ADSORPTlON ON A PLANE; DERIVATION OFTHE BASIC 
EQUATIONS 

For a homogeneous polymer chain, the adsorption 
problem is solved in principle once we know its partition 
function Z(ro,rN) near the z = 0 surface, where ro and rN 
are the coordinates of the ends of the chain [ r  = (x,y,z) 1 .  In 
terms of this partition function we can express the two quan- 
tities which are used most frequently: the spatial distribution 
of the ends of the chain, 

and the conditional probability for finding one end of the 
chain at point rN if the other end is fixed at ro, 

A much more complicated problem is that of a random 
polymer chain; for example, the problem of taking an aver- 
age of the quantities in (5) and (6) over different sequences 
generally are different problems. In an integration over 
space, the state of the molecule near the surface and far from 
it thus contribute to the denominator in (5) .  For these 
states, the inhomogeneity of the polymer chain is inconse- 
quential, and if these states dominate the integral the averag- 
ing of (5) reduces to finding the average value of the numer- 
ator in (5), i.e., the average value of the partition function 
z(rO,rN 1. 

In the absence of three-dimensional interactions, the 
average over inhomogeneities can be carried out indepen- 
dently for each link of the polymer chain. Accordingly, the 
average of the partition function is equal to the partition 
function of a homogeneous polymer chain with the average 

adsorption energy. In this case it is a simple matter to derive 
expressions for all averages of observable quantities; they are 
expressed in terms of correlation function (5). 

In taking the average in ( 6 )  we need to simultaneously 
average the numerator and the denominator, including the 
cross terms. As we will see below, the basic difficulty here is 
in dealing with the divergent logarithmic terms. [The same 
difficulty arises in the course of the averaging in (5)  if the 
geometry of the problem is such that the relative number of 
surface states in the denominator in (5)  is comparable to the 
contribution from the integration over the entire space. It is 
thus necessary to impose the relation VzRS, where Vis the 
volume of the system, S is the area of the adsorbing surface, 
and R is the length scale of the polymer coil.] 

We will use a recurrence-equation method here. This 
method yields results which are more detailed than those 
found by the renormalization-group method, in particular 
for asymptotically long polymer chains. For simplicity we 
assume that the first monomer is pinned to the surface: 
Go(z) = S (z). We omit the dependence of G, on the coordi- 
nates x and y, since this dependence is described by the ran- 
dom-walk correlation functions 

We assume that G, (z) is the distribution function of the nth 
monomer. The normalized distribution function of the next 
monomer, is then 

3 G ,  ( 2 ' )  E ( z ' )  dzr. (8) 

(Here and below, the integration over z runs from - w to 
+ w . ) Expanding the numerator and denominator in (7)  in 
powers of wn + , , and retaining terms of up to second order, 
we find 

where 

If all the monomers are identical, the value w = 0 corre- 
sponds to the adsorption point. In this case the coefficients of 
all powers of A, vanish. We then have G, (z) = En (z). For 
w > 0 and w < 0, the most important corrections arise from 
terms which are linear in A,. With increasing n, these cor- 
rections accumulate, and they change the solution substan- 
tially at n - I wl-' (cf. the estimates of the preceding sec- 
tion). If there is dispersion in the interactions, the 
adsorption point-i.e., the point at which the terms linear in 
A, vanish-shifts slightly: w, = Z2/2. We will use this value 
as the origin of the scale for the random quantities w,: - 
Wn = 0. 

Our basic problems in this section of the paper are to 
reduce the functional equation (9)  for G, (z) to a closed 
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equation for G, (z) which incorporates only the values of the 
function G,. (z) at z = 0 for all preceding n' < n and to ana- 
lyze this equation. Since the correspondence between the 
equations is one-to-one, we will derive expressions for the 
most interesting measurable quantities and their dispersion 
from the equation which we find. 

In the unaveraged recurrence equation we switch to the 
momentum representation: 

Here we have introduced some new notation: E, =Ann''Z 
(for a Gaussian chain we would have E ,  = 1 ). In the expres- 
sion in parentheses in ( 18) we first restrict the analysis to the 
term which is linear in E. The factor (n - n') -'I2 means that 
E, will be affected most by the nearest monomers with 
n - n '  4 n, for which we can ignore the exponential factor in 
( 18). The factor M(nl/n) can also be replaced by unity. We 
can then write the following simplified version of Eq. ( 18) : 

G,, ( k )  = I G .  ( 2 )  e". dz. 

We write the function G, (k)  as the product of two func- 
tions, explicitly identifying out Gaussian and random com- 
ponents: 

It is thus possible to reduce the functional recurrence equa- 
tion (9) to an equation containing only the values of the 
function at the point z = 0 for different values of n'. This is 
not a Markov equation, and it does not reduce to a Markov 
process. The most important problem, as we will see below is 
the behavior of Eq. ( 18') in the limit E, > 1; the following 
random quantity w, may then change E, + , greatly. In this 
case we ignore the one on the right side of ( 18), and we find 
that the fluctuating quantity is not E but more precisely In E 

[see (23) below]. Physically, the condition E, ) 1 corre- 
sponds to the case in which the attracting monomers are 
positioned in the polymer sequence in such a way that the 
probability for finding the next monomer at the surface is far 
greater than that in the Gaussian case. Each successive mon- 
omer which we add will thus have a substantial effect on the 
configurational statistics of the chain, depending on whether 
it is attractive or repulsive. 

Let us find the distribution function f ( ~ ,  ) for the en- 
semble of all different polymer sequences. We can do this by 
calculating the moments of the distribution function: 

For @, (k)  we find 

~ , , ( k )  = m n - l ( k )  ( I + ~ , h , + ~ n ~ h n ~ ) - ( ~ n h n f  ~ n ~ h n ~ ) e " ~ " ' .  

(12) 
where 

Expanding a, (k )  in a series in powers of nk '/4, 

we find a system of equations for the coefficients af, : 

an1= [ ( n - l )  /nllan!-, (l+wnh,+w,2hn7 - ( W , ~ , + W , , % , ~ ) .  

(15) 

The coefficient af, thus depend only on w,. and A,. , n'<n: 

In our approximation we evidently have En = 1. Squaring 
( 18'), and taking an average over wi , we find 

Substituting ( 14) into ( 13), we can express A, in terms of 
a : - , :  

To solve this equation, we multiply ( 19) by e -  '" and sum 
over n: 

We then find Finally substituting ( 16) into ( 17), and summing over A, we 
find 

Taking inverse Laplace transforms, we find 

where 
Analogous calculations for the higher-order moments 
yield 

In contrast with (21 ), which was derived with a "ladder" 
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accuracy, and which allows an analytic continuation at 
n > n, , expression (22) was derived with a "parquet" accu- 
racy and is valid only under the condition 1 - A In n > A. 
Expressions (2  1 ) and (22 ) unambiguously determine the 
form of the function f(en ) for E > 1 and 1 - A In n > A: 

where 

We can conclude from the form of expression (2 1 ) for 
that for n>n, the dispersion of distribution function (23) 
does not diverge, and there is instead a transition to exponen- 
tial growth: w2-en'"'. The nonlinear term in ( 18) obviously 
becomes important in this case; it limits the growth of se- 
quences with large value of E. We take an average of ( 18) : 

It follows from the physical condition that the adsorption 
probability be positive ( > 0 and En > 0)  that the absolute 
value of the second term on the right side of (24) must not 
exceed unity. It can be shown that in the asymptotic region 
this absolute value approaches unity, and we have En -0. 
Specifically, if En tends not toward zero but toward some 
nonzero value, then we conclude that increases without 
bound, as in ( 19)-(21). Actually, there is an upper bound - 
on E: , and its limiting value can be found from (24) by 

setting lim 2, = 0. If we ignore terms on the order of n, /n, 
n-  m 

we can uncouple the averaging processes in the exponential 
function in (24) : 

A numerical solution of this equation yields 

The behavior of E, and n > n, can be described as fluctu- 
ations between zero and a value on the order of 1/A, in which 
the nonlinearity "rolls up" the sequence E, to small values of 
E. The E, are concentrated near zero for the most part, and 
excursions - 1/A which contribute to the dispersion (25) 
are comparatively rare. 

4. AVERAGE VALUES OF OBSERVABLE QUANTITIES AND 
THEIR DISPERSION FOR POLYMER CHAINS WITH 
DIFFERENTSEQUENCES OF MONOMERS 

In this section we derive an expression for the moments 
of the spatial distribution function of n monomer chain of n 
units: 

<zZm)= zZmG,, (z) dz. 

We substitute ( 16) and (14) into (1 1 ), ignoring the expo- 
nential term in ( 16) : 

(26) 

Taking an average over all possible sequences of monomers, 
we find 

For a chain of length less than n,, we can use expression 
(21) for E:; for asymptotically long chains we can use 
expression (25) and in this case the average values of the 
moments are universal q~antities,~'  which do not depend on 
A: 

Calculating the dispersion in the quantities ( 7) for var- 
ious sequences of monomers, we find 

For asymptotically long chains, the dispersion of the observ- 
able quantities is also universal: 

We can calculate the changes in measurable quantities, 
e.g., ( z 2 ) ,  when a single monomer at an arbitrary t in the 
chain is replaced. We vary (26) with respect to the adsorp- 
tion energy of the t th monomer. Retaining only the terms 
linear in E, we find 

For a homogeneous polymer chain at the adsorption point, 
in which case we have wi = 0 for all i except i = t ,  the effect 
of replacing a single monomer is described by the first term 
on the right side of ( 3  1 ) with E,  = 1: 

For a disordered chain we need to deal with the change in the 
adsorption conditions for all successive links. Specifically, 
the replacement of a single monomer has the consequence 
that the probability for all successive monomers to be near 
the adsorption surface changes. These changes alter the 
magnitude of the contribution of the inhomogeneities of 
successive monomers to measurable quantities, etc. From 
Eq. ( IS), which we restrict to terms linear in E, we find 

1129 Sov. Phys. JETP 66 (6), December 1987 S. P. Obukhov 11 29 



It is not difficult to see that logarithmic terms similar to 
(21a) arise in a calculation of (SE,./SW,: 

At a large scale, the effect of changes in the adsorption con- 
ditions for the other monomers increases and becomes the 
dominant effect. Remarkably, on the average the sign of this 
effect (i.e., the decrease or increase in (z2) ) is not related to 
the sign of w, . Over lengths - n, , expression (34) reaches its 
limiting value: 

The mean square change (z2) is 

Since we have not considered terms of higher order in E 

over scales greater than n, , an additional factor in the form 
of an arbitrary function of n,/n might appear in (36). It is 
important to note that in any case there will be no depend- 
ence on t or on the parameter A, which characterizes the 
inhomogeneity of the chain, in (36). 

Similar calculations yield the changes in measurable 
quantities which stem from the interchange of two neighbor- 
ing monomers of different species in the chain, say the t th 
and ( t  + 1 )st (w, = w, + , ). For simplicity we restrict the 
analysis to an estimate of the effect of such a substitution. 
The quantities w, and w, + , appear in all the expressions in 
the combination 

For an'interchange of monomers, i.e., a change in the sign of 
w, , the change in (37) is 

This change is equivalent to a change in the adsorption ener- 
gy of a single monomer, say the t th, by the amount given in 
brackets. After we take an average over all other monomers, 
we are left with only the first term, w,/t. 

Consequently, the effect of an interchange of monomers 
is weaker by a factor o f t  than the effect of a change in the 
monomer species. 

In this section of the paper we consider the case in 
which the fractal dimensionality of the adsorbing surface is 
greater than 2. A situation of this sort arises if the adsorbing 
surface is inhomogeneous and can be described as a fractal of 
dimensionality 3 > d ' > 2 over the range of scales from a min- 
imum (atomic) scale to a maximum scale on the order of 
r, -n:/* (an expression for n, is given below). 

In this case we can carry out all the calculations of the 
two preceding sections, replacing the integration over dz by 
an integration over a space of dimensionality 3 - d ', i.e., by 

using d ' - 'z. We then replace E, n-'I2 by E, n - " -"I2 and 
(21)!/I!22' by r [ ( l  - ~ ) / 2  + I ] / r [ ( l  - E ) / ~ I .  Inplaceof 
( 18') we find 

Expressions for at n < n, are found from (22) by replac- 
ing A In n by A(nE - I)/&, n, = exp A-' by (1 +E/A)'/', 
etc. 

In the asymptotic region, n >n,, we find in place of 
(25) 

It is then not difficult to see that to within terms on the order 
of E the expressions for the average moments of the distribu- 
tion function and their dispersion remain the same as (28) 
and (30) in the numerical coefficients. We will not repro- 
duce the exact values of these coefficients here since for a 
surface with large- and small-scale inhomogeneities the pro- 
cedure of calculating and comparing quantities of the type 
w, etc., for homogeneous and inhomogeneous polymer 
chains is more qualitative than quantitative procedure, 
which demonstrates the universality (i.e., the lack of A de- 
pendence) of the asymptotic behavior of inhomogeneous 
chains. 

6. INCORPORATION OFTHREE-DIMENSIONAL 
INTERACTIONS 

We need to bear in mind that molecules of different 
species will generally interact with each other in different 
ways in three dimensions. If a chain consists of monomers of 
two species, then there exist three different binary-interac- 
tion constants for the monomers: g ,  ,, g,,, and g,,. We can 
write expressions for these constants by focusing on the aver- 
age interaction and the deviation from it: 

- - 
Herep, = 1 andp, = - 1, sowe have pa = Oand ,u; = 1. 
We showed previously4 that if the average interaction of the 
monomers, g, was nonzero ( lgl > uN ' I2)  it would dominate 
the exchange interaction and would lead to screening of 
three-dimensional effects from the inhomogeneous part of 
the interaction. In the adsorption of polymers, it is custom- 
ary to use a so-called good solvent-one for which the rela- 
tion g>O holds. Recently, however, interest has been at- 
tracted to the use of 8-solvents-for which the relationg = 0 
holds-in adsorption problems, since this approach causes 
side effects associated with the dispersion in the lengths of 
the polymer chains (a  dispersion which is difficult to elimi- 
nate) to drop out of the problem. Let us consider both of 
these cases. 

Adsorption in a good solvent. The effects of polymer- 
chain inhomogeneity during adsorption and the effects of 
three-dimensional interactions cannot be taken into account 
simultaneously within the framework of the recurrence rela- 
tion (7),  since there is an integration over the coordinates of 
all the preceding monomers in that equation, without consi- 
deration of their interaction with the nth monomer. In prin- 
ciple, these calculations can be carried out only with the help 
of the renormalization-group formalism. Even when that ap- 
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proach is taken, however, some serious difficulties arise. 
Specifically, even in the problem of the adsorption of a ho- 
mogeneous polymer chain it is necessary to carry out some 
lengthy calculations, and these calculations do not yield reli- 
able estimates of the critical indices. For example, the criti- 
cal index p [see ( 1 ) 1, which links the width of the adsorp- 
tion transition with the length of the polymer, was 
calculated in Ref. 7 to within terms of second order in 
& = 4 - d :  

When we substitute E = 1 and p = 0.65 into (41), we find 
that the terms of second order in E make a contribution 
roughly four times that of the terms of first order. Accord- 
ingly, it is more reliable to use the value8 q, = 0.59 found by 
numerical simulation. The average number of adsorbed 
monomers at the adsorption point is 

Using the estimates of Sec. 2, we find the length scale of the 
polymer at which the inhomogeneity becomes important: 

Comparing (42) and (41) with (2)  and (4) ,  we see that 
incorporating the three-dimensional interactions in a good 
solvent is equivalent to shifting the fractal dimensionality of 
the adsorbing surface by an amount 2p - 1 ~ 0 . 1 8 .  Since the 
chain at the adsorption point is definitely not a Gaussian 
chain because of the three-dimensional interactions, the 
length scale r, is related to the length scale of the chain n, , by 

where v = 0.59 (Ref. 9 )  is the index of the correlation length 
of a polymer in a good ~o lven t .~ '  

Adsorption in a 0-solvent. In this case the second term 
on the right side of (40) dominates the three-dimensional 
interactions. That term describes the extent to which a mon- 
omer of species 1 or 2 is attracted or repelled, on the average, 
by all other monomers in the chain. The last term in (40) is 
inconsequential. 

There can be two different situations: a )  The monomers 
which are attracted to the adsorbing surface are, on the aver- 
age, attracted to all other monomers in the chain. b) The 
monomers which are attracted to the surface are repelled by 
the monomers of the chain, and vice versa. 

If the chain consists of monomers of many species, there 
is no single-valued relationship between the interaction with 
the surface and its interaction with the other monomers, but 
it can be described by a correlation coefficient - l<a< 1, 
where the values a = f 1 correspond to cases a )  and b) .  

In general, the complete renormalization-group equa- 
tions consist of five equations for five different charges: the 
charges which describe the dispersion in the adsorption en- 
ergy and the three-dimensional interaction, the ternary 
three-dimensional interaction, and the binary interaction on 
the adsorbing surface. The fifth charge describes the correla- 
tion between the sign of the interacting monomer (or seg- 
ment of a chain) with a surface and the sign of its three- 
dimensional interaction with other monomers. We will 
derive and analyze the equations in a following paper; we 
content ourselves here with some qualitative remarks which 
are based on those equations. 

1) There always exists a critical length scale at which 
the different sequences begin to differ greatly in terms of 
their macroscopic adsorption picture, although this scale 
may be very large if the seed constants satisfy certain rela- 
tions. 

2 )  If purely three-dimensional effects lead to an in- 
crease in the dispersion of the three-dimensional interaction 
over some length scale,4 it will necessarily also induce an 
increase in the dispersion of the adsorption interaction. 

3)  If the dispersion of the three-dimensional interaction 
at the scales studied remains small, then for the adsorption 
of a macromolecule in case a )  the critical adsorption scale 
will be smaller than in case b).  

"Gorsberg and ShchakhnovitsS have studied the adsorption of a heteropo- 
lymer chain on a point and on a line in detail. 

''A dispersion in bond lengths can be incorporated quite easily, but it has 
no important consequences at large values of N. 

"Strictly speaking, this assertion is correct only in those lattice models 
(e.g., that of a square lattice rotated through 45") in which two mon- 
omers which are adjacent along the chain can be on the adsorbing wall 
simultaneously. Nevertheless, it is possible to reduce the problem of ad- 
sorption on a wall to the problem with a permeable plane for any model. 
The difference in adsorption energies may differ from kT In 2. 

4'The values given in parentheses correspond to a homogeneous polymer 
chain. 

5'The coincidence of the numerical values of the indices q and vin the case 
d = 3 appears to be simply fortuitous. 
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