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Quantum-mechanical formulas are used to investigate the photon emission probabilities in 
spontaneous transitions of electrons between Landau levels in a strong magnetic field B - B, . 
Estimates are obtained for the characteristic times that describe the change in the state of 
electrons in these transitions. The spectra and polarizations of quantum synchrotron radiation 
and of stationary synchrotron cooling radiation are calculated 

1. INTRODUCTION 

It has now been established that the magnetic field on 
the surface of a neutron star is close to the critical value 
B, = mZc3/efi = 4.4 X 1013G. Spontaneous transitions of 
electrons between Landau levels in such a strong field are 
significantly different from the case where B<B,. Studies of 
such transition B 5 B, are essential for elucidating physical 
mechanisms responsible for the generation of x-ray and radi- 
ation in neutron stars, and for comparing observed proper- 
ties of this radiation with physical conditions prevailing in 
the generation region. 

Single-photon transitions of electrons in a strong mag- 
netic field were examined in Refs. 1-4. The analysis given in 
Ref. 2 is subject to the error noted in Ref. 4, which means 
that all the results reported in the extensive series of papers 
subsequent to Ref. 2 are incorrect. Some authors (see, for 
example, Ref. 3 )  have used relativistically incorrect wave 
functions (this is discussed in Ref. 4) ,  which in turn has 
meant that spin effects that are important in the quantum 
region could not be investigated. A completely relativistic 
quantum-mechanical analysis of single-photon transitions 
was carried out in Refs. 1 and 4, but the properties of these 
transitions in strong magnetic fields were not investigated 
numerically. Analysis of two-photon synchrotron radiation5 
has shown that single-photon transitions are the main pro- 
cess responsible for the generation of radiation in a magnetic 
field. The special case of quantum synchrotron cooling of 
electrons was considered in Ref. 6 on the basis of numerical 
Monte Carlo calculations for a large number of single-pho- 
ton transitions. 

In this paper, we investigate single-photon quantum 
transitions of electrons in a magnetic field, and the basic 
properties of the generated radiation. By incorporating these 
results in the transfer problem that takes into account not 
only generation but also absorption, splitting, and scattering 
of photons, we can investigate, within the framework of a 
particular model, the emission of radiation by plasmas in 
ultrastrong magnetic fields. In Sec. 2, we consider the depen- 
dence of the transition probabilities on the magnetic field, 
the quantum numbers in initial and final states, and the di- 
rection of propagation and polarization of photons. In Sec. 

deduced from classical formulas (see, for example, Ref. 7) 
differ appreciably from these results because of the presence 
of quantum recoil and spin-reversal effects. 

2. PROBABILITY OF QUANTUM TRANSITIONS OF 
ELECTRONS IN A MAGNETIC FIELD 

The energy of an electron in a magnetic field 

is determined by its longitudinal momentump and principal 
quantum number n = 0, 1,2, ... (here and henceforth we use 
the system of units in which f i  = 1, mc2 = 1, and B, = 1). 
Apart from the quantum numbersp and n, a "pure" state of 
an electron is characterized by the spin component s along 
the magnetic field (s = + 1 means that the spin is aligned 
parallel or antiparalled to the magnetic field, respectively). 
We know that n = 0 and s = - 1 in the ground state. The 
amplitude for a spontaneous transition from the state 
6, (n,s) to the state 6, = (m,sl) with the emission of one 
photon is 

where the photon wave function is given by 

eikx 

A' ( x )  = e, 
( 2 0 ~ 7  'I' 

and corresponds to a plane wave with a wave 4-vector (w,k) 
and the polarization 4-vector e, = (0,e). 

It is common to distinguish between two photon polar- 
ization states: the state with the vector e"' lying in the (k,B) 
plane and that with e"' perpendicular to this plane. In a rec- 
tangular coordinate frame, with the z axis lying along the 
magnetic field B, these vectors can be assumed without loss 
of generality to be k = (0, wsine, wcose), e"' = (0, - cos8, 
sine), e"' = ( 1,0,O). The vectors e"' and e'2' correspond to 
the polarization of two normal waves in polarized v a c ~ u m . ~  

The wave function I), '"' ( x )  is obtained by applying the 
Lorentz transformation to the solution of the Dirac equation 
in a magnetic field in the case of an electron withp = 0 (Ref. 
A \ .  

3, we investigate the decay of excited states, and estimate the 7 ) .  

basic characteristic times governing their evolution. In Sec. E,,+I " u,"'(x) exp ( - i ~ , t )  
4, the calculated spontaneous transition probabilities are $ ~ " ( x ) = ( ~ )  - [ 2 E n  (E,+E,,)  1 "' ' (4) 

used to investigate the spectra and the polarization of sta- 
tionary quantum synchrotron radiation (SSR). The spectra where En, = ( 1 + 2nB) ' I 2  and the s~ inors  
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can be expressed in terms of the scalar function 

i n  
X n  (x) = - 

(h'n)"' (2"nl) 

In these expressions, a is the x coordinate of the center of 
rotation of the electron, R = h, /B 'I2, Xc is the Compton 
wavelength, and Hn is the Hermite polynominal. The nor- 
malization of the wave function (4)  corresponds to one ele- 
mentary charge in L 3. 

The transition rate between the state cn = (n,p, s) and 
the state cn = (m, q, st) with the emission of the photon 
( w , k )  with the polarization eti) into the solid angle d n ,  sub- 
ject to the conservation laws En = o + Em and p = q + k, 
is 

(End-1) (Emo+l) 
I (n, s-tm, s f )  1 ' d62, (En+Ena) (f~',,,+b'~,) (I-q cos OIE,) 

where a = 1/137 and 

I I ,  (n, s=* I+m, s'=-s 11" 

In these expressions, 

M(m, n)  = e r p  (-E/2) g'n-""2(m! In!) x~:L-m (g) , 

where L is the generalized Laguerre polynomial and 
6 = w2sin28 /2B. 

The total rate of the cn +cm quantum transition is ob- 
tained (7)  by integrating over the directions of emission of 
the photon and summing over the polarizations: 

Two types of transition, corresponding to different ini- 
tial and final spin states, can occur between the states 6, and 
(, :direct transitions ( + 1 + + 1 ) and transitions with spin 
flip ( + 1 - + 1 1. The rates of all these transitions are com- 
parable for B - 1 (see below). Since m = 0 in the ground 
state, the only possible spin component is ( - l ) ,  and the 
only possible cn +go transitions are ( + 1 -, - 1 ). 

For nB4 1, approximate expressions for the transition 
rates follow from ( 12) : 

It follows from (13)-(16) that, for nB& 1, 

>R(n,+l-+m,-1) >R(n,-l-+m,f I ) .  
This special case corresponds to the nonrelativistic classical 
limit in which transitions with spin reversal are suppressed. 

The probability of emission of a photon in a quantum 
transition depends on the direction of its wave vector and 
polarization. For a given initial quantum number n, the 
probability of emission of a photon energy wnm depends on 
the "harmonic number" Y = n - m (Fig. 1 ). For nB ( 1, the 
angular distribution of radiation with Y = 1 is described by 
the well-known 1 + cos28 law; when Y >  1, the angular dis- 
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tribution of the cyclotron harmonics is - ( ~ i n 8 ) ~ " -  " . Ac- 
cording to ( 13 )-( 16), the intensity of the v > 1 harmonics 
decreases in this approximation in proportion to (Bn ) " ?" 
for transitions without spin reversal (when n ) v )  1 ) . The 
contribution of transitions with spin reversal to the emission 
of radiation into a given harmonic can be neglected. 

For B- 1, the relative contribution of higher-order har- 
monics to the spontaneous transition probability is found to 
be higher (for 0 5 90" it may even predominate), and transi- 
tions with and without spin reversal may become compara- 
ble in intensity. An important feature of transitions in a 
strong field is the "broadening" of the angular distributions 
of the higher harmonics as compared with the weak-field 
case (Fig. 1 ). This is due to the significant influence of recoil 
effects. 

At angles close to the direction of the magnetic field, the 
two linear polarizations of all harmonics with v> 1 occur 
with practically equal probability, and the radiation as a 
whole is unpolarized. As 0- 90°, the polarization of radi- 
ation due to transitions without spin reversal increases and 

FIG. 1. Angular distribution of radiation emitted in different types 
of transition for B = 1, n = 30, and p = 0 (relative units). Curves 
A, B, C, Dcorrespond to the v = 1,10,20,28 harmonics, respective- 
ly; the solid curve corresponds to polarization in the (k, B) plane, 
and the broken curve to polarization at right angle to this plane. The 
broadening of the distribution in the (30, + 1 ) - (20, * 1 ) transi- 
tion in magnetic fields B = 1 (a)  and lo-' (b)  is illustrated in the 
insert. 

finally reached 100% at 9 = 90" (Fig. I ) .  The polarization 
vector is then perpendicular to the (k, B) plane. Conversely, 
for transition with spin reversal ( + 1 - - 1 ), the linear po- 
larization with vector e in the (k, B) plane rises to 100% as 
8- 90". For transitions with spin reversal ( - 1 + + 1 ), the 
degree of polarization may vary nonmonotonically as 0 in- 
creases from 0 to 90": at first, the polarization is perpendicu- 
lat to the (k, B) plane, but is then replaced with polarization 
parallel to this plane; it reaches 100% when 8 = 90". 

The total rates of transitions (12) from the state <, 
depend significantly on the magnetic field (Fig. 2a). In a 
weak magnetic field with nB< 1, direct transitions 
( + 1 -, + 1 ) with the emission of low harmonics ( 1 <v<n) 
have the maximum rate, whereas transitions with spin rever- 
sal are strongly suppressed [see ( 13 I-( 16) 1. As v increases, 
the rate of the ( + 1 - + 1) transitions decreases as com- 
pared with the rate of ( - 1 + - 1 ) transitions: for v 5 n, the 
first of them turns out to be even lower than the rate of tran- 
sitions with spin reversal ( + 1 - - 1 ). This is so because 
the direct transition from the (n, + 1 ) state to the ground 

FIG. 2. Rates (in s- ' )  of (n, s-m, s') transitions: 
( a )  for n = 30 and different s and s', as shown 
against the figures; (b) for constant v = 1 (solid 
curve) and v = 10 (broken curve) and different fi- 
nal quantum number m. 
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state (0, - 1 ) is forbidden. We therefore conclude that, 
even in a weak field, quantum effects may have a significant 
influence on the emission of the higher harmonics. 

In a strong magnetic field, the rates of transitions with- 
out spin reversal for given n and different v are found to 
differ by less than an order of magnitude (Fig. 2a). For the 
lower harmonics ( 1 < Y  g n ) ,  the rates of transition with spin 
reversal are low (similarly to the weak-field case). They in- 
crease with increasing Y,  and become comparable with the 
rates of direct transitions for the higher harmonics (v  5 n ) . 

The rates of transitions corresponding to emission into 
a given harmonic depend on the final quantum number m 
(Fig. 2b). When (v  + m)B< 1, the rates of direct transi- 
tions increase with increasing m, but the rates of transitions 
with spin reversal are found to decrease [see ( 13)-( 16) 1. 
For ( Y  + m ) B 2 1, the increase in these rates is replaced by a 
slow reduction. In the classical nonrelativistic limit 
( Y  + m ) B 4  1, and for constant m, the transition rates de- 
crease with increasing Y.  For B <  1, the emission of higher 
harmonics can be the dominant effect only for 
(m + Y)B 2 1. In a strong magnetic field B- 1, the rates of 
direct transitions and transitions with spin reversal are 
found to decrease monotonically with increasing m, and this 
is much more rapid in the second case. 

3. DECAY OF EXCITED ELECTRON STATES 

An electron that is initially in an excited state 
f, = (n,s) eventually reaches the ground state (, after 
successive spontaneous transitions. In general, the complete 
description of the transition involves a summation of the 
squares of the probability amplitudes for the f, -lo transi- 
tions with the emission of J = 1, 2, 3 or more  photon^.^.'^ 
The main contribution to the probability of a J-photon tran- 
sition is provided by the resonant part for which the energies 
of all the emitted photons are equal to differences between 
quantum levels En > ... E, > ... > E,. The spin degeneracy of 
energy states means that the expression for the total proba- 
bility of the f, +lo J-photon transition contains terms due 
to spin interference. However, it can be shown that these 
terms vanish after integration over the photon directions of 
propagation. This ensures that the probability of the 6, - co 
J-photon transition can be expressed in terms of the product 
of the probabilities of independent single-photon transitions 
between "pure" states. 

It follows that the total rate of decay of an excited state 
c, (n, S) is determined by the sum of all single-photon transi- 
tions to all states f, with m < n: 

R(c",)= f i ( ~ ~ - + C , ~ ) .  (17) 
r,i c n 

sl=,l 

The lifetime of the state f, is T, (5, ) = R - ' (6, ). 
The relaxation time from the initial state f, is also phy- 

sically meaningful: it is the time T, in which the probability 
of finding the excited state f, with 0 < m<n falls by a factor 
of e.  Obviously, r,(f, ) is always greater than T, (5, ). The 
time r2(Cn ) is determined from the condition 

where bco(t) is the probability that the particle is in the state 
f o  at time t. In general, the determination of T, (f, ) requires 
the solution of the following set of transport equations: 

for all the intermediate states f, = (k,s) ,k = n,n - 1, ..., 0. 
In the nonrelativistic approximation nB4  1 [see ( 13)- 

(16)] ,  we can put 

for electric dipole transitions, and the rates of other transi- 
tions can be assumed to be zero. In the case of the initial state 
(, (-)  = (n, - 1 ), the set of equations given by ( 19) has the 
simple solution 

where Cf: is the number of combinations of k from n. It 
follows from (20) that 

With nB< 1, but n% 1, we have ~ , / ~ , = n l n n .  
The electron cooling time in a magnetic field, r,(f, ), 

can be determined from the condition for the mean trans- 
verse energy to fall by a factor of e in the (, +<,, transition: 

k < Z  
s =+i  

Like T, (f, ), this time can be found by solving (19). In the 
nonrelativistic limit, nB4  1, the cooling time from the initial 
state f, '-' is independent of the initial quantum number and 
T~(( , ( - ) )  =RO-'. 

The times T, and T, for the states f, (+' can also be esti- 
mated in the nonrelativistic limit nB4 1, but we must then 
take into account transitions with spin reversal ( 1, + 1 +0, 
- 1 ) whose rate can be estimated as - BR,. For n $1, the 

time r,(C,'+)) is greater than r2(f, (-I) by a factor of about 
B -' (since a transition with spin reversal should take place), 
and the estimated r3 (6, (+) )  does not differ from r3 (g, '-') . 

Figure 3 shows the T,, T,, and T, contours for different 
values of B and En (the longitudinal momentum in the ini- 
tial s ta t i f ,  is assumed to be zero). It is clear that, when 
n = 1, these times are equal for each of the two spin states. 
For constant B, the increase in En leads to a reduction in T,: 

the corresponding contours deflect towards lower fields. 
The bending of these curves for nB 2 1 is due to relativistic 
effects. The maximum difference between the values of r ,  for 
f, ( - )  and (+ )  is observed for n = 1, and the corresponding 
contours approach one another as n increases. 

In contrast to T,, the relaxation time 7, increases with 
increasing En : the T, contours bend toward stronger fields. 
This can be readily calculated, but only in the nonrelativistic 
limit [see (21 ) 1 : the corresponding curve segments are 
shown in Fig. 3. In the same limit, the T, contours are satis- 
factorily described by the curves obtained as a result of clas- 
sical estimates. ' 

In the general case, nB 2 1, the relaxation time T, and 
the cooling time T, must be estimated with allowance for the 
contributions of all the intermediate spontaneous transi- 
tions. For given initial state f, , there are 3" -' possible tran- 
sitions to the ground state. It is convenient to introduce the 
so-called "transition channel" K corresponding to a particu- 
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FIG. 3. Lines of equal T,, T,, and 7, for different values of B and 
E = (1 + 2 n ~ ) " ~  - l ( ~ - 1 0 - ' ~ ,  b 1 0 - 1 7 ,  c-3.7X d-lo-'' S: 
the solid and broken curves correspond, respectively, to T, (n, - 1 ) and 
T, (n, + 1);  the dot-dash curve represents T, estimated from the classical 
formula, dotted curve-7, estimated for nB( 1. The condition n = 1 cor- 
responds to the boundary I whereas the possibilities of the calculation 
(n = 200) are indicated by boundary 11. Curve 111 shows the region in 
which the approximation involving partial allowance for recoil 
(q, 2 )  (0.1 is valid (see text). 

lar sequence of single-photon transitions between "pure" in- 
termediate states { { i ' K ' ) .  The probability that a given chan- 
nel will be present can be represented by 

The concept of the transition channel helps in obtaining rela- 
tively simple formulas for calculating emission spectra due 
to the spontaneous decay of excited states, in which the con- 
tribution of a large number of possible single-photon transi- 
tions is taken into account. 

4. PROPERTIESOF PHOTONS EMITTED BY ELECTRONS IN A 
MAGNETIC FIELD 

It is usual to consider two types of emission by electrons 
in a magnetic field: SSR and synchrotron cooling radiation 
(SCR). In the case of SSR, it is assumed that some physical 
process (e.g., collisions) maintains the stationary particle 
energy distribution F(n,p). In the thermal equilibrium, this 
distribution is a function of temperature: F = F, (ng). The 
spectral density of the SSR photon number emitted by Ne 
electrons per unit time can be written in the form 

= 8. j d p ~  ( n ,  p )  ~ R ( I . - + s . ) ~  ( o - o n m ( p )  ). 

The distribution function for the radiating electrons can be 
regarded as stationary if the thermalization time ro is much 
less than the lifetimes of all the excited states. 

In the case of SCR, it is assumed that, initially ( t  = O), 
the ensemble is characterized by a distribution function 
Fo(n,p). For t > 0, the excited states decay spontaneously 

and, after a sufficiently long interval of time, t)r2, all the 
electrons are in the ground state The spectral density of the 
SCR photon number emitted by the Ne excited electrons in 
a time t , r2 is 

If the quantum levels of an ensemble of electrons are 
excited with characteristic time ~ ~ ) r ~ ,  then an individual 
electron will occupy the ground state practically at all times, 
and the fraction of excited particles in the ensemble is -r2/ 
T,, 4 1. SCR generation is then a stationary process: the spec- 
tral density dN/dodndt is then obtained from (25) by re- 
placing the distribution over the initial states, Fo(n,p), with 
the probability ~ ( n , ~ )  of excitation to the state f, per parti- 
cle per unit time. 

For thermal synchrotron radiation (TSR), the total 
power radiated by the ensemble of electrons at a temperature 
T is ETSR -Ne T5-'. The power radiated in the form of 
stationary SCR is determined by the charateristic level exci- 
tation time: E,,, -Me TrO-I - EscR Since r22 7, 

holds, the condition for the generation of stationary SCR, 
r2 g ro, leads to E ,,, g E ,,, . 

Known probabilities R ({, - f, ) of quantum transi- 
tions can be used to calculate the intensity, spectrum, and 
polarization of TSR for any Tand B. Figure 4 shows the TSR 
spectrum for B = 0.03 and 0.1 at the temperature T = 0.2 
for 0 = 90". As the field decreases, the shape of the spectrum 
approaches the curve deduced in Ref. 7 by classical calcula- 
tion. For "quantum values" of the parameters B and T, three 
factors have an important influence on the spectrum: ( 1 ) the 
dependence of the excited-state population on n (when 
En 2 T, the population decreases exponentially), (2)  transi- 
tions with spin reversal, and (3)  quantum recoil effects (see 
also Ref. 12). 

Direct quantum mechanical calculations on SCR are 
difficult: the distribution function for the intermediate states 
over the longitudinal momenta is determined by the totality 
of recoils due to all photons emitted in all previous transi- 
tions. Allowance for these recoils becomes significant when 
the photon energy is comparable with the initial electron 
energy. A transition from a state 6, withp = 0 to a state with 
m < n can occur as a result of direct f n  -+<, transition, or as 
a result of a cascade 6, - <, - ...{, . The total probability of a 
cascade transition can be greater than the direct transition 
probability. The spread of longitudinal momenta in a level m 
is determined by the total mean square recoil momentum: 

where the contributions (q,, '), are due to all the {, -6, 
transition channels. Suppose that, for some channels, 
(q,, 2)K 2 1. When the probability of such channels is low, 
the quantity given by (26) can be much greater than unity. 
This means that, in the calculation of the decay of the inter- 
mediate state {,, the corresponding longitudinal momen- 
tum can be set equal to zero. 

For a fixed initial state c, , the momeritum (q,, 2 ,  that 
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"accumulates" in the intermediate state [, increases with 
decreasing m, reaching a maximum for m = 0. Consequent- 
ly, the condition ( q ,  ,') < 1 determines the attainable limit 
(n = n,,, ) of the approximation relying on the partial in- 
clusion of recoil, in which the recoil momentum is taken into 
account when the characteristics of the radiated photons are 
calculated, but is ignored in the description of the intermedi- 
ate electron states. When the initial state 6, is characterized 
by mean momentum ( p ,  ) = 0 and mean square momentum 
( p ,  2 ) ,  partial inclusion of the recoil effect is possible when 
the more general condition ( q ,  ,2) < max ( 1, (p ,  2 ,  ) is satis- 
fied, where (q, :) corresponds to the decay of the state 5, 
withp = 0 [see (26) 1. In the approximation in which recoil 
is partially taken into account, expressions (25) and (26) 
can be transformed to a recursive form. 

Figure 4 shows the SCR spectra calculated in the above 
approximation for B = 0.03 and 0.1 with T = 0.2. Compari- 
son of the SCR and TSR spectra for given values of B and T 
shows that the latter spectrum is softer. This is not unexpect- 
ed, since for each photon with energy corresponding to a 
higher harmonic there is in the second case a larger number 
of photons corresponding to lower harmonics. In the classi- 

FIG. 4. The spectrum of thermal synchrotron radiation ( A )  and 
thermal synchrotron cooling radiation ( B )  for T = 0.2 and 9 = 90', 
calculated for a step of Ado = 0.01. The dashed line represents 
the degree of linear polarization P; o, is the cyclotron frequency 
(in the chosen units, w, = B ) .  

h l - m ,  + 1) (seeFigs. 1 and2a) .At8=90", thisradi-  
ation is polarized at right angles to the magnetic field. For 
nB X 1, the radiation includes an appreciable contribution 
due to magnetic transitions with spin reversal. At 8 = 90", 
this radiation is polarized along the direction of the magnetic 
field (Fig. 1 ). The quantum effect due to spin reversal is thus 
seen to lead to the depolariztion of SCR and TSR. 

In the case of the lower harmonics, depolarization ap- 
pears in the form of narrow features on the spectrum (see 
Fig. 4) .  

Depolarization is a maximum in the right-hand wing of 
the profile of the first harmonic, which corresponds to the 
6, -+{, -, transitions between the lowest-lying levels with 
n X 1. As n increases, the energy of photons radiated as a 
result of n-n - 1 transitions shifts toward the left-hand 
low-frequency wing of the profile. The probability of transi- 
tions with spin reversal is then found to fall rapidly (Fig. 
2b), so that depolarization is reduced. In the case of the 
higher harmonics, which merge into the continuous spec- 
trum, spin reversal leads to overall depolarization (Fig. 4),  
and the degree of linear polarization decreases with increas- 
ing radiation frequency. 

cal region B& 1, the SCR and the TSR spectra differ to a 
much greater extent than in the quantum region (see Ref. 7 ) .  5- DISCUSSlON AND CONCLUSlONS - - 
For given B, the difference between the quantum SCR and The quantum approach is essential when it is necessary 
TSR spectra increases with increasing temperature. to take into account the quantized motion of electrons, the 

An important feature of synchrotron radiation is its po- quantum recoil, and the spin reversal accompanying the 
larization. In the nonrelativistic limit, nB( 1 holds, and the emission of a photon. Whether or not the first condition is 
emission of photons is largely due to electric transitions (n, satisfied depends on the average quantum number E evaluat- 
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ed over the electron ensemble. When 7i $1, quantization of 
the motion of electrons can be ignored. This inequality can 
also be written in the form B(X, (En - 1 ) or B( T( 1 + T) 
where z, is the average energy and T = - 1 is the aver- 
age temperature of the particles. 

Recoil and spin reversal play an important role when 
the final state is close to the ground state. When such transi- 
tions play are important in decays of excited states with 
n) 1, quantum-mechanical calculations are essential for de- 
termining all the basic characteristics of synchrotron radi- 
ation. When low harmonics with v(n predominate in de- 
cays for levels with n $ 1, estimates of integrated quantities 
can be deduced from classical formulas. However, the quan- 
tum-mechanical calculation is always essential for the de- 
scription of the properties of the higher harmonics with 
Y 5 n. 

The synchrotron radiation flux density has a maximum 
at the energy -BE 2n (Ref. 13) in both the classical and the 
quasi-quantum approximations. When this energy corre- 
sponds to harmonics with v < Z ,  for which the energy of the 
emitted photons is < En - 1, the classical formulas are val- 
id. Hence the second condition for the validity of a classical 
approximation can be written in the form BE,, <zn - 1 
[or, in the case of a thermal distribution, B( 1 + T)2 < TI. It 
is clear that the second of the above two conditions is the 
more stringent, and it is indeed this condition that deter- 
mines the limit for the validity ofthe classical approximation 
(see Ref. 7) .  When B2 T ( l  + T)-', quantum transitions 
must be examined when synchrotron radiation due to an 
ensemble of electrons is investigated. 

The evolution of the excited states of electrons is conve- 
niently described in terms of the level lifetime, the excited- 
state relaxation time, and the energy loss time. The condi- 
tions for the generation of synchrotron radiation can be 
found by comparing these quantities with the characteristic 
time for the excitation of transverse degrees of freedom in 
the ensemble. The difference between the SCR and TSR 
spectra in the quantum region of parameter value is smaller 
than in the classical region. The principal difference is due to 
the radiated power: when the characteristic time for the exci- 
tation of transverse degrees of freedom is r0> T,, the power 

carried by stationary SCR is lower by the factor r3/r0 than 
the power carried by TSR. 

Transitions with spin reversal lead to strong depolariza- 
tion of the radiation. The main difference between classical 
and quantum synchrotron radiation from electrons in a 
strong magnetic field is due to polarization. 

Calculations of quantum transitions of electrons (and 
positrons) in a strong magnetic field can be used to deter- 
mine the characteristic lifetime and the evolution of excited 
states, as well as the intensity, spectrum, angular distribu- 
tion, and polarization of the generated radiation. These re- 
sults are important for constructing physical models of 
many astrophysical objects, including radio pulsars, gam- 
ma-pulsars, and sources of gamma-ray bursts, thought to be 
from neutron stars with surface magnetic fields 2 10'' G. 

The authors are indebted to A. A. Kozlenkov for useful 
discussions and to A. I. Nikishov for numerous useful sug- 
gestions. 
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