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Supersymmetric SU(N) and O(N) gauge theories without matter are considered. A construction 
is proposed that can be used to evaluate the condensate (TrAA ) in such theories. It is found that, 
iq both these cases, (Trilil ) = XG3exp (27~ik /T(G) ) = 0, where XG is a scale parameter, 
G = SU(N) or O(N), k is an integer, and T(G) is the Dynkin index divided by two. In the case of 
unitary groups (TrAA ) .",,, assumes N different values, whereas in the case of orthogonal 
groups, (TrAA ) ,,,, assumes N - 2 values. The degeneracy of the vacuum is then equal to N and 
N - 2 (for 8 = 0), respectively. 

1. INTRODUCTION 

We shall examine supersymmetric Yang-Mills theories 
and will show that, in such theories with SU(N) and O(N) 
gauge groups (without matter), a nonzero vacuum expecta- 
tion value of AA arises dynamically, i.e., 

where A is the gluino field. 
There are now several well-known arguments in favor 

of gluino condensation, but they refer mostly to unitary 
groups (see below). The question of gluino condensations 
became particularly acute after it was suggested' that a con- 
densate such as ( 1) could be used within the framework of 
the superstring approach for supersymmetry (SUSY) 
breaking. We shall show below that, in theories with unitary 
and orthogonal gauge groups, the condensate ( 1 ) appears in 
the strong coupling regime (symplectic and exclusive 
groups will be examined in a separate publication). 

Our proof will be based on a combination of two ideas, 
namely, (a )  the observation made in Ref. 2 that the intro- 
duction of matter leads to spontaneous (partial or complete) 
breaking of the gauge group and (b)  the Ward identities of 
Ref. 3, which can be used to determine exactly the depen- 
dence of the condensates on the parameters of the Lagran- 
gian. 

Before we explain the essence of the proposed method in 
greater detail, we must say something about the literature on 
this topic. At the same time, we shall establish the connec- 
tion with another interesting problem, namely, the evalua- 
tion of the Witten index4 in supersymmetric gauge theories. 

By definition, the index I, is equal to the number of 
boson states with zero energy minus the number of fermion 
states with zero energy (we are assuming that infrared regu- 
larization has been introduced into the theory, so that the 
spectrum of the Hamiltonian is discrete). The analysis given 
in Ref. 4 shows that I, is an invariant of the volume in which 
the supersymmetric system is considered, etc. (I, does not 
change under a continuous variation of the parameters of the 
Hamiltonian). In other words, I, can be evaluated in the 
weak coupling regime, which enables us to determine I, for 
complex theories such as four-dimensional gauge models. In 
this situation, I, is equal to the number of different vacuum 
states. 

Without going into further details (see Ref. 4),  we re- 

call that, according to Ref. 4, supersymmetric gluodynamics 
(i.e., theories without matter) shows that 

where r(G) is the rank of the gauge group G. In the case of 
unitary groups, G = SU(N), the rank is equal to N - 1, and 
the result given by ( 1 ) reduces to I, = N. This was obtained 
in Ref. 4 in two different ways, one of which ("twisted" 
boundary conditions) appears to be completely reliable. If 
this is so, then we have to ask: what is the significance of the 
existence of N-degenerate vacuums in the SU(N) model? 

The answer to this question will be given below. The 
point is that this model exhibits discrete Z,, symmetry that 
is the "residue" of classical U( 1 ) invariance of the Lagran- 
gian, broken by the axial quantum-mechanical anomaly. 
The nonzero expectation value ( 1 ) spontaneously breaks 
Z,, to Z, and, in accordance with general rules, this results 
in N-degenerate vacuums. 

Gluino condensation in the case of SU(N) groups in 
thus seen to be at least in accord with (2).  Unfortunately, in 
the case of O(N) groups, the same hypothesis ( 1) yields 
N - 2 vacuums, whereas (2)  leads to I, = [N/2] + 1 
where the square brackets represent the integer part. 

The results given below establish unambiguously the 
existence of the condensate (1)  for SU(N) and O(N) 
groups. The consequence of this is that the correct value of 
I, for SUSY gluodynamics with the O(N) gauge group is 

IIv=N-2, G=O ( N )  . ( 3 )  

The relation given by (2) is then incorrect. 
We now turn to another line of argument, developed in 

Refs. 5 and 6 .  The discussion given in Ref. 5 is based on an 
analysis of the correlation function 

where T= T(G) is one-half of the Dynkin index for the asso- 
ciated representation of the group G: 

Tr(T"Tb) =T ( G )  Gab; (5 

where T a  are the generators of the group in the associated 
representation. When the Lagrangian is supersymmetric, 
the correlator (4)  cannot depend on the arguments x ,  (even 
for spontaneous SUSY breaking7). In other words, 
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If it were possible to show that the constant on the right- 
hand side of (6)  differs from zero, then, using the clusteriza- 
tion properties for xi -+ CO,  we would conclude that 

The existence of the condensation ( 1 ) and the fact that 

Iw=T (G) ( 8 )  

follow directly from this. (We note that (TrAA ) is then an 
order parameter that equals I"=, a total of T values.) The 
question as to the value of the right-hand side of (6) is a 
dynamic one. Theoretical advances in this area have been 
quite dramatic. First, it was shown in Ref. 5 that, for small 
values of x,,i.e.,x, <AP1(A is a scale on which the gauge 
constant formally becomes infinite), an instanton of dimen- 
sion p- lx, - x, 1 provides a nonzero contribution to 
II(x,, ..., x,) and, in accordance with general conditions, the 
result does not depend on the arguments xi. Next, the fol- 
lowing hypothesis was formulated in Ref. 6: to the extent 
that one is dealing with a correlation function at short dis- 
tances, the one-instanton contribution (due to instantons 
with p- IAxl) should completely saturate n(x , ,  ..., x,). If 
this were the case, our own research would be necessary. 
Unfortunately, it was demonstrated in a subsequent papern 
that the contribution of small instantons is compensated 
(partially or completely, depending on the particular mod- 
el) by the contribution acquired over long distances (i.e., in 
supersymmetric gluodynamics under the strong coupling re- 
gime, which cannot by controlled theoretically ). 

It follows that an analysis performed within the frame- 
work of Refs. 5 and 6 can at best be looked upon as indicating 
the existence of the gluino condensate. An analogous status 
must be assigned to toron calculations9, which are valid only 
in the case of SU(N) groups, and to the arguments given in 
Ref. 10 and based on simple effective Lagrangians that im- 
plement the anomalous Ward identities. 

The solution of supersymmetric gluodynamics, as a 
strong coupling theory, would provide a direct proof of ( 1) 
and (8), but this is well outside existing possibilities. We 
shall therefore outline an indirect method that will be used 
below to prove these results. 

We start with SU(2) gluodynamics. The first element 
of the construction is the introduction of two auxiliary su- 
perfields of matter in the fundamental (doublet) representa- 
tion, namely, Sand T. These additional fields are equipped 
with the mass term mST I F  + h.c. In the limit m - C O ,  the 
matter fields leave the spectrum and we return to the original 
model (supersymmetric gluodynamics) in which we wish to 
determine (TrAA ). 

The second step is to consider the opposite limit, name- 
ly, m - co . For small m, such that m < A, the SU( 2) gauge 
invariance of the model is spontaneously broken, the sym- 
metry breaking is complete,' and all three gauge bosons ac- 
quire the mass m ,: 

The important point is that, as m -0, the mass of the vector 
becomes m , , A and we enter the weak-coupling regime in 

which all the quantities in which we are interested are reli- 
ably determined. In particular, 

where Cis a nonzero constant to be calculated. 
The third step is to establish the general dependence of 

the AA condensate on m. It follows that the Ward identities 
based on SUSY3 that" 

whatever the dependence on the mass parameter m. Com- 
bining ( 1 1 ) with ( lo),  we then find that as m + cc, (i.e., in 
pure gluodynamics), we have 

where is the scale parameter of supersymmetric gluodyna- 
mics. Having determined the gluino condensate in SU(2) 
[or O(3) ] gluodynamics, we can generalize the construc- 
tion to an arbitrary unitary (orthogonal) group. Actually, 
the changes involve only a single point, namely, the particu- 
lar choice of the auxiliary multiplets of matter. 

2. SU(2) Model 

In superfield language, action is given by 

where Wis the chiral superfield 

p = 1, 2 is the spinor index, and f = 1,2  is the flavor index 
(we have introduced two chiral superfield doublets). 

A detailed description of the situation in the theory 
with the above Lagrangian can be found in the review given 
in Ref. 11 (which also provides a full explanation of the 
notation used below). Here, we confine our attention to the 
following remarks. 

As m -0, the scalar-field self-action potential obtained 
from ( 13) has valleys, i.e., planar directions along which the 
D-terms vanish. Specifically, these directions can be parame- 
trized as follows: 

where 4~~ is the lower component of the superfield 
SF ( f = 1,2). The energy of the configuration ( 15) is zero 
for arbitrary v. Moreover, when m = 0, the values of the F- 
terms are also zero (effects connected with the fact that m is 
not zero will be discussed later). 

The infinite degeneracy of vacuum for m = 0, i.e., the 
existence of the valley (15), occurs not only at the classical 
level, but also when all orders of perturbation theory are 
taken into account, and is a consequence of the renormaliza- 
tion theorems.'' The question now is: is degeneracy lifted by 
nonperturbative effects? 

Before we answer this question, we must examine the 
structure of the model for v # O  in greater detail. For gv, A, 
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the theory splits into two sectors, namely, heavy particles, 
i.e., the triplet of massive gluons, m, =gv, the triplet of 
Dirac spinors, and the triplet of real scalar fields of the same 
mass, and light particles, which involves only one superfield 
-Sd( =S2) that is a singlet in both the color and the flavor 
SU(2) groups. At energies much smaller than gv, only light 
particles belonging theS supermultiplet survive in the spec- 
trum of the theory. The structure of the vacuum of the theo- 
ry and, in particular, the vacuum condensates, is uniquely 
determined by the Lagrangian describing the dynamics of 
the "sterile" light field S '. We emphasize that, when gv) A, 
integration over the heavy degrees of freedom and the con- 
struction of the effective low-energy Lagrangian for S con- 
stitute a procedure that has been justified parametrically. 

We now return to the superpotential problem. This con- 
tains the classical term mS21, + h.c. which, strictly speak- 
ing, destroys the valley and raises its bottom, so that 

while tending to "bend" the theory toward the "unfavor- 
able" point u = 0. Fortunately, there is also the reverse ten- 
dency because instantons generate the superpotential, tend- 
ing to increase v. Specifically,2~1' 

where AS,,,, is the instanton contribution to action and Cis a 
nonzero constant to be calculated. The important point is 
that, when gv) A, the theory is completely determined in the 
infrared region. In particular, the superpotential ( 17) is due 
to an instanton of dimensionp- v-', and all the calculations 
are completely controlled theoretically. 

When the superpotential contains two terms, namely, 
the mass term and the instanton term ( 17), the functional 
degeneracy of vacuum is found to disappear, and the poten- 
tial energy for the configurations ( 15) vanishes only for cer- 
tain values of u. These values make the F-term vanish: 

rn A5 - S-C - 2S=O, 
2 (SZ) 

or, in other words, 

v2=f2 (CA5/m) 'I2. 

When m is small, the solution for the vacuum field does 
actually satisfy the condition gu) A, which justifies the sin- 
gle-instanton approximation in ( 17), and the procedure as a 
whole. We draw attention to the fact that v2 assumes two 
values in vacuum ( u 2  is a gauge invariant). These are the 
same two vacuums that are predicted by the Witten index for 
the SU(2) theory. 

Finally, to determine the gluino condensate, we use an 
operator relation,13 frequently referred to as the Konishi 
anomaly in the literature: 

When the average is taken over the supersymmetric vacuum 
state, the left-hand side vanishes and, consequently, 

Let us summarize the situation so far. The value of the 
condensate ( 1 ) has been found in the theory with auxiliary 
matter multiplets. In the limit m 4 A, the right hand side of 
(20) is known reliably and has two values that are definitely 
nonzero. Our aim is to pass to the limit as m + a. This can be 
done by exploiting the observation made in Ref. 3 whereby 
we know precisely how (Trilil ) depends on a parameter of 
the Lagrangian, such as m. 

We now recall how this was done in Ref. 3. The theory 
defined by ( 13) exhibits anomaly-free U( 1 ) symmetry 

which is broken only by the mass term in the Lagrangian. 
The fact that the chiral transformation (21) does not con- 
tain an anomaly is most readily verified by using an instan- 
ton (which, as always, displays all the anomalies). Actually, 
,the chiral charge of the gluino is 1 and the chiral charge of 
matter fermions is - 2. However, in the model that we are 
considering, the instanton configuration actually has four 
zero gluino modes and two matter modes: 
4 X 1 + 2( - 2) = 0. The absence of an anomaly in the cur- 
rent 

can also be verified by standard methods [a and a in (22) 
are the spinor indices, and summation over f = 1, 2 is im- 
plied; the color indices are not shown explicitly 1. Next, 

and, consequently, 

j s x ( o  1 T {ha (01, a.1. (XI I o) 

= i jd4xt0 T {hh (0). 2mS2 (x) I ~-2fiS (x) 1 i) I O).onmeeter. 

(23) 

Since the spectrum does not contain massless particles, the 
left-hand side of (23) reduces to the commutator of Ai l  and 
the chiral charge, and is equal to 2 (Ail ). 

The correlator (T{AA,~  'S2)) , is obviously 
identically equal to zero by virtue of the above theorem on 
the correlation functions of the lower components of chiral 
superfields7 (of the same chirality). Hence it follows that 
(Ail ) is independent of E and not merely of m, and the right- 
hand side of (23 ) is equal to 4md (Ail )/dm. Thus, finally, we 
may conclude that (23) is equivalent to the following rela- 
tion: 

In other words, the square root dependence of (Ail ) on m, 
which is valid in (20) for small m, is in fact exact, which is 
clear from the general equations. It is now opportune to note 
that there are different parameters, and the question is which 
of them are considered constant under differentiation. To 
obtain the righthand side of (23) from md (Ail )/am, we 
must fix the gauge constant g, at the ultraviolet cutoff M,. It 
is obvious that this determines the scale parameter A: 

where the factor 5 in the denominator is the first coefficient 
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FIG. 1. Evolution of the effective gauge constant. Because of the differ- 
ence in the first coefficient ofthe Gell-Mann function in the regions below 
and above m, the quantity A is found to depend on m. 

of the Gell-Mann-Low function of the theory ( 13) with 
m - 0. For given M,, go (or, equivalently, given A )  and vari- 
able but large m, the scale parameter A characterizing the 
theory without matter, which survives below m, will vary 
(Fig. 1 ) in a way that can readily be determined by recalling 
that the first coefficient in the Gell-Mann-Low function is 
less than m, i.e., it is equal to 6 in the theory without matter. 
It is clear from Fig. 1 that 

and, consequently, 

In other words, in the limit as m - co, the gluino condensate 

is a quantity that is absolutely natural for the theory in which 
there is hypothetical confinement at distances -A-I.  

3. GENERALIZATION OF ARBITRARY N 

We begin by considering the chain SU(2) -+SU(3) 
-+ ... -SU( N). The existence of the gluino condensate in the 
groupSU(N - 1 ) unavoidably leads to the same effect in the 
group SU(N). To prove this, we again introduce two auxil- 
iary chiral superfields of matter in the fundamental repre- 
sentation, one N-tuplet S,, and one anti-N-tuplet Ta. The 
mass term then has the form 

FIG. 2. Loop generating the term (31) in the effective Lagrangian. The 
thick line represents fields that have acquired mass under spontaneous 
SU(N)  -SU(N - 1 )  breaking. 

spectrum and its effective Lagrangian determines the vacu- 
um structure. The mass term (29) tends to reduce v to zero, 
but the gluino of the condensate in SU(N - 1) generates2 a 
"repulsive" nonperturbative term in the superpotential. Ac- 
tually, integrating over the heavy fields (with mass 
m, = gu), we find from the loop in Fig. 2 that 

This interaction plus (Tr W2),,,,- ,) = X3 # O  guarantees 
that, at energies below A, the superpotential is2 

To prove this, we compare the F-terms in (3  1 ) with (32), 
subject to (30). The constant on the right-hand side of (32) 
can, in principle, be e~aluated and is not equal to zero. The 
dependence on (ST) on the right-hand side of (32) can be 
found from general considerations. The anomaly-free cur- 
rent that is the analog of (22) now assumes the form 

where the coefficients can readily be established from instan- 
ton calculus: 2N gl;ino modes protrude from the instanton, 
namely, one $, mode and one qbS mode. The combination 
given by (32) is the only invariant of the corresponding 
chiral rotations. Equating to zero the complete F-term 
[ (32) + (29) 1, we obtain the vacuum values of ST: 

m 
AS,,, = Gn d2B - S.P+h.c. 

2 
(29) 

For m = 0, there is a planar direction that is trivially para- 
metrized: 

The factor N - 1 in the exponent annuls the ( N  - 1 )-valued 
factor exp [2nik / ( N  - 1) ] in (TrilA ).,,,- ,, , and the fac- 
tor 1/N leads to the N-valued factor exp (2nik /N) typical 
forSU(N). For small m, we havegv$ A,  and all the approxi- 
mations made above are justified. 

So far, we have almost completely followed the line laid 
down in Ref. 2. We now use the anomalous relation given in 
Ref. 13 [which is essentially the same as ( 19) ] and immedi- 
ately arrive at the qonclusion that as m -0, i.e., in the weak- 
coupling regime, . 

When gv> A, the SU(N) color group is spontaneously 
broken to SU(N- 1) and, at low energies, we have the 
SU(N - 1) gluodynamics plus the singlet sterile field ST. 
The low-energy scale parameter is related to A by 

At energies below x, only the singlet field ~Tsurvives in the 

Finally, let us examine the Ward mass identities, which en- 
able us to cover the entire range from m -0 to m - m .  The 
latter limit corresponds to the SU(N) gluodynamics with- 
out matter. Starting with the current given by (33), and 
repeating the entire procedure described in Sec. 2, we find 
that 
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which proves the validity of (35) for arbitrary m. We also 
note, that for fixed A, and variable but large m, 

where ;is,,,, is the scale parameter of SU(N) gluodyna- 
mics. As expected, 

The entire scheme was found to be completely self-consis- 
tent but, as the attentive reader may have noticed; it relies on 
the requirement that the various quantities made up of inte- 
gers were equal. Before we proceed to the analysis of orthog- 
onal groups, it will be useful to examine the corresponding 
arithmetic in general form. 

The exponent x in (ST) -" in (32) was determined in 
two ways: (a)  by joining the scale parameters of the theory 
with the original group G and light matter on the one hand, 
and the theory obtained after the G- G ' breaking [see 
(30)], on the other, and (b) by considering the anomaly- 
free axial current. This leads to the requirement 

x=T,,/ (T-T , )  = (3T-3T'-T,) /2T1,  (38) 

where T= T(G), T '= T(G '), and T,,, is the corresponding 
index for matter: 

where the sum is evaluated over all the auxiliary multiplets 
of matter and T(R, ) is defined as follows: 

where the generators T a  of the group Gare taken in the given 
representation R. In the case examined above, 
T(SU(N) ) = N, we have T, = 2 x 4 = 1. We note the fact 
that the indices T coincide with one-half of the number of 
zero fermion modes of a given type that "stick out" from the 
instanton. This appears to be practically the simplest way of 
evaluating T. Next, the dependence of (TrAA ), on m is 
determined, on the one hand, dynamically [see (34) and 
(35) ] and, on the other hand, by the Ward mass identities 
[see (36) 1. For consistency, we must have 

Finally, for large m2, the condensate (TrAA ) must reduce 
to i b ,  i.e., to the scale parameter of the group G without 
matter (Xi = m T ~ / T  A(3T- T ~ ) / T  ) . Hence we find that 

In principle, this results in a set of restrictions that may con- 
tain a redundancy and may not have solutions. However, it is 
readily verified that all the relationships are simultaneously 
satisfied if 

The proposed program of proof by induction was found to be 
successful for the groups SU(N) because" 
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We can now readily generalize our discussion to a chain 

O(6)  ( = S U ( 4 ) ) - .  . . + O ( N ) .  

We now introduce a minor digression concerning the 
instanton in O(N) groups, which will be useful when we 
count the indices. It is well known that an instanton can be 
imbedded in O(N) in two different ways: (a)  by selecting a 
subgroup O(3) from O(N) and identifying the O(3) genera- 
tors with the SU(2) generators and (b)  by selecting the sub- 
group O(4) =SU(2) XSU(2) from O(N) and placing the 
instanton in one of the SU(2) "corners". The representation 
of O(4) is the (2,2) representation of SU(2) XSU(2). The 
first method yields the configuration with topological 
charge greater by a factor of two than the minimum. We 
shall confine our attention to the second method and reserve 
the designation "instanton" for it. 

For the group O(6) that coincides with SU(4), we al- 
ready know that gluino condensation does occur, and 
(TrAA ) assumes four possible values. We not introduce an 
auxiliary N-tuplet of matter into O(N), i.e., a chiral super- 
field V, with the mass term 

It is readily verified using the instanton, or directly, that 
T(O(N))  = N - 2, T, = 1. We shall assume that 
(TrAA ) # 0 in O(N - 1 ) gluodynamics. In that case, as 
m -0, the following superpotential is generated in the theo- 
ry:* 

and the gauge symmetry of O(N) is spontaneously broken to 
O(N-  l ) .SinceT=N-2,  T1=N-3 ,andT,=  1,con- 
dition (42) is satisfied. This means that we can repeat the 
entire analysis that was given for the SU(N) chain: from 
(43) and (44) we find the vacuum value of V2 which, as it 
turns out, is large for m -0. Next, we use the Konishi anom- 
aly to determine (TrAA ) in the weak-coupling regime 
(m-0). Using the Ward mass identities, we find that, as 
m- CO. 

which was to be proved. 

4. MANY-LOOP EFFECTS 

We shall now demonstrate that many-loop corrections 
do not in general arise if we use bare parameters. Although 
all the relationships given above were written in the single- 
loop approximation, the final results of the analysis are actu- 
ally accurate for all loops. This is so because supersymmetry 
leads to exact formulas for the lower components of chiral 
superfields. In particular, this applies to the gluino conden- 
sate (A '). 

When higher loops are included, the situation can be 
described in greater detail as follows. In Sec. 3, we used the 
single-loop approximation to obtain (35) which can be writ- 
ten in the following form for an arbitrary group: 

In this approximation, the parameter A is related to the ul- 
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traviolet cutoff Mo as follows: 

and the mass m of matter coincides with the bare mass m,. If 
we express the right-hand side of (46) in terms of the bare 
parameters, we find that 

(Tr hh) 

The central point is that the right-hand side, written in 
terms of the bare quantities, is exact. There are no higher- 
loop corrections. First, the exact dependence on m, was es- 
tablished above with the aid of the Ward identities (it is 
readily seen that it is precisely the bare parameter mo that 
appears in the proof). The proof that we have given forbids 
corrections that are logarithmic in M,/m,. Next, the ab- 
sence of nonlogarithmic corrections follows from general 
theorems on the nonrenormalizability of the superpotential 
in perturbation theory. We must add, that the well-known 
exactfl-function14 is completely consistent with the law that 
we have obtained, and is equivalent to the following result: as 
Mo is varied, the quantities Mo and go vary so that the given 
combination remains fixed. This fixed quantity is identical 
with the low-energy parameter x3 of gluodynamics with the 
group G, introduced earlier. As far as the parameter A is 
concerned (it appears in the theory with light matter), its 
determination with allowances for the higher-order loops is 
subject to arbitrariness because the renormalized mass m is a 
logarithmic function of A/m, and the logarithmic depend- 
ence on A/m may be distributed in different ways between A 
and m for different definitions of the renormalized mass. For 
example, the renormalized mass can be introduced as 

where y is the anomalous dimension of the matter field. The 
parameter A is then found from the equation 

This procedure of introducing renormalized quantities in- 
volves a relatively complicated logarithmic dependence that 
does not appear in the language of bare quantities. 

A few words now about the renormalization invariance 
of the left-hand side of (46). We not that, in the theory with 
matter that we are considering, the inclusion of higher-order 
loops ensures that (TrAA ) ceases to be renormalization-in- 
variant. The following combination is also independent of 
the normalization point: 

Tr W f ' [T, Tr WZ+16n2rnS2], 
3T (G) - T ,  

where y is the anomalous dimension of the matter field S. If 
we look at the lower component of this operator, we see a 
mixing of /2 with mq52. The fact that the above combination 
is renormalization-invariant follows, in particular, from the 
fact that it appears in the right-hand part of the anomaly in 
the supercurrent "IJ,, (see Ref. 15). We note that the ad- 

dition to W2 is identical to the right-hand side of the Konishi 
relation for D and is thus seen to reduce to the total 
derivative in superspace. Consequently, it disappears when 
the averages are evaluated over the supersymmetric vacu- 
um. The addition also disappears as we pass to gluodyna- 
mics, i.e., in the limit as m + cc . We emphasize that the coef- 
ficient in front of W 2  is not proportional to the &function 
(see Ref. 15). 

5. CONCLUSION 

It is thus clear that supersymmetric gauge theories ex- 
hibit a further suprising facet: without precise knowledge of 
the dynamics in the strong coupling regime, it is nevertheless 
possible to evaluate the gluino condensate absolutely reli- 
ably by using the inductive chain, i.e., by introducing the 
auxiliary matter field that reduces the gauge group G+ G ' as 
m -0. by generating the nonperturbative superpotential in 
the G theory with light matter, subject to the condition 
(TrAil ),, #O: by valuating (TrAA ) in the theory with the 
group G and light matter; and by extending the result with 
the aid of the Ward identities as m - cc . 

We have thus found a gluino condensate in supersym- 
metric Yang-Mills theories with the SU(N) and O(N) 
gauge groups without matter. In all cases, 

The condensate (TrAA ) assumes T ( G )  different values, 

T ( S U ( N )  ) = N ,  T (0 ( N )  ) 

which correspond to the T(G)-fold degeneracy of vacuum. 
The Witten index for SU(N) is I ,  = N. This is the same as 
the original formula4 and we have I, = N - 2 for O(N), 
which does not correspond to the result in Ref. 4, i.e., 
I ,  = r(G) + 1. The derivation given in Ref. 4 for orthogo- 
nal groups is erroneous because it makes use of the Born- 
Oppenheimer approximation in the form formulated there. 
This question will be examined in greater detail in a separate 
publication. We note that a strategy similar to our own was 
used in Ref. 16, where the aim was to establish the fact of 
spontaneous breaking of discrete Z2,-, to Z,  in O(N) 
groups. The authors of Ref. 16 attempted to introduce auxil- 
iary matter into O ( N )  gluodynamics in an amount that 
would completely break the gauge group O(N), and would 
reduce the theory to the situation in which weak coupling 
prevails. They thus find N - 2 solutions for vacuum and, en 
route, evalute the condensate (TrAA ). The only new aspect 
that we can introduce here is the use of the Ward mass identi- 
ties to fix the magnitude of the condensate in the limit of 
infinite mass terms, so that one essentially returns to the 
theory without matter. 

Let us now examine the degeneracy of the vacuum from 
a somewhat different standpoint. We know that gauge theor- 
ies contain a hidden parameter, i.e., the vacuum angle 8, and 
the physics of the situation is periodic in 8 (with a period of 
2 ~ ) .  In supersymmetric theories (without matter), the 
massless gluinos that are present in the Lagrangian ensure 
that none of the physical observables such as the spectrum, 
vacuum energy, and so on depend on 8. When we speak of 
the degree of degeneracy, we actually mean the additional 
degeneracy of the vacuum for given 8. 

In contrast to physically observable quantities, the con- 
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densate (TrAA ) may also depend on 8 in a particular way. 
Moreover, by investigating (TrAA ) as a function of 8, we can 
independently determine the degree of degeneracy of the 
vacuum (starting, of course, with the fact that (TrAA ) #O). 
To establish the law of variation of (TrAA ), we take into 
account the fact that the 8-term in the Lagrangian has the 
form 

We now redefine the field A: 

By virtue of the triangular anomaly, 

1 
d,,a,,=T (G) --- GaBaGafia, ar=XaJ 

16n2 
(50) 

the 8-term in the Lagrangian for A ' vanishes if 

a=-0/2T (G), 

so that 

(Tr kh>e=(Tr hh>e=o esp (i0IT (G) ) .  (51) 

The question is: how do we reconcile (5 1 ) with the periodic- 
ity in 8 for 8 = 277? The answer is relatively clear: there must 
be T(G)-degenerate states for which (TrAA ) differs by the 
phase factor exp (277ik /T( G) 1. According to ( 5 1 ), evolu- 
tion in 8 from 8 = 0 to 8 = 277 simply renumbers all the 

states within the cycle. A analogous situation was noted pre- 
viously in quantum chromodynamics with N, flavors.'' 

The authors are indebted to G. Veneziano for stimulat- 
ing suggestions and to V. Novikov and V. Chernyak for dis- 
cussions. 
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