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Solutions are obtained using the Hilbert principle and a reference frame with comoving time in 
which the velocity field is identified with certain components of the metric. A general solution is 
found for the spherically symmetric motion of charged dust, defined by three arbitrary functions. 
Synchronized solutions of the Einstein-de Sitter-Friedmann type are examined. Matter does not 
collapse to a point, but each layer in its interior is compressed down to only the classical 
electromagnetic radius of matter. A subclass of axisymmetric motions is obtained for rotating 
charged and uncharged dustlike matter with a Kerr-Newman metric in the external region. A 
general solution is also found for the spherically symmetric motion of a photon gas (with a 
nonconserved number of particles) and for a gas-dust mixture. 

1. HILBERT PRINCIPLE ANDTHE REFERENCE FRAME WITH 
COMOVING TIME 

One way of obtaining solutions in GTR is to use Hil- 
bert's principle2 which states that the consequence of invar- 
iance under arbitrary coordinate transformations is that, out 
of all the equations describing a set of fields in GTR, four are 
satisfied identically when all the others are satisfied. This 
principle is used in the Rainich geometrodynamics2 in which 
Maxwell's equations are a consequence of the equations of 
gravitation. The principle can be used much more effectively 
in hydrodynamics, where the field variables are the metric 
tensor and the velocity field: the latter can be identified with 
certain components of the metric tensor by a special choice 
of the coordinate frame, i.e., a system with comoving time 
(SCT) in which space coordinates are arbitrary and variable 
gravitational fields are described by a metric tensor of spatial 
separations y,, (the space part of the tetrad 
TP, a, i = 1,2,3), and the time part of the tetrad is directly 
related to the velocity field in the medium: 

. . qoo=Uo-l/f, qoi=U7zV7 If, llan=O, (1)  

which leads to the Arnowitt-Deser-Misner ( ADM) metric2 

dsZ= ( f Z - y i j ~ i ~ j ) d t Z + 2 ~ i j ~ i d d d t - y i j d x i d ~ .  ( 2 )  

In this metric, the only nonzero components of the energy- 
momentum tensor of a Pascal fluid are" 

TOo=e, TOi=(~+p)vi.  Ti=-p6' 3 .  ( 3  

In the spherically-symmetric case, the motion is radial 
(ur=a)  : 

ds2=(f2-b2aZ) dt2+2bZadrdt-b2dr2-r2~l<o2, 

doZ=d0"sinVdcp2. (4)  
The components of the Einstein tknsor can be expressed in 
terms off, b, a: 

Go0= [l-(l+az-b-') ] 'P, ( 5  

2 
GiO = - [2j+a(jb)']= 0. 

f br 
( 7 )  

In the case of pressureless charged mztter (dust) the 
transformation of an arbitrary metric giJin SCT requires the 
solution of the Hamilton-Jacobi equation that defines the 
comoving time in terms of the old coordinates: 

gij=(a.tlaxi+qAi) (a~/ax'+qA~) = 1, ( 8 )  

where q is the specific charge of the particles and Ai is the 
vector potential of the electromagnetic field. The covariant 
components of the velocity Cvector are then 

For example, let us transform the Reissner-Nordstrom met- 
ric to the SCT: 

The Hamilton-Jacobi equation is stationary: 

and h is the specific energy of the particles. Hence 

In particular, for h = 1, 

and we obtain one of the simplest representations of the 
Reissner-Nordstrom (Schwarzschild) metric with a flat 
spatial projection. 

When the motion of matter is described, the "redun- 
dant" equations (in the sense of the Hilbert principle) are 
usually taken to be the equations describing the dynamics of 
the medium. However, greater simplification can often be 
achieved by solving the dynamical equations, which leads to 
the solution of a smaller number of Einstein equations. In 
particular, when the motion of dust is described, the trajec- 
tories of the dust particles can be determined as trajectories 
in curved space produced by internal layers. In the absence 
of gravitational radiation, the dust-particle trajectories are 
the characteristics of the entire set of equations, and the con- 
stants of integration of a given layer are constant on charac- 
teristics that determine the nonstationary solution during 
the motion of the particles. We shall use this method in Sec. 2 
to find the general solution for spherically-symmetric mo- 
tion, and in Sec. 3 for the subset of the axisymmetric (Kerr) 
motion of charged dust. In Sec. 4, we shall find the general 
solution for the spherically symmetric motion of a photon 
gas and a photon gas mixed with dust. 

2. GENERAL SOLUTION FOR SPHERICALLY SYMMETRIC 
MOTION OF CHARGED DUST 

Consider a spherical cloud of charged dust, compressed 
by gravitational forces. Let us follow the motion of the outer- 
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most, infinitely thin, layer of mass dm, specific charge q, and 
specific energy h.  The fall of the layer occurs in the Reissner- 
Nordstrom metric with two parameters ( M  and Q) and the 
electrostatic field E = Q /?. The Lagrangian and the specific 
energy of the particles in the layer are respectively given by 

Hence 
qQ d t  qQ 

(u-u-1~)  -'l:=u-l(h - -) = - = uo, uo=h -- 
r dz r 

where T is the proper time and 
( d r / d ~ ) ~ = ( h ~ - l )  +2 (M-hqQ)lr- (1-q2)Qz/r2. ( 16) 

The component TE of the energy-momentum tensor is given 

since 

am/ar=4nr2pu0. 

From the Einstein equations4 

8nr2T00= [r  (I-U) ]'=2M'-2QQ'/r+Q2/P (19) 

we find that the charge in the vacuum constants on the layer 
is determined by the energy and charge of the layer: 

All that remains is to intergrate ( 16). Let 

h2-1=A, AI-hqQ=B, (I-q2)Q2=C, I+ACB-2=k2. 

(21) 
The constant A determines the type of the trajectory: 

A = 0 :  

B r = -  
1-41 

(1-k cos x) ,  z=z,+Bj A l-"(~-k sin x ) .  

(24) 

The trajectories of the motion in proper time, and the 
local metric in the given layer, satisfy the Einstein equations 
and the law of motion of the particles. We can therefore 
remove the assumption that the layer is external, i.e., the 
presence of layers outside the given layer has no effect on 
either the gravitational or the electromagnetic field in the 
interior. 

Each layer can be labeled by the amount of matter, m, in 
its interior. If we arbitrarily specify the distributions of total 
charge and total energy among the layers (as functions of 
mass), Q(m) and M(m),  and also the intergration constant 
r,(m), which can assume different values in different layers 
and which defines for each layer the instant of time at which 
the layer reaches its minimum radius, then (22)-(24) give 
the mass m ( r , ~ )  as a function of radius and proper time and, 
hence, M(r,r),  Q(r,r), which determine the metric. 

The Hamilton-Jacobi equation is 

and, in accordance with ( 12), gives 

ra 
(-g) '" = - sin 0, 

h 
where M and Q are no longer constants, but turn out to be 
functions of radial distance and comoving time. The general 
solution is determined by the arbitrary functions M / ( m ) ,  
Q(m),  and r0(m).  

For Q(m) = 0, we obtain the Tolman  solution^.^ 

Special cases 

1. The Einstein-de Sitter solution is h = 1, T, = 0, 
const = q2 < I. In terms of the new variables 

mq2/r--y, 3 ' ~ ~ ( q - ~ - l )  /r2=x2 (27) 

equation (22) is a cubic in y: 

y3+3y(x2-I) -2=O, (28) 

and the corresponding discriminant is nonnegative: 

D=x2(x'-3x2+3) =w2 (29) 

so that the solution is unique 

m(r, 7)=rqW2[ ( I + w ) '  -t (I-w)"]. (30) 

For T <O, all the layers move toward the center and 
instantaneously stop at T = 0, so that m (r,O) = 2rq,-2 and 
the density increases toward the center as r-2, with a singu- 
larity at the center, but with zero mass concentrated upon it; 
each layer comes to rest at the classical electromagnetic radi- 
us of the medium in the interior: ro = Q2/(2m) = q2m/2. 
Expansion begins for T > 0. 

For T#O, we find that near the center 
[xs 1,?<?(p-2 - 1) ] we have m -?r,-'p = const, and 
the effect of the electric charge is insignificant because of its 
quadratic contribution to the metric, so that the particles in 
this region execute the usual homogeneous Einstein-de Sit- 
ter collapse with a deceleration ( 1 - q2) However, as T 

tends to zero, the homogeneous region shrinks to zero. Con- 
versely, as time increases, an increasing amount of mass de- 
parts well beyond the electromagnetic radius and its motion 
is the same as in the absence of the charge. It is clear from the 
above construction that m cut off at some upper value m, 
and the solution is joined to the metric ( 10). For q2 < 1, the 
end of the compression state at the electromagnetic radius of 
the charged cloud occurs under both gravitational radii of 
the Nordstrom metric6 in the region where goo > 0. When 
compression stops inside the medium, we have the Min- 
kowskii metric. 

2. Systems whose dynamics consist in a synchronous 
change in the general scale (Robertson-Walker) constitute 
an analog of the Friedmann solutions. We shall confine our 
attention to the closed case (24). The condition for synchro- 
nous motion of the layers is 

k 2 = l -  IA ICB-"const, BIAI-'h=T=c~nst. (31) 
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The function x is then common to all layers, and depends 
only on time. We then have 

r / = A h f ( )  IAl=l-h2=[r/R(z)]2=x2, (32) 

R(z)=T(I-k c o s ~ ) ,  z=T(x-k sin x). (33 

The last equations describe the change in the scale with time. 
The quantity x is constant in a layer. Next, 

(34) 
The solution of these equations is 

M/T=x3+ex (1-xZ), (Q/T)Z=~Z~2(1-3/z~2)+J/~~~1, (35) 

where E determines k: 

~~~~~~~) ( I - 2 )  O < E < ~ ,  2 < ~ < 3 .  (36) 

The spatial part of the metric is determined by (26): 

Forx-1, wehaveb2+(1 -x2)-I,  as for asphere, but,for 
x-0, the spatial part of the metric has a singularity associat- 
ed with the singular density of matter at this point. Since the 
metric involves only Q ', the solution in the second "hemi- 
sphere" is analogous to that given above, except for the re- 
placement Q- - Q which ensures that the electrostatic 
field varies correctly across the equator. 

3. COLLAPSE OF CHARGED ROTATING DUST 

The solutions for the spherically symmetric case are 
simple because electromagnetic and gravitational radiation 
are automatically absent, i.e., the dynamic variables of the 
system are due to the moving matter alone. However, mo- 
tion without radiation is also possible in the axisymmetric 
case if the internal metric joins externally to the Kerr-New- 
man metric6 which we shall write in the form 

where dt and d, are the differential 1-forms due to the 
increase dt, dq5 in the coordinates, produced by the applica- 
tion of a unitary matrix: 

The corresponding coforms can be expressed in terms of the 
inverse matrix: 

(az+r2) l p h  sinz 0 (4, A)=(?, a)( 
at aq a t  a9 alp" 1 

) (40) 

The electromagnetic potential has the single component 
A; = Qr/p2. The equation of motion of the quasispherical 
charged layer will be determined from the Hamilton-Jacobi 
equation6 

The presence of the term I/sin8 for I # O  ensures that the 
region is bounded in the angle 8, which prevents motion of 
the dust as one whole layer that is homeomorphic to the 
sphere with I #O. It follows that I = 0. 

We shall confine our attention to the simplest case 
h = 1, i.e., to a layer falling from infinity with zero kinetic 
energy. We then have dr/d8 = 0 for each particle in the lay- 
er, where 0 is a constant of motion. Despite the fact that 
I = 0, the layer rotates and contributes to the overall angular 
momentum of the system. 

The change in the layer radius r in proper time is deter- 
mined as for a test particle: 

dr /dz=-i~~-~,  u2=2 (M-qQ)r(rZ+a2) -Q2[rZ (1-q2) +a2]. 

(42) 
The dependence on 8 shows that the layer is deformed as it 
falls. In the general case, the solution of (42) is expressed in 
terms of an elliptic integral. 

Let us first investigate the motion of uncharged dust 
(Q=O,q=O):  

The last integral is finite as r/a - UJ and determines the 
relative shifts in the layer. In each layer, we have M = const, 
T, = const, and a = const. A layer is best observed by choos- 
ing particles with cos28 = 1/3. The solution for such parti- 
cles takes the form of an elementary function: 

Having specified the arbitrary functions T,(M), a (M), we 
find M(r ,r) ,  and this determines the solution. 

We now take the simplest (synchronized) case 
T" = 0, a = aM, a = const, a2 < 1; M(r , r )  is then deter- 
mined from the quadratic equation 

When T = 0, all matter has r = 0, but this manifold is not a 
point but a disk of radius a. Each layer is thus flattened into a 
pancake of its own radius. The density of matter becomes 
infinite, but the singularity is not a point singularity. For 
7-20, the distribution of mass near the center (r-4 1~1a-"~) 
is 

Near the center, the mass, and consequently, the rotation 
parameter a, are small, and we have uniform motion. 

In the case of charged dust, the most characteristic fea- 
ture is the stopping of each layer on a surface r = r, that is 
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specific to that layer. From (42) we have 
P l a  

[ 2 ( M - q Q )  ]"a-" (T-T.) = 5 [ P  ( x )  I-" (zz+cosz 0) d z ,  
XU (48) 

P ( x )  = x ( x 2 + l )  - A [ x Z ( l - q 2 ) + l ] ,  A=Q2/2 (M-qQ)a .  

If we specify xo(M) ( o r & =  l/xo) for given Q(M), 
q(M) = dQ/dM, this determines a (M):  

In particular, for q = const, Q = qM, E = l/x, = const, the 
quantity a is also a linear function of M and, when the layer 
stops, the mass is a linear function of the radial distance. At 
this time we have = 0 and, since we have &/a$ = 0, 
&/at = 1, the transformation matrix between the Kerr- 
Newman coordinates and the comoving coordinates is a unit 
matrix, so that the metric becomes identical with (38), but 

4. SPHERICALLY SYMMETRIC MOTION OF A PHOTON GAS 
AND OF A MIXTURE 

Models that can be solved exactly include symmetric 
systems with the function f in (4)  always equal to unity. For 
a Pascal fluid in which the number of particles is conserved, 
this corresponds to dust alone. The equation f = 1 signifies 
that the chemical potential is equal to zero and, if pressure is 
present, it describes systems in which the number of particles 
is not conserved. In general, processes involving the creation 
and annihilation of particles in macroscopic motion give rise 
to pressure anisotropy. 

In the case of spherical symmetry, the stress tensor then 
has two components: 

The relationship between them can be determined from the 
Hilbert-Einstein identity: 

V,Tii=O, dip+ ( ~ + p )  ( I ' o l o + a ~ l , o )  -2I',,' (p-p,) =O. (52) 

Direct substitution yields 

pL=p+rp1/2= (prZ ) ' / 2 r .  

In particular, p, = 0 for 

For a complete thermodynamic description of the sys- 
tem, we must establish the relationship between c and p. If 
we set the trace of the energy-momentum tensor equal to 
zero, this model will approximately represent the gravidyna- 
mics of a photon gas or a high-temperature "soup" of parti- 
cles and antiparticles: 

~-p-2p,=O, e=3p+rp'= ( r 3 p )  ' / r J .  (55 

Actually, in the homogeneous case p' = 0 holds, and (53) 
yields p, = p, c = 3p. Conversely, is there is a radial flux of 
pure radiation then, as in the case of a plane wave, E = p, 
p, = 0, and (54) signifies simply a radial expansion of this 
flux. 

If we substitute (55) in (5) ,  and assume the absence of 
the singularity at the center, we find that 

p= (l+a2-b-') / (8xf2) (56) 

Substituting this in Einstein's equations (6)  and (7) with 
f = 1, we obtain the set of equations 

6+ab'=O, li+aal+ ( l+a2-b-Z)  /r=O. (57) 

In the case of dust (p = 0, f = I ) ,  this system becomes 

6+ab'=0, li+aaf+ ( l+az -  b - 2 ) /  ( 2 r )  =O (58) 

which differs only by the factor in the last term. Both sets of 
equations can be solved by the method of characteristics, 
and the solution of (58) is the Tolman s~ lu t i on .~  The set of 
equations given by (57) reduces to the form 

6+ab1=0, w+aw'=O, w=r2 (a z -h )  , h= b-2-l. (59) 

The quantities b and w are constants on the characteristics 
and, once the relationship F(h,w) = 0 has been specified for 
the layers, the trajectories determine w(r,t) and b(r,t): 

The trajectories are second-degree curves that do not extend 
over the entire time axis. To reconstruct the solution, we 
must specify one further arbitrary function: F, (h,w,to) = 0. 
In the homogeneous case (to = 0, h = O), the solutions of 
(59) are the Friedmann solutions with the compressibility 
law E = 3p. 

It is possible to construct a composite model consisting 
of a photon gas and dust in which radiation is at rest and 
interacts only through the gravitational field. The dust ener- 
gy, E, = M1/(4773), must then be added to the radiation 
energy density, which corrects the expression for the pres- 
sure given by ( 56) : 

The desired set of equations then follows from (6)  and (7 ) : 
h+ah'=O, M+aM'=O, zi.+awf=O, 

w=rz(aZ-h) -2MrZO. (62) 
The general solution is determined by three arbitrary func- 
tions: f,(h, M, w, to) = 0 where to is, as before, the layer 
asynchrony function in the solution that is formally identical 
with (22)-(24) if we substitute A = - h, B = M, and 
c =  - W .  

Special cases 

1. w = 0, Tolman solution for dust. 
2. M = 0, the solution for pure radiation. 
3. Homogeneous models. 

Despite the formal similarity with the solution for 
charged dust, the situation is now quite different and there 
are Friedmann-type homogeneous solutions. For synchroni- 
zation, we must have 

Mh-"=T=const, k2= l+hwM-Z=const. (63) 

It then follows from (24) that 

r=hl&T(l-lc cos x ) = h l " R ( t ) ,  (64) 

where 

R ( t ) = T ( I - k  cos x ) ,  t=T(x -k   sin^) (65) 

are the equations of scale dynamics and 

determines the metric of a sphere of radius R ( t )  varying in 
accordance with (65) [compare with Ref. 7.1 From (63) we 
have 
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M=T ( r / R )  3, w=(kz-1)  T ' ( F / R ) ~ ,  
(67) 

4np=w/r'=(k2-1) TZ/R4.  
The pressure is uniform and varies as R -4. 

Solutions for open models are similarily obtained from 
( 2 3 ) .  
4.  Plane solutions: h = 0. From ( 2 2 ) ,  we have 

3M2(t - to (M))  =(2Mr+w)'"(Mr-w). ( 6 8 )  

This class of solutions is determined by two functions, name- 
ly, t o ( M )  and w ( M ) .  For example, the solutions are self- 
similar for w ( M )  = DMa, t o ( M )  = yM '3a  - 4"2: 

y ~ M a - l / ~ ,  zrtr(2-l,5u)/(a-t) 
1 

( 6 9 )  
3 (y0~5"a-"x-yy")=(2+py)"~(l-py). 

5. CONCLUSION 

The utility of our solutions is not confined to the simula- 
tion of different astrophysical and cosmological situations. 
Solutions with charge are found to smear out the singularity 
when it collapses, and enable us to examine in greater detail 
the collapse problem. The end of compression always occurs 

in the regiongoo > 0. After compression, the system begins to 
expand in the same space. If the specific energy of the parti- 
cles is less than unity, the system undergoes repeated com- 
pression and expansion, covering the region goo < 1 in finite 
proper-time intervals. Of course, an external observer can- 
not see even a single traversal of the gravitational radius. 
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