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A systematic theory of the galvanomagnetic properties of inhomogeneous media in a weak 
magnetic field H is given. By means of perturbation theory in powers of H the effective 
conductivity tensor 8, of the medium is expressed in terms of the solution for the electrical 
conductivity at  H = 0. For isotropic two-component systems the dependence of 8, on the 
galvanomagnetic characteristics of the components is found in the approximation quadratic in H .  
The coefficients of this expansion are two-parameter functions determined by the properties of 
the medium for H = 0. Analysis of these functions shows that in the framework of the scaling 
hypothesis the Hall coefficient is described by one new critical exponent (new, in that it is not one 
of those describing the electrical conductivity). For a complete description of the critical 
behavior of the magnetoresistance it is sufficient to introduce four further exponents. 

1. INTRODUCTION 

The galvanomagnetic properties of inhomogeneous (in 
particular, two-component) media have been studied inten- 
sively,'-' because of their significance both in general phys- 
ics and in applications. 

In the two-dimensional case ( D  = 2, where D is the di- 
mensionality of space) the problem of the galvanomagnetic 
properties of two-component systems has been solved com- 
pletely. In the work of Dykhnel (see also Refs. 2 4 )  an exact 
expression for the effective conductivity tensor 6, of a two- 
dimensional, randomly inhomogeneous two-component 
system placed in a transverse magnetic field H was found for 
the case of the critical concentrationp = 1/2. The results of 
Ref. 1 gave the possibility of expressing the effective Hall 
coeffficient R, in a weak magnetic field in terms of the effec- 
tive electrical conductivity ue of the system (for H = 0 )  for 
arbitrary concentrations2 (see also Ref. 3).  In papers by the 
author6.' an isomorphism had been established between the 
problems of the galvanomagnetic properties (for any H # 0 )  
and the electrical conductivity (for H = 0 )  of arbitrary two- 
dimensional two-component systems. The isomorphism re- 
lations that were found in Refs. 6 and 7 make it possible to 
express the components of the tensor 8 in terms of the galva- 
nomagnetic characteristics of the components and in terms 
of the dimensionless effective conductivity f of the system 
(for H = 0) .  In the vicinity of the metal-insulator phase- 
transition point the principal properties of the function f are 
known in the framework of the scaling hyp~thesis.".'~' There- 
fore, in the two-dimensional case it is possible to give a com- 
plete (in the sense of the scaling hypothesis) description of 
the critical behavior both of the Hall coefficient in a weak 
magnetic field2 and of the effective conductivity tensor 8, 
for arbitrary magnetic fields, including strong ones-see 
Ref. 6. Tabulation of the function f by numerical methods 
makes it possible to give a complete quantitative description 
of the galvanomagnetic properties of two-dimensional two- 
component systems in the entire range of variation of the 
parameters of the problem. 

The symmetry transformation proposed in Ref. 1 and 
used (for D = 2) in Refs. 1-4,6, and 7 cannot be carried over 
to the three-dimensional case, since for D = 3 exact results 
of such a general character as in the two-dimensional case 
have not been obtained. At the same-time, the critical behav- 

ior of, e.g., the Hall coefficient R, (for H-0)  in three-di- 
mensional systems is highly nontrival (see Refs. 2 and 8) ,  
because of the many-parameter nature of the problem. The 
presence of additional (in comparison with the case H = 0) 
parameters leads to the appearance of different types of criti- 
cal behavior of R, (Refs. 2, 8 ) ,  depending on the values of 
these parameters-compare with the analogous situation in 
the case of thermoelectric phenomena.'."." An even more 
complicated critical behavior must be expected for the mag- 
netoresistance. Therefore, a unified description (valid in the 
entire range of variation of the parameters) of the galvano- 
magnetic properties of three-dimensional two-component 
systems is a timely and rather difficult problem in the theory 
of inhomogeneous media. 

In Ref. 2, Shklovskii proposed a theory of the critical 
behavior of the Hall coefficient R e  (for H-0)  of three-di- 
mensional two-component media on the basis of the so- 
called two-band model. This approach is not rigorous and 
does not permit a systematic description for R, in the entire 
range of variation of the parameters. Nevertheless, for the 
neighborhood of the percolation threshold, a successful in- 
terpolation formula for R, was proposed in Ref. 2 on the 
basis of physical and scaling arguments. The use of this for- 
mula made it possible to predict (see Ref. 2)  practically all 
types of critical behavior of the Hall coefficient, and these 
were subsequently investigated by numerical methods.53R 
Thus, the results of Ref. 2 give a qualitative description of R e  
in the critical region, while at the same time leaving open the 
question of a rigorous (quantitative) approach to this prob- 
lem. 

A definite step in this direction was taken in the work of 
Ska15 (see also Ref. 8) .  In Ref. 5 an exact formal expression, 
applicable for media whose properties depend in an arbitrary 
manner on the coordinates, was obtained for the Hall coeffi- 
cient R, in the approximation linear in H .  However, this 
expression was not analyzed theoretically in the appropriate 
manner, and so it was not possible to give a systematic de- 
scription of the critical behavior of R e .  (For example, in Ref. 
8 it was concluded that in the framework of the scaling hy- 
pothesis the Hall coefficient is characterized by four inde- 
pendent critical exponents that are not related to the corre- 
sponding exponents of the electrical conductivity. However, 
as shown in the present paper, for R, it is sufficient to intro- 

1079 Sov. Phys. JETP 66 (5), November 1987 0038-5646/87/111079-09$04.00 @ 1988 American Institute of Physics 1079 



duce one new exponent.) In addition, in Refs. 5 and 8 a 
systematic scheme for seeking the next corrections in H was 
not given, and so it was not possible to consider the problem 
of the magnetoresistance by this method. At the same time, 
we note that the general expression obtained in Ref. 5 for the 
Hall coefficient was used successfully in Refs. 5 and 8 to 
investigate the critical behavior of Re by numerical meth- 
ods. 

In the present paper the problem of the galvanomagnet- 
ic properties of inhomogeneous media in a weak magnetic 
field H is considered by a perturbation-theory method, i.e., 
by expansion in powers of H. It is shown that, for isotropic 
two-component systems, in the approximation quadratic in 
H the structure of the effective conductivity tensor 8, can be 
elucidated using symmetry considerations. In this case the 
dependence of ce on the additional (in the present case, gal- 
vanomagnetic) parameters discussed above is established in 
explicit form. The coefficients of these parameters are deter- 
mined by the properties of the medium for H = 0 and are, in 
turn, two-parameter functions. Investigation of the behavior 
of these functions in the neighborhood of the percolation 
threshold makes it possible to give a description of them in 
the framework of the scaling hypothesis. As a result it is 
found that for the Hall coefficient in the critical region it is 
sufficient to introduce one new critical exponent (new, in the 
sense that it is not one of the exponents of the electrical con- 
ductivity), while for the magnetoresistance there are a 
further four exponents. 

In the paper we also consider questions associated with 
the formal apparatus of the theory-certain relations and 
identities used in the calculation of the effective conductivity 
tensor 8, by the method of expansion in powers of H. By this 
method we find an exact expression for 8, to within terms - H inclusive. In the case of two-component systems this 
approach makes it possible to find the relationship of the 
two-parameter functions (coefficients in the expansion of 
8, ) discussed above to characteristics of the problem of the 
conductivity for H = 0. The relationship established makes 
it possible, in principle, to determine these functions by nu- 
merical methods for all values of the parameters. In this way, 
all the new critical exponents that arise in the problems of 
the Hall coefficient and the magnetoresistance can be found. 
Tabulation of these functions will give the possibility of de- 
scribing the galvanomagnetic properties of a two-compo- 
nent medium (in the aprroximation quadratic in H )  in the 
entire range of variation of the parameters (both fundamen- 
tal and additional) appearing in the problem. 

2. THE EFFECTIVE CHARACTERISTIC OFTHE MEDIUM 

We first discuss the formulation of the problem and in- 
troduce the necessary notation. To calculate the effective 
conductivity of an inhomogeneous medium it is necessary to 
solve the direct-current equations 

rot E=O, div j=O (1)  

with the appropriate boundary conditions. Here E is the 
electric-field intensity and j is the current density. In the 
linear (in the field E) problem, j and E are related by Ohm's 
law 

.. 
j=o (r )  E, ( 2 )  

where the tensor B(r) describes the coordinate-dependent 
conductivity of the medium. The effective conductivity ten- 
sor 8, is defined in the usual way: 

where (...) denotes averaging over the volume Vof the sam- 
ple ( V -  oo ): 

For an isotropic two-component medium in the absence 
of a magnetic field the conductivity o(r)  is scalar and takes 
constant values a, and a,, respectively in the first and sec- 
ond components. The effective electrical conductivity ue of 
such a system can be written in the form 

where p is the concentration (fraction of the occupied vol- 
ume) of the first component. As noted in Refs. 6,7, and 13, 
and in other papers, the two-parameter function f(p,h) (the 
dimensionless effective conductivity) plays a fundamental 
role in the whole theory of transport phenomena in isotropic 
two-component media. In this sense, the problem of the gal- 
vanomagnetic properties of three-dimensional two-compo- 
nent isotropic systems in a weak magnetic field is no excep- 
tion. 

The conductivity of an isotropic medium placed in a 
magnetic field H is described by the tensor 

where we take H to be directed along the z axis. With aim of 
simplifying the subsequent formulas, in (6 )  we have intro- 
duced the notation: ax = ax, = uyy , a, = a,, , and a, 
- - a,. = - ayx for the transverse, longitudinal, and Hall 

components, respectively, of the conductivity tensor. In a 
weak magnetic field ( H  - 0 )  the quantity a, is linear in H 
and the corrections to a, and a, are quadratic: 

Here u is the conductivity of the medium for H = 0. 
For two-component systems the conductivity tensor 

(6 )  takes constant values 8, and 8, in the first and second 
components, respectively. The effective conductivity tensor 
8, ,  defined by (3) ,  depends in this case on seven arguments: 

where p is the same as in (5 ) .  The calculation of the three 
many-parameter functions a,,, a,, , and a,, of the form (8)  
is the main task of the theory of the galvanomagnetic proper- 
ties of two-component media. 

3. PHENOMENOLOGICALTREATMENT 

In a weak magnetic field the structure of the effective 
conductivity tensor 8, (i.e., its dependence on the galvano- 
magnetic parameters uai, yxi, and yZi, where i = 1,2) can be 
established without solving Eqs. ( 1 ), and (2) .  Such an ap- 
proach, based on certain rather general symmetry consider- 
ations, is naturally called the phenomenological approach. 
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The components of the effective conductivity tensor 6, 
possess the same properties as the components of the tensor 
6from (6) :  For H-0, in the expansion of the quantity a,, in 
powers of H only terms odd in H appear, while in a,, and 
u2,, only even terms appear. For H = 0 the conductivity of 
the medium is given by the expression (5) .  In the approxi- 
mation linear in H the Hall component a,, should have the 
form 

Here the coefficients p ,  and p, depend only on the proper- 
ties of the medium with H = 0, i.e., they are, like the dimen- 
sionless conductivityj functions of two a rguments ,~  and h. 
I t  turns out that the quantities p ,  and p,  are connected by a 
well-defined relation, which can be found as follows. 

As noted in Ref. 7, the direct-current equations ( 1 ) re- 
tain their form under the symmetry transformation 

h 

where C is a coordinate-independent arbitrary antisymme- 
tric tensor: C4 = - Coa .The conductivity tensor of the 
"primed" system has the form 

Gf(r)=;(r)-C. (11) 

An analogous relation connects the effective conductivity 
tensors of the original system (5, ) and the primed system 
(6; ) : 

- 
ue=os'+e. (12) 

y e  shall consider a two-component medium and set 
C = &,,, where is the antisynmetric part of the conduc- 
tivity tensor of the second component. Then in the primed 
system the Hall component of the second component is 
equal to zero (a:, = 0 ) ,  while for the first component we 
have a:, = a,, - a,, Thus, the quantity 6: depends on a,, 
and a,, only through their difference a,, - a,, . According 
to ( 12), this means that in the original system the quantities 
uxe, uze,  and a,, - a,, also depend only on a,, - a,, 
(compare with Ref. 7).  

The quantity a,, in ( 9 )  satisfies the requirement that 
stems from the symmetry considered above, if p ,  + p, = 1. 
Then, setting p ,  = p, we obtain from ( 9 )  a general expres- 
sion for the Hall component a,, in the approximation linear 
in H: 

In formula ( 13) the galvanomagnetic characteristics of the 
components are separated out in explicit form, and the func- 
tion p(p ,h)  is determined by the properties of the medium 
for H = 0. 

We write the quantities a,, and a,, in a form analogous 
to ( 7 ) :  

where a, is the same as in ( 5 ) .  In the approximation qua- 
dratic in H the general expressions for y,, and y,, (with 
allowance for the symmetry discussed above) will have the 
form 

0 -0 ) '  r..=l,,+:" +yz1+:" + u x z q ~ ~  + y z 2 q l ~ "  + (.'--.EL 
(TI 

XX* (15)  

Here the dimensionless coefficients $:',$1") ( a  = 1,2,3,4) 
and x, , xz depend only on the properties of the medium for 
H = 0 and are functions of the argumentsp and h.  

For geometrically (structurally) isotropic media there 
are a number of relations between the quantities $2' and 
$1"'. To find them, we shall consider a system with "natu- 
ral" (a,, = 0 )  anisotropy, and shall assume that yyi # y,, . 
As noted in Ref. 14, structurally isotropic two-component- 
media (with anisotropic conductivities of the components) 
possess an additional symmetry. For example, the replace- 
ment y,, ,t yy, with a simultaneous rotation of the coordi- 
nate system through 90" about thez  axis does not change the 
properties of the medium. This implies that the quantities 
y,, and yy, go over into each other under the replacement 
yxi s yyi ;  here the quantity y,, should not change. The con- 
sequences of the structural isotropy under rotations about 
the x and y axes are considered in an analogous manner. The 
quantities y,,, y,,, and y,, satisfying these requirements 
have the following form.: 

y x e = y . l g l +  y,lgz+yzlgz+y~zg,fy,zg,+y,zgl, 

~ue=y=1gz+~u1gl+~z1gz+yz2g4+yyzgl+yzzgIr (17) 

yze=yxlgz+yvigz+y**gl+y~zg'+y,zg,+yzzg~, 

where g, , g, , g,, and g, are certain coefficients. 
Setting y,,, = y,, and yy2 = y,, in (17) and comparing 

with (15), (16),  we conclude that $:I' = g,  + g,, $:,' =g2, 
etc. As a result, we find the desired relations: 

Consequently, all the functions $1"' can be expressed in 
terms of $I"' In turn, the four functions $:' are not indepen- 
dent, and two relations, connecting them with f(p,h), can be 
established between them. We set a,, = 0 and y,, 
- - yzl = y, ,  yx2 = yZ2 = y2. Such a medium is isotropic and 

differs from the original medium with H = 0 only by the 
replacements 5, - a, + y ,  , a, --a, + y, , and a, -. a, + y, . 
Making these replacements in ( 5 )  and performing the ex- 
pansion in the y, up to the linear terms, we obtain 

Thus, of the eight functions $:' and $iU' only two are inde- 
pendent (e.g., $:I' and $L3' ) .  Consequently, the quantities 
y,, and y,, are described by four (in addition to f )  indepen- 
dent two-parameter functions: $:",$~",xx, and X, . (More 
rigorous will be the statement that there are no more than 
four independent functions, since the possibility of the exis- 
tence of further relations between them is not ruled out.) 

The above phenomenological analysis shows that, in 
the approximation quadratic in H,  for a complete descrip- 
tion of the galvanomagnetic characteristics of a three-di- 
mensional isotropic two-component system it is sufficient to 
introduce five (besides f )  functions, determined by the 
properties of the medium for H = 0: p,  I , L J ~ " , $ ~ ~ ' , ~ ,  , andxZ.  
It is extremely important that here the original many-pa- 
rameter quantities a,, , a,, , and a,, are reduced to the level 
of two-parameter functions that depend, like the dimension- 
less effective conductivityf, on the argumentsp and h. The 
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critical behavior of the two-parameter functions can be de- 
scribed in the spirit of the standard scaling hypothesis- 
compare with the analogous procedure in the case of the 
electrical conductivity. Application of this hypothesis to the 
functions p ,  $:', $:"I, x,, and X, will make it possible to 
give a systematic description of the critical behavior of the 
quantities ua,, a,,, and a,,, and, consequently, of the Hall 
coefficient and magnetoresistance. 

4. SOME RELATIONS 

We shall consider certain identities and relations that 
will be needed in the calculation of the effective conductivity 
tensor &e from "first principles," i.e., by direct solution of 
Eqs. ( 1) and (2 ) .  

1. In the theory of transport phenomena in inhomogen- 
eous media a number of useful identities of a general charac- 
ter can be established. 

We denote by E'"' ( r )  and j'") ( r )  the electric field and 
current density in the medium, determined for a given value 
of (E'"' ), where the exponent Y denotes that the mean field 
is directed along the Y axis. It can be shown that the follow- 
ing identity (for V- co ) is valid: 

where (.. .) is the same as in (4 ) .  The formula (20) is a gener- 
alization of a well-known identity (see, e.g., Ref. 15) and is 
proved as follows. We introduce the potential p'"' through 
the equality E'"' ( r )  = (E'"' ) - Vp'") ( r ) ,  where (Vp'")) 
= 0. Then the difference (j'p) E'"' ) - (j'@' ) (E'"' ) can be 

transformed, with the aid of the equation divj'"' = 0, to a 
surface integral. In  thg limit V -  co the surface effects vanish 
and we arrive at the*equality (20).  We note that for certain 
boundary conditions this surface integral is identically equal 
to zero, so that in these cases (20) is also valid for systems of 
finite size. We note also that one can arrive at the result (20) 
ina slightly different way-by introducing a vector potential 
by means of the equality j'p' = (j'hL' ) + c ~ r l A ' ~ ) ,  where 
(curlA'p') = 0. 

In an analogous way (by the introduction of a potential 
p'@') one can prove the identity 

It is not difficult to see that the more general identity 

((E"' [E'"' x E ' ~ ' ]  ) )  = ((E"))  [(E'"))  x (E"))]  ) (22) 

is also valid. To  prove (22) we write E'@' in the form 
E"" = (E'@' ) - Vp'@' ,(Vp'@' ) = 0. The integral con- 
taining Vp") obtained as a result of substituting for E'@) can 
be transformed to a surface integral by virtue of the equality 

In the two-dimensional case, as well as (21 ) we can also 
prove the important identity 

(The quantity j has nonzero components only in the xy 
plane.) To prove (23) we set j'@) = (j"" ) + curlA'/", 
where (curlA'~" ) = 0 and the vector potential has the form 
A"" = CO,O,A). Then, 

With allowance for the condition divj'"' = 0 we transfol rn 
the integral in the right-hand side to an integral that vanish :s 
as V -  a. We emphasize that the identity (23) is valid only 
for two-dimensional systems and has no analog in the three- 
dimensional case. 

2. The identities proved make it possible to establish a 
number of exact relations that will be needed subsequently. 

We suppose that for a certain system the quantities 
jcr) (r)  and E'"' ( r  ) are known. We change the conductivity 
of this system: u ( r )  -&(r) .  Correspondingly, we shall have 
3'") ( r )  and E'@' ( r ) .  Then, in anaology with (20),  we can 
prove the two identities 

We consider an isotropic two-component medium, for 
which, according to (3 )  and ( 5 ) ,  

By the system indicated by the tilde we shall understand a 
medium of the same structure with changed conductivities: 

- -, 

( j = E V  oe=alf(p, li), E=a,/a,. 

We write out ( (... ) ) in the form of a sum over the compo- 
nents: 

where in ( (...)) '" the integration is performed over the vol- 
ume Vi of the i-th component. Then from (24) we have 

From (26) we find (for (E'@)) (E'"') #o) 

(~ (~k ' "> (" /<~ ' " '><~(~) )= [ l i f  2fP, h)-hf(p, Z) ]/(li-h), 
(27) 

( E ( " E ( ~ ' ) ( ~ ) / ( E ( ~ ) ) ( E ( v ) ) =  [f (JI, 7i)-f (p, h)  ]/(li-h). 

From this, taking the limit h - h,  we obtain 

(E(u)E(v))(l)/(E(v)>(E(V))= f-hf', 
(28) 

We note that, according to (28),  determination of the mean 
square electric field in the second component by numerical 
methods makes it possible to find the derivative f '  with the 
same accuracy as for the function f itself. Knowledge of the 
quantity f '  is necessary, e.g., in problems concerning the low- 
frequency dispersion of the electrical conductivity,I3 the 
t h e r m ~ p o w e r , ' ~  and the magnetoresistance (see the expres- 
sions ( 19) and Secs. 7 and 8 of the present paper). 

The relations (28) give the possibility of finding the 
mean square fluctuations of the field and current: 

From (28 ) and (29) we obtain 

A,'=!+ (I-h)f'-I, ~,Z=[f(l-f)-h(I-h)f'If-~. (30) 

I t  is not difficult to verify that the expressions (30) satisfy 
the exact relation 
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I -  ( - 2 )  -- U I ~ Z  netic field ( H  -0) Eqs. ( 1 ), (2)  can be solved of perturba- 
A; = AE2, 

0: oe2 tion theory, i.e., by expanding in powers of H. In this case the 
electric-field intensity E'"' ( r )  and current density j'") ( r )  

found in Ref. 3. For a two-dimensional, randomly inhomo- can be represented by series: 
geneous medium withp = 1/2 we have f = hi"'(Ref. IS), so 
that from (30) we obtain E ( ~ )  (i) =Eo(v) (r)  +Ei('] (r) + . . . , 

(38) 
AE2=Aj'-i/2(h-'"-h"4)2, P=1/2 (D=2), jc.1 (r)  = j o ( ~ )  (r) + jl(" (r)  f . . . , 

which coincides with the result of Ref. 15. For the mean where E?'(r) and j?'(r) are the terms of nth order in H. 

values of the fields in the first and second components we The quantities EL"'(r) and jLv)(r) satisfy the equations 

have, respectively, rot E,("=O , div j,("=O. (39) 
o -us 

( E ( v ) ) ( I )  = ae-02 (E(v)), (E(*))(2) = (E(v)>, (31) 
01-oa 0 1 - 0 2  In the zeroth approximation in H,  for the potential 

p F 1 ( r )  defined by the equality E p ' ( r )  = (E:') 
whence follow, forp = 1/2, the expressions obtained in Ref. - V p  r' ( r )  ( ( V p  g ) )  = 0) ,  we obtain from divjg' 
15. \ 

= div{a(r) = Ec ' )  = 0 the equation 
In the framework of the conductivity problem (for 

H = 0 )  it is of interest to study the more general characteris- V {u (r)  Vqoiv) ( r ) )  = V  {o (r) <Eo(">). (40) 
tic ( E  F'E;'). For an isotropic medium, taking the identity 
(21) into account, we have The formal solution of (40) can be found with the aid of the 

((E,(p)-(E,('))) (E,(")--(Eo(vl>) >=a6,,(E(p)> fE(*)> Green function g(r , r l )  satisfying the equation 

+(b -1 )  ( (E , (" '>(EB(v)>+(Ep( f i )><Ea(V) ) ) .  (32) Vr{o(r) Vrg(r, r ') 1 =6 (r-r'), (41 

Here a and b are dimensionless functions of the argumentsp with g(r,rl) = g(rl ,r) .  we assume also that the Green func- 
and h. Contracting on the .indices a and b' in (32) and com- tion vanishes when r or r' lies on the boundary of the sample. 
~ a r i n g  (for p = v) with (291, ( 301, we obtain the relation- Solving (40) with the aid of (41 ), for the field (Eh"' ) ( r )  
ship between the coefficients a and b and the functionf: (after integration by parts) we obtain 

Da+2b=f+(l-h)fl+l, 

where D is the dimensionality of space. 
As will be clear from the following, the quantities Calculating (j?') = (UE?)), we obtain a formal exact 

(E ?'~g')'", where (...) "' is the same as in (25 1, are also exp/ression for the effective electrical conductivity of an iso- 
of considerable interest. For an isotropic medium, tropic inhomogeneous medium: 

where a"' , 6"' , and c"' are functions ofp and h. Contrac- 
tion on a and B with allowance for the equalities (28) gives 

On the other hand, taking the sum over i of (34) and com- 
paring with (32), we conclude that 

The study by numerical methods of the functions a'" , b'" , 
c(" , a, and b in the entire range of variation of the arguments 
p and h is of interest both for the problem of the galvanomag- 
netic properties (for H-0)  and for the problem of the con- 
ductivity of weakly anisotropic media (in the approximation 
linear in the anisotropy ). 

5. THE APPROXIMATION LINEAR IN H 

1 1  d2g (r, r') 
o.=<o)+ --I n v dr o(r) dr' o(rr )  

dr d r '  ' 
(43) 

where D is the dimensionality of space and V -  a .  
In the approximation linear in H we have 

Setting E l V ) ( r )  = (El"') - Vq, l"'(r) ((Vq, I"') = O), from 
divjiv' = 0 we find an equation for the potential p I"': 
v {o(r) Vcpi(V) (r))=V {o(r)  <El(vl))+V {6.(r)EoiV) (r) ). (45) 

Solving (45) with the aid of the Green function, for the field 
El"' ( r ) ,  in analogy with (42),  we obtain 

a2g(r, f) &y, ( r , ) .  + J dr l  r p7 - -  
ax, a~ I 

The effective Hall component a,, is determined from the 
relation 

To calculate the galvanomagnetic characteristics of an (jI(vl)=o,(E,~v~>+&,(E,(vl>, (6,,)aR=o,,e,o,n,. (47) 
inhomogeneous medium from first principles it is necessary 
to solve Eqs. ( 1 ) and (2) with the conductivity tensor (61, 

As a result, after certain transformations we can obtain for 
the quantity ua, an expression that does not contain the 

which has the invariant form 
Green function-see ( 5 1 ) . Below, the formula (5 1 ) will be 

(SaR=os6ng+ (or-0%) nan~+oaea~~n~r  n=HIH. (37) derived by a simpler method. 
A substantial simplification of the iteration procedure 

Here eaBu is the antisymmetric unit tensor. In a weak mag- described above is achieved when identities of the type (20) 
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are used. It is not difficult to see that, by virtue of Eqs. (39),  
the following identities are valid: 

where n and m are arbitrary. In the approximation linear in 
H, we have two equalities: 

From the first identity (49), taking (44) and (47) into ac- 
count we obtain 

Since u E 2 )  = j?), the first terms in the left- and right-hand 
sides of (50) cancel by virtue of the second identity (49).  As 
a result, from (50) we finally obtain 

The formula (51) gives the desired general expression for 
the Hall component go,, valid in the approximation linear in 
H for arbitrary inhomogeneous media (including, as is not 
difficult to see, anisotropic media). Substitution of E, ( r )  
from (42) into ( 5  1 ) makes it possible to obtain for u,, a 
formal exact expression of the type (43).  However, the form 
(5  1 ) is convenient for numerical investigation of a,, since it 
permits the use of the results of the standard electrical-con- 
duction problem. 

We note that for a medium with a coordinate-indepen- 
dent Hall component a, it follows from (51),  with 
allowance for the identity ( 2 l ) ,  that o,, = a , ,  which agrees 
with Ref. 16. But if the conductivity a does not depend on 
the coordinates, then E,(r)  = (E,), and then a,, = (ao ). 
From this, for the Hall coefficient Re ,  follows the expression 
R, = (R ) obtained in Ref. 2 for two-component systems. 
Finally, for media with an arbitrary dependence of o and uo 
on the coordinates, from (5  1 ) we obtain for the Hall coeffi- 
cient this general expression 

which is equivalent (for p = x and v = y) to the formula 
obtained in Refs. 5 and 8. A more direct way of deriving (52) 
is to use the identities (49) with Ohm's law in the form 
E =b j ,  whereb is the resistivity tensor. 

We shall consider an isotropic two-component system. 
We write the quantity uo ( r )  in the form 

where 8, ( r )  = 1 inside the first component and 8, ( r )  = 0 
outside it. Substitution of (53) into (51) leads, with 
allowance for the identity (21),  to a formula of the form 
(13), where 

9 ( p ,  h) =( ([E,'"), E,(')]n) >("/ ([(E,'")), <E,(")?] n) .  (54) 

Here (...)'"is the same as in (25 1. The formula (54) gives an 
expression for the function q,(p,h) in terms of the field E, ( r )  
in the medium, i.e., gives the solution of the problem of the 
electrical conductivity for H = 0. We note that multiplying 
(34) (for i = 1 ) by emD,n, makes it possible to relatep to the 
functions b"' and c'": q, = b ' I )  - c'". We note also that'for- 

anisotropic media too the quantity q, is given by the expres- 
sion (541, but is in this case a function of six dimensionless 
arguments:!), ax, /a,, , a,, /az , ,  a,, /a,, , a,, /a,, , a,, /o,, . 

6. THE CRITICAL BEHAVIOR OFTHE HALL COEFFICIENT 

For a system with dielectric (d,  = 0 )  inclusions with 
the critical concentration p =pc (Refs. 9, 10) all compo- 
nents of the tensor se vanish. Consequently, q,(p,O) = 0 for 
p<pc,  and q, (p,O) # 0 forp >pc  . As in the case of the electri- 
cal conductivity, we shall assume that for p >p,  and p-p, 
the function q,(p,O) vanishes in a power-law manner: 

where 1 > 0. The physical reason for,the decrease of q,(p,O) as 
p-p, is obvious-the electric field is expelled from the con- 
ducting (first) component. For p <pc the first (metallic) 
component forms unconnected finite  cluster^,^^'^ inside 
which the electric field is equal to zero, so that q,(p,O) --0. If, 
however, the conductivity of the second ("dielectric") com- 
ponent is nonzero, then p(p,h) # O  even for p <pc ,  but g, is 
small for h = o,/a, 4 1. According to the first equality 
(3  1 ), the mean electric field in the first component for p < p  
and h -0  vanishes linearly with h. It may be supposed that 
this is also true for the field E ( r )  at any point of the first 
component, so that p cc h fo rp  < p  and h -0 (the assump- 
tion of a dependence of the form q, a h is confirmed in the 
two-dimensional case, when q, can be exprssed in terms ofA 
see Sec. 8) .  Then for p <p, and p-p, outside the region of 
smearing (see below) we should expect 

Finally, for the critical concentrationp =p, the quantity q, 
will evidently be a power function of h: 

where u,  generally speaking, is not an integer. 
The dimensionless electrical conductivity f(p,h) has 

behavior similar (except for the dependence on h forp < p c )  
to (55)-(57) in the critical region 1 ~ / @ 1 ,  h g l .  In the 
framework of the scaling hypothesis for f we h a ~ e ~ . ~ , ' ~  

with the following asymptotic forms: 

A 0- -h5/t , t / ~ = t + q .  

Here A, is the size of the region of smearing" and the nu- 
merical coefficients are of the order of unity. 

In an analogous manner, for the function q, in the criti- 
cal region we shall have 

The leading terms of the asymptotic forms of q, are given by 
the expressions (55 )-(57). The relation in (60) between the 
critical indices can be obtained in the usual manner from the 
matching of (56) with (57) at lrl -A,,  where A, = hU"is 
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the size of the region of smearing for the function g,. Accord- 
ing the scaling hypothesis, all critical phenomena (for 
H = 0) are characterized by a single scale, so that we must 
require equality of A,  and A ,  In this case, the following 
relation between the critical exponents should be fulfilled: 

Thus, for consistent application of the scaling hypothesis the 
function g, is characterized by one new (additional to the 
indices of the function f )  independent critical exponent, 
e.g., I.  The other two exponents rand  u can be expressed in 
terms of 1 and t, q: 

For the Hall coefficient (R = H 'a, /a 2 ,  we obtain 
from (13) 

R,=h2Rzf-2+(R,-h2Rz)S, 9 (p, h) =cp ( p ,  h)lf2 ( p ,  h). 

(63) 

We emphasize that in the approximation linear in H the for- 
mula (63) is exact and the parameters in it can take any 
values. For a system with a metal-insulator phase transition, 
in the critical region irlg 1, h < 1 we obtain for the function 
9 from (55)-(62) 

5e=h-k9(r/hs't), 
T>O, A o K ~ < l :  S-T-~, 

where 

The equality of the critical exponents above ( r  > 0, r$ A, ) 
and below (7- < 0, / T / >) A,) the transition point is a conse- 
quence of the first relation (62).  The expression (63),  to- 
gether with (581, (59) and (64), (65), gives a complete (in 
the sense of the scaling hypothesis) description of the critical 
behavior of R ,  that is valid for arbitrary values of the galva- 
nomagnetic characteristics of the components. 

For the description of the Hall coefficient in the region 
of the metal-insulator phase transition, Shklovskii proposed 
the following interpolation formula (in the notation of the 
present paper9 : 

with exponentg = v, where v is the critical exponents of the 
correlation length. In its structure (66) differs from the ex- 
act expression only by the replacement R , - R , - h 'R, in 
the second term. This difference is unimportant in the entire 
critical region, so that the approximate nature of the formula 
(66) consists mainly in the interpolation character of the 
description of the function 9. It should be noted that this 
interpolation is extremely successful, since it reproduces in 
order of magnitude all the asymptotic forms (64) and gives 
the exact relationship between the indices k and g: 
k = gs/t = g/( t  + q);  compare with (65). Thus, the inter- 
polation formula (66) gives a correct qualitative description 
of the Hall coefficient in the entire critical region. At the 
same time, it is evident that the critical exponent g must be 
determined by of a numerical experiment. 

In the papers of Ska15.' the Hall coefficient of isotropic 
two-component systems was investigated by numerical 
methods, with the use of an expression of the type (52) for 
R, . In the limit R, = 0 considered in Ref. 8, from (63) we 
have R,/R, = -97. In this case, according to Ref. 8, there is 
equality (within the error bars of the calculation) of the 
critical exponents indices above and below the transition 
point; the numerical value of the corresponding exponent is 
g = 0.6 f 0.1 (Refs. 5, 8)  (in Refs. 5 and 8 this exponent 
was denoted by f ). In the second limiting case R, = 0 the 
term with 9? in (63) for Irl < 1 and h g  1 is small, and the 
critical behavior of the Hall coefficient is determined, pri- 
marily, by the electrical conductivity$ Correspondingly, in 
Ref. 8 it was found that within the error bars of the calcula- 
tions the critical exponents of R, (for R , = 0 )  coincide with 
the indices of the quantity f - 2 .  

Thus, the results of tbe numerical experiments of Refs. 
5 and 8 agree with the conclusions of the present paper and 
make it possible to find the critical exponent g that is not 
determined in the theory: g = 0.6 +_ 0.1. If for t and q we 
make use of the values given in Ref. 8 ( t  = 1.6 + 0.1, 
q = 0.7 + 0.1 ), then for the remaining indices we obtain 

It is of considerable interest to determine all these indices 
from independent results of a numerical investigation of the 
quantities R,, p, and J: Such a complex numerical experi- 
ment would serve as a serious check on the validity of the 
scaling hypothesis. We note also that a numerical investiga- 
tion of the function p(p,h) (i.e., not only of 9 = g, /f in 
the entire range of variation ofp and h is necessary, since p 
also appears in the expression for the transverse magnetore- 
sistance. 

7.THE APPROXIMATION QUADRATIC IN H 

In the approximation quadratic in H, from the identity 
[see (4811 

where 

we obtain 

In the derivation of (67) we have also used the identity 
(E:"') (jg') = (E:"'jpl), allowance for which leads to can- 
cellation of the terms with E,. In addition, it is not difficult 
to verify oneself that all the terms containing (E , )  drop out 
of the final expressions for y,, and y,,. This circumstance 
has been taken into account in (67), in which for El  we must 
use the expression (46) with ( E , )  = 0, which in this case 
can also be written in the form 
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Let n = H/H be directed, as in (6),  along the z axis. 
Then, setting ,u = Y = x in (67) (so that ( E k ) )  
= ( E  ,!j:')S,, ), we find a general expression for the quantity 

y,, . In the case of two-component systems, for y,, we obtain 
the formula ( 15) with the following coefficients $2) : 

$;l)=( (E:==))~+ (ED(:) )2>(i)/(~::) )2, 

where (...) "' is the same as in (25 ) . Taking into account the 
identity (21 ) and the condition (E l  ) = 0, we can write the 
term with ga in (67) in the form 

<aa( [Eo('L)Ei(V) In) ) = (0al-sa2) < ([EO(n)El(V)] n) ) ( I )  (70) 

Next, the expression (68) for E l  ( r )  after substitution of 
(53) takes the form (with allowance for the condition 
g(r , r l )  = 0 on the boundary of the sample) 

ey) (r) =a1v,) dr'[ Vrr, E:') (rf)g(r, r') Iz. (71) 
vt 

Then for the functionx, we obtain the following expression: 

We note that the quantities $?) from (69) can be ex- 
pressed in terms of the functions a"', b"' , and c"' defined in 
(34): 

$l(l)=~a(l)+b(l)+c(l)  $,,(2)=a(l), q,(3)=2a(2)+b(2)+c(2) 
1 

From (73), when theequalities (35) (with D = 3) are taken 
into account, the relations ( 19) follow. 

The quantity y,, is considered in an analogous manner. 
Putting ,u = Y = z in (67) (for nllz), for y,, in the case of 
two-component systems we obtain the expression ( 16) with 
coefficients 

where eiz) is given by the formula (71 with v = z. The quan- 
tities $:"' can also be expressed in terms of the functions a( ') ,  
b'" , and c'" defined in (34) : 

$,(i)=2a(1), $,(2)=a(')+b(l)+C(~), 

$,(3j=2a(2) ~ C ~ ~ ( P ) = ~ ( L ) + ~ ( Z ) + C ( ~ ) .  (75) 

Comparison of (75) with (73) leads to the relations ( 18). 
Because they are rather pmbersome, we shall not write 

out the easily derivable expressions for the transverse and 
longitudinal magnetoresistances in the approximation qua- 
dratic in H.  Moreover, a detailed study of the critical behav- 

ior of the magnetoresistance is possible only after a detailed 
investigation (first of all, numerical) of the properties of the 
functions $:', tlrjO', ,yx and xZ in the neighborhood of the 
percolation threshold. Such an investigation goes beyond 
the scope of the present article, and so we shall confine our- 
selves to the following remarks. 

As already noted, the quantities y,, and y,, are de- 
scribed by not more than four new (additional to f and p )  
functions, e.g., $:" and $L3', X, andx, . Consistent applica- 
tion of the scaling hypothesis (similar to that performed for 
the function p in the preceding section) to each of them gives 
one independent exponent. Therefore, according to the anal- 
ysis performed here, in the framework of the scaling hypoth- 
esis the quantities y,, and y,, are described by not more than 
four new critical exponents. We note also that when one 
considers the properties of the functions $?', $:a) ,  x,, and 
X ,  "in the largeW,i.e., in the entire range of variation of the 
concentration, the results of solving the problem of the gal- 
vanomagnetic properties of two-component systems by the 
method of effective-medium theory may turn out to be use- 
ful-see, e.g., Ref. 17. 

In a numerical experiment the functions $2' and $:"' 
can be determined in the framework of the electrical-con- 
ductivity problem (for H = 0 )  by using their explicit 
form-see (69) and (74). At the same time, the expressions 
for xx and xZ contain the Green function g(r , r f ) ,  and this 
substantially complicates the calculation of these quantities. 
Therefore, it is clear that the functions X, and X, must be 
determined by direct modeling of the galvanomagnetic phe- 
nomena (for y,, = y,, = 0 )  on lattices. Tabulation of $:), 
$:"', xx , andxZ (and also off and p) for allp and h will make 
it possible to give a description of the galvanomagnetic prop- 
erties of isotropic two-component media in a weak magnetic 
field in the entire range of variation of the parameters of the 
problem. 

8. THE TWO-DIMENSIONAL CASE 

For two-dimensional two-component systems the prob- 
lem of the galvanomagnetic properties has an exact solution 
for arbitrary magnetic fields-see Refs. 6 and 7 .  Therefore, 
an analysis of this problem (for D = 2)  by means of the ap- 
proach used in the present paper will make it possible to 
check the method proposed. In the two-dimensional case it is 
possible, in particular, to find the explicit form of the func- 
tion x (analogous to the functions X, and X, in the three- 
dimensional problem) by expressing it in terms o f j  This 
gives the possibility of investigating the basic properties o f x  
for all p and h. 

The function p(p,h),  appearing in the quantity a,, and 
defined by (54), can be found for D = 2 as follows. We write 
out the identities (21 ) (with E replaced by E,) and (23) 
(for j - j, ) in the form of a sum over the components-see 
(25). From these two equations we determine the quantity 
( [E,!jp'EP)] ) 'I), and thereby the function p: 

Substitution of (76) into (63) gives for the effective Hall 
coefficient the expression obtained in Refs. 2 and 3. 

We set ux, = me + ye and ax, = gi + y,. Then in the 
approximation quadratic in H we shall have 
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where 

=) 2 ( 1 )  9,=( (E: ) ) /(E:' Y ,  q2=( ( E ~ ( " ' ) V " / ( E ; : ) ) ~ ,  

Expressions for $, and $, follow directly from (28): 

In order to find the function X, in the identity (21) we set 
E'"' = Eg;" and E'"' = E',"', and in (23) we set j'"' = jg' 
and j (" )  = j jX ) ,  where j ,  is given in (44) and (EIx') = 0. 
Proceeding as in the derivation of (76), forx(p,h) we obtain 

with q, from (76). The formulas (77), (79), and (80) coin- 
cide with the result of expanding the general expression for 
a,, from Ref. 6 to terms of order H inclusive. 

For the quantity Ape /p, = [p,, (HI  - p,, (0)  I /  
p,, (0),  where p, = u , / ( d  + d ) ,  in the approximation 
quadratic in H we have 

Here u, is specified in ( 5 ) , a,, in ( 13 ) and (76), and ye in 
(77), (79), and (80). Thus, for two-dimensional systems 
the magnetoresistance can be expressed in terms of the di- 
mensionless electrical conductivity f and its derivative f ' .  
Therefore, the use for f of formulas (58), (59) (with 
s = 1/2) makes it possible in this case to give a complete 
(within the framework of the scaling hypothesis) descrip- 
tion of the critical behavior of Ap,/p,. We note also that the 

quantity f '  can be expressed in terms of the permittivity of 
the medium in a quasistationary electric field-see Ref. 13. 
Consequently, the relation (8 1 ) (with the definitions of the 
quantities ye and a,, ) is subject to direct experimental ver- 
ification by a simultaneous investigation of the Hall coeffi- 
cient, the magnetoresistance, and the low-frequency disper- 
sion of the electrical conductivity of thin films. 
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