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The cases are considered when the onset of long-range quasicrystalline order can be explained on 
the basis of the short-range order, i.e., the cases in which the structure is completely defined if all 
the local configurations are known. It is proved that such local rules exist for a two-dimensional 
quasicrystal only when its incommensurability is described by quadratic irrational numbers 
a + bD 'IZ (a  and b are rational numbers, and D is an integer). Local rules exist for a three- 
dimensional quasicrystal with icosahedral symmetry. I t  follows therefore that it is possible to find 
a Hamiltonian with a finite interaction radius, for which such a structure will be a configuration 
with minimum energy. This means that quasicrystals with thermodynamic equilibrium exist. 

I. INTRODUCTION 

Quasicrystals, discovered by Shechtman et al.,' have 
their atoms arranged in an unusual long-range order. To 
explain the diffraction properties of these substances one 
usually invokes a whole-number lattice in multidimensional 
space and a three-dimensional subspace, the atom being lo- 
cated at latice sites close to the subspace. The locations of the 
atoms in the three-dimensional space can be determined by 
the projection method.'-' Although constructions of this 
kind explain well the coherence of the scattering, they have a 
substantial shortcoming, viz., existence of long-range order 
is postulated from the very outset, but it is not explained how 
this order stems from the short-range ordering of the atoms. 
However, if the crystal grows, for example, from a melt the 
attachment of the atoms to an already formed seed follows 
already certain laws that are local in character. Which of the 
atoms will occupy a certain space is determined by the first, 
second, and perhaps a few other coordination spheres. When 
speaking of quasicrystal growth, it can be said that the atoms 
sticking to the surface of the seed "do not know at all" that 
the structure increases in a certain incommensurate direc- 
tion in multidimensional space. All that the atoms "know" is 
which local configuration can be formed and which cannot. 
This raises a question, which is the main topic of this paper: 
is it possible to specify a quasicrystalline structure by de- 
scribing the local configurations that are encountered in it? 

For a periodic crystal, an affirmative answer to a similar 
problem is obvious. It suffices to describe the structure of 
one unit cell and explain that its neighbors are identical unit 
cells. There is no complete answer for quasicrystals, and the 
available results are by way of models. Structures are consid- 
ered which are called coverings or tilings of a plane or 

Let us define the tiling of a plane by parallelograms. Let 
n nonparallel vectors ei ( i  = 1, ..., n). be specified on a plane. 
We consider all the parallelograms formed by the vector 
pairs (ei,e,) (i#j).  A tiling is defined as a breakup of the 
plane into parallelograms from this set, such that the differ- 
ent parallelograms either do not intersect or have a common 
vertex or a common edge. The tilling of a space by parallelo- 
grams can be defined by introducing n vectors ei ( i  = 1, ..., n) 
and considering the parallelepipeds generated by the triads 
(e,,e,, e,) (i#j,k #i). Tiling on a space with more dimen- 
sions is similarly defined. Tiling of a straight line is defined 

as breakup of the line into segments from a specified set. 
From among the tilings obtained in this manner, a class 

called semicrystalline is singled out. These tilings have re- 
markable properties6 that permit their use to simulate real 
quasicrystalline structures. In particular, it is reporteds that 
quasicrystalline tiling, by parallelepipeds, on a three-dimen- 
sional space having icosahedral symmetry, has been success- 
fully used as a framework for the arrangement of the atoms 
in the analysis of the structure of an Al-Zn-Mg alloy. There 
are many equivalent methods of defining quasicrystalline til- 
ing. The best known is the following. We choose a two-di- 
mensional subspace V in an n-dimensional space R " con- 
taining a whole-number lattice Z  ", such that the coordinate 
on V is an n-component linear function of two arguments. 
We consider a set, called a "duct" which is a union of all the 
cubes that coincide in form, size, and orientation with the 
unit cube of the lattice Z  ", and the centers of the cubes are 
located on the subspace V. We consider next all the integer 
points of this lattice, which land inside this duct. It turns out 
that there exists a single two-dimensional surface consisting 
of two-dimensional facets of the cubes of the Z n  lattice, con- 
tained entirely in the duct, and passing through a11 the lattice 
points inside the tube (see, e.g., Ref. 2).  When the surface is 
orthogonally projected on the subspace V, the latter breaks 
up into parallelograms that are projections of two-dimen- 
sional facets of the lattice cubes. This plane is tiled by paral- 
lelograms strung on the pair of vectors (e,e,) where e, are 
the projections of the basis vectors of the n-dimensional lat- 
tice. The quasicrystalline tiling of the plane, obtained in the 
this manner, is of particular interest if the subspace v is in- 
commensurate with the lattice Z  " (there are no vectors with 
integer components and parallel to the subspace V). This 
tiling is not periodic. A three-dimensional space can be simi- 
larly tiled by parallelepipeds. 

These tilings are of interest for the investigated quasi- 
crystals primarily because of the properties of their Fourier 
transform.' The Fourier transform of such a structure has 
much in common with the diffraction patterns obtained in 
scattering of electrons and x-rays. Another reason why these 
tilings are of interest is that they have short-range order, just 
as in real quasicrystals, i.e., there exists a fixed number of 
types of neighborings of one parallelogram. This corre- 
sponds to local order in solids, where the interaction be- 
tween the atoms leads to a fixed number of atom configura- 
tions in the first and several additional coordination spheres. 
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FIG. 1.  Local de Bruijn rules for a Penrose lattice. The rhombs must be 
arranged so that the arrow orientations and their multiplicities are the 
same on congruent edges. 

We are interested in knowing whether it is possible to 
impose a limit on the local order, i.e., require that only con- 
figurations of a definite type be encountered in the tiling, and 
to ensure that this condition determine the long-range quasi- 
crystalline order. The first nontrivial result in this direction 
was obtained by de B r ~ i j n , ~  who showed that if tilings of a 
plane by rhombs of two types (with arrows on the edges) are 
considered (see Fig. 1 ), and if it is stipulated that the arrows 
on overlapping sections of the boundaries of neighboring 
rhombs be of the same type and of the same direction, then 
the tilings discovered by P e n r ~ s e , ~  and none other, are ob- 
tained. Beenker9 has shown later that quasicrystalline tiling 
of a plane with eightfold symmetry does not have such prop- 
erties, i.e., it cannot be reconstituted from its local configu- 
rations. Unfortunately, nothing but these results is known 
concerning the local rules for two-dimensional quasicrys- 
tals. Nor is there any information at all for the three-dimen- 
sional case, which is of principal interest from the experi- 
mental viewpoint. 

In Sec. 2 of this paper we write down for tiling a defini- 
tion that will be of importance subsequently, and use it to 
describe more-accurately quasicrystalline tilings. We pres- 
ent also the needed variants of the statement that "a quasi- 
crystal is reconstructed in accordance with its local configu- 
rations." in Sec. 3 we consider quasicrystals of unity 
codimensionality (n = d + 1 ) and show that it is impossible 
in this case to determine the local order from a set of local 
configurations. We explain the main idea of this proof by 
using as the example two-dimensional quasicrystal tiling. 
We fix an arbitrarily large number R and single out a set of 
parallelogram configurations encountered in a specified 
quasicrystalline tiling and having a dimension smaller than 
R. It turns out that, no matter the type of hyperplane V 
contained in the definition of the quasicrystalline tiling, it is 
possible to change the slope of this hyperplane in such a way 
that in the new quasicrystalline tiling the set of configura- 
tions with dimension smaller than R remains the same. This 
means that no matter how large R, the local order over scales 
smaller than R does not fix the long-range quasicrystalline 
order in the case of unity codimensionality. In Sec. 4, which 
is auxiliary in character, we discuss dual graphs of tilings 
and their properties. It contains one other useful definition, 
using dual graphs, of quasicrystalline tilings. This section 
contains no new results. In Sec. 5 we study two-dimensional 
crystals with codimensionality two and more (meaning that 
the dimensionality of the auxiliary multidimensional space 

exceeds three). It turns out that long-range order can be 
established in these quasicrystals from the short-range order 
only if the quasicrystal is described by quadratic irrational 
numbers a + bD ' I 2 ,  where a,  b, and D are rational numbers. 
We have in mind the following. Assume a given embedding 
V: R + R " of a two-dimensional plane in an n-dimensional 
space described by n linear functions K ( x )  on a plane 
( i  = 1, ..., n). We represent this linear dependence in the fol- 
lowing fashion: we choose any two functions, say Vl (x )  and 
V, (x)  , and express the remaining functions in their terms: 

This is possible because only two out of any number of linear 
functions on a plane are linearly independent. The main re- 
sult of Sec. 5 can be formulated as follows. If the semicrystal- 
line long-range order can be reconstructed from a finite set of 
local configurations, the coefficients a ,  and b ,  of the expan- 
sion are quadratic irrational numbers. It is shown in Sec. 6. 
that this condition is sufficient (see the more exact formula- 
tion in Sec. 6). In Sec. 7 are obtained analogs of certain state- 
ments of Secs. 5 and 6 for three-dimensional space, and it 
turns out that cubic irrational numbers, a + bD ' I 3  + cD 2 1 3 ,  

are allowed besides the quadratic ones. It is proved, in par- 
ticular, that quasicrystalline tiling of a three-dimensional 
space with icosahedral symmetry is reconstructed from its 
local configurations. We note an interesting circumstance 
which may have a bearing on the results of the present paper. 
Quasicrystalline alloys with three types of symmetry, having 
point groups Y, Dl,, and Dl,, are known at present. All three 
structures are described by quadratic irrational numbers 
(the radicals produced are 5'12 and 3'12 respectively). 

We note one related question of importance to the phys- 
ics of quasicrystals. Consider Hamiltonians specified on dif- 
ferent tilings and having finite interaction radii. Does a 
Hamiltonian of a type such that its minimum energy corre- 
sponds to a quasicrystal exist? It can be verified that the 
answer to this question is closely related to the presence or 
absence of local rules. Thus, for examples, the rules intro- 
duced by de Bruijn for the joining of rhombs specify in effect 
some Hamiltonian on the tilings of a plane by two types of 
rhombs with arrows on the edges (see Fig. I ) ,  including 
nearest-neighbor interaction equal to zero if the arrows on 
the congruent edges are oriented in accordance with the 
rules, and is large if the arrows are misoriented. The de 
Bruijn rules in this formulation mean the configurations 
with minimum energy are Penrose tilings and no other. On 
the other hand, in many cases where the structure cannot be 
reconstructed from local configurations, it can be shown 
that there is no Hamiltonian with a finite interaction radius. 
It appears that only those two-dimensional quasicrystals 
which are connected with quadratic irrational numbers can 
be minimum-energy configurations for physical Hamilto- 
nians. For three-dimensional tilings, both quadratic and cu- 
bic irrational numbers are admissible. 

2. BASIC DEFINITIONS 

We introduce the concept, which will be important in 
the sequal, of the rise of a tiling. Assume an arbitrary tiling of 
a plane by parallelograms strung on pairs of vectors 
( e , ,  e,) (i#j).  We designate the "rise of a tiling" by the 
function W..R + R ", defined as follows: We choose the ver- 
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tex x of one of the parallelograms of the tiling as the origin. If 
y is the vertex of some other parallelogram, then the vector 
y - x  can be uniquely represented in the form 
z,e, + ... + z,en (zi are integers). We now define a rise on 
the vertices of parallelograms: W(x) = (0, ..., O), 
W ( y )  = (z,, ..., 2,). The values of the function W at other 
points of the plane are determined from the following condi- 
tions: the functions Wis linear inside and on the boundary of 
each parallelogram. Thus, the lifting Wmaps the tiling of the 
plane R into a two-dimensional surface in R ", consisting of 
unit squares with vertices at integer points. 

Consider a two-dimensional linear subspace V and R " 
and a standard duct around it, viz., the union of all the unit 
n-dimensional cubes whose centers belong to V. The sub- 
space must be chosen such that there is not a single integer 
point on the duct boundary. This nondegeneracy condition 
can always be met by using parallel transfer of the subspace. 
It is easy to verify that there exists a unique surface made up 
of unit squares (two-dimensional facets of an n-dimensional 
cube), contained inside the standard duct. The tiling, whose 
rise is this surface, will be called a quasicrystalline tiling or a 
V-quasicrystal. Note that tilings obtained in this manner can 
be periodic as well as quasiperiodic, depending on the choice 
of the subspace V. To generalize the definition of a quasicrys- 
talline tiling to other dimensionalities, we must replace the 
two-dimensional space by a d-dimensional one, and the unit 
squares by d-dimensional facets of a unit n-dimensional 
cube. 

We define now an atlas and maps for an arbitrary tiling, 
and will refer for the sake of argument to tiling on a plane. 
We designate as the (r, x )  map of a given tiling any configu- 
ration of parallelograms of this tiling, contained in a circle 
with center x and radius r. We designate as the r-atlas of a 
given tiling the set of all (r,, x )  maps, where x is arbitrary 
and r, < r. Since the number of different configurations con- 
tained in a circle of fixed radius is finite, the r-atlas is a finite 
set of maps. With the aid of these concepts we can formulate 
more accurately the question of interest to us: In which cases 
is the quasicrystalline tiling reconstructed if its r-atlas is 
known for a certain r? 

We refine now the statement "a tiling is reconstructed 
from its r-atlas." We introduce to this end the concept of r- 
rules. We define r-rules as an arbitrary set of configurations 
of parallelograms that can be contained in a circle of radius r. 
Clearly, the set of all r-rules is finite for a given r. 

If certain r-rules are specified, we shall say that a given 
tiling satisfies these rules if all its r,-atlases (r,  < r )  are sub- 
sets of these r-rules. 

Assume some given two-dimensional subspace Vin R ". 
We shall say that strong local rules exist for the V-quasicrys- 
tal if there exist r-rules such that: a )  they are satisfied by at 
least one tiling: b)  all the tilings that satisfy these rules are 
quasicrystals; c) if a U-quasicrystal satisfies the rules, than 
the subspace U has the same dimensionality as V, and is 
parallel to it. 

Strong local rules fix the structure almost completely, 
allowing only the leeway connected with parallel transfer of 
the duct. The Fourier transform of such a structure does not 
contain an arbitrary component and consists of only a- 
peaks. 

We shall say that for a V-quasicrystal there exist weak 
local rules if one can find r-rules such that a )  they are satis- 

fied by at least one tiling; b) there exists a positive number C 
such that for any tiling satisfying these r-rules there exists a 
two-dimensional subspace U such that U 11  V, and the dis- 
tance from any rise point of this tiling to the subspace U does 
not exceed C. 

In other words, the rise of any tiling satisfying the weak 
local rule is almost parallel to the subspace V, deviating from 
it by not more than a constant. It can be stated that weak 
local rules specifjl a quasicrystal apart from a structural dis- 
order. It is easy to verify that this structural disorder does 
not broaden the a-peaks of the diffraction pattern, although 
it does decrease their intensity. In this sense it is similar to 
the substitutional disorder in ordinary crystals. We shall use 
hereafter the convenient abbreviations LR for local rules 
and ( V, r)-atlas for the r-atlas of a V-quasicrystal. 

We consider by way of example an arbitrary one-dimen- 
sional V-quasicrystal ( V:R ' - R ", V(x) = (a,x + b,, ..., 
anx  + b, ) ) and verify that weak LR exist only if there is no 
incommensurability (all (ai/a, ) are rational). Indeed, as- 
sume that weak LR exist. We denote by r the maximum 
radius of the maps contained in these LR. In any tiling satis- 
fying the LR one can find two nonintersecting maps with 
dimensions larger than rand with tilings that coincide. It is 
now easy to construct a periodic tiling that satisfies the same 
LR, using for the period the region between these two maps. 
Since a periodic tiling can rise to an arbitrary distance from 
any incommensurate subspace, all the ratios ai/aj are ra- 
tional, and consequently the V-quasicrystal is periodic. 

Note that from the existence of strong LR follows the 
existence of weak LR, and the absence of weak LR means the 
absence of strong LR. 

3. QUASICRYSTALS WITH UNITY GODIMENSIONALITY 

Consider a quasicrystalline tiling of a (d  - 1 )-dimen- 
sional space, obtained with the aid of a d-dimensional space 
and a ( d  - 1 )-dimensional hyperplane in it. Of physical in- 
terest are the cases d = 3 and 4. The first corresponds to a 
plane in three-dimensional space, i.e., describes the facet of a 
three-dimensional periodic crystal. 

To prove this fact it is necessary to find for any hyper- 
plane V that is not rational, and for an arbitrary r, a hyper- 
plane U close in slope and such that the ( V, r)-atlas coin- 
cides with the ( U, r)-atlas. 

Consider the plane G(d, 1 ) of all ( d  - 1 )-dimensional 
hyperplanes passing through the origin. We set in correspon- 
dence with any configuration k of a finite number of paral- 
lelotopes that can be encountered in some tiling R d -  ' a sub- 
set T (k )  of the space G(d, 1), consisting of hyperplanes V 
such that the V-quasicrystal contains the configuration k an 
infinite number of type. 

Let now strong LR be specified for the hyperplane V. 
We choose a certain positive r, and consider the configura- 
tions k, (i = 1, ..., N) contained in the ( V,r) -atlas. Clearly, 
the point Vof the space G(d, 1) is internal for all the T(ki  ) 
sets, since there are no integer points on the boundary on the 
tube. Therefore the (U,r)-atlas for any hyperplane U of 
slope sufficiently close to that of V contains all the maps of 
the ( V, r)  -atlas. We shall see that if the hyperplane V is not 
rational we can choose a close hyperplane U such that the 
( U,r)-atlas coincides with the ( V,r)-atlas. The existence of a 
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hyperplane with another slope and the same r-atlas means 
indeed the absence of r-rules. 

A configuration k not belonging to the ( V, r )  atlas will 
be called dangerous to V if I?( k)  intersects an arbitrarily 
small vicinity of V in G(d, 1 ) . Let us see the location of the 
rise of a dangerous configuration relative to the duct. The 
duct for a hyperplane specified by the equation ki 
(i = 1, ..., N) is a layer between two hyperplanes: 

It follows readily from the definition of a dangerous configu- 
ration that its rise can be placed in the duct ( 1 ) if a certain 
choice of c is made, and the points of this rise will lie on both 
boundary hyperplanes. We transfer all these points to one of 
the hyperplanes ( 1 ), effecting it necessary a parallel transfer 
by the vector (sign ( a , ) ,  ..., sign(a, ) ) joining the hyper- 
planes ( 1 ). We obtain a certain set of points (at least two) on 
one of the hyperplanes ( 1 ). Note that all the vectors joining 
the points of this set have integer coordinates. Consider the 
rational subspace generated by these vectors. It is at the very 
least one-dimensional, since our set consists of not less than 
two points. Thus, each dangerous configuration corre- 
sponds to a certain rational subspace of the hyperplane: 

We call the configuration k dangerous to V if there ex- 
ists in G(d, 1 ) such a vicinity of the point Vwhich does not 
intersect with (k) .  It is clear from the foregoing that if we 
choose the hyperplane Uin a sufficiently small vicinity of the 
point Vin G(d, 1 ), all the configurations dangerous to Vwill 
be dangerous also to U, and furthermore all the configura- 
tions contained in the ( V, r)  atlas will belong to the ( U, r)  
atlas. It remains to verify that Ucan be chosen such that the 
configurations dangerous to Vbe dangerous also to U. Let us 
consider all the configurations dangerous to V, and the cor- 
responding rational subspaces of the hyperplane (2 ) .  We 
take the sum of these subspaces. This is also a rational sub- 
space of the hyperplane (2) ,  and it is easy to verify that if r is 
large enough this rational subspace coincides with the maxi- 
mum rational subspace of the hyperplane (2) .  We can now 
choose U in a sufficiently small vicinity of Vin G(d, 1 ), such 
that the maximum rational subspaces of the hyperplanes U 
and V coincide, but not these hyperplanes themselves. This 
can be done only if the maximum rational subspace of V does 
not coincide with V itself, i.e., if the hyperplane V is not 
rational. By choosing U in this manner, we obtain different 
hyperplanes Uand Vwith identical r-atlases. Since the num- 
ber r can be made arbitrarily large, there are no strong LR 
for the nonrational hyperplane V. 

The arguments used in this proof do not apply to a codi- 
mensionality larger than unity. It was important for our pur- 
poses that the duct boundary consisted of hyperplanes con- 
nected by an integer vector, so that it was possible to transfer 
all the extreme points of the dangerous configuration to a 
single hyperplane. When the codimensionality exceeds uni- 
ty, different sections of the duct boundary are not parallel, 
and the procedure is inapplicable. 

4. DUAL GRAPHS OF TILINGS 

Let us define the dual graph of a tiling, a construction 
which plays themain role in Secs. 5,6, and 7. A dual graph of 

FIG. 2. Dual graph of quasicrystalline tiling, drawn on the tiling (left) 
and rectified (right). 

the tiling of a plane consists of n sets of line, one for each 
ei ( i  = 1, ..., n), satisfying the following conditions: a) two 
lines from one set do not intersect; b)  any two lines from two 
different sets intersect only once, and each such intersection 
cdn be set in correspondence with a tiling parallelogram 
(ei,e,) with vectors ei and ej corresponding to these two 
sets; c )  only paired line intersections are allowed in a dual 
graph. 

The dual graph of plane tiling with n = 3 is shown in 
Fig. 2. It is clear that if a dual graph is drawn for a certain 
tiling, and the tiling itself is erased, the tiling can be restored 
if we know the relation between the n sets of the noninter- 
secting lines and the vectors ei. We assume hereafer that 
such a relation is fixed once and for all. It is clear also that a 
tiling corresponding to a graph does not change if the graph 
is deformed without changing the topology of the intersec- 
tions. Graphs obtained from one another by such a deforma- 
tion are called equivalent. 

We consider now a dual graph of a quasicrystalline til- 
ing. De Bruijn has shown in his remarkable paper6 that the 
dual graph of the Penrose tiling is equivalent to a graph con- 
sisting of five sets of nonequidistant parallel lines having 
fivefold symmetry. It was shown later that analogous state- 
ments are valid also for an arbitrary quasicrystalline tiling. '' 
Note that a dual graph of the tiling of a plane can be de- 
formed in such a way that two sets of lines are transformed 
into two sets of parallel equidistant straight lines. A nontri- 
vial property of quasicrystalline tilings is that such a defor- 
mation straightens also the remaining sets of line. Each set of 
parallel equidistant straight lines corresponds to a linear 
function f(x)  = ax, + bx, + c, x = ( x , , ~ , ) ,  with the aid of 
which the points of the straight lines are written in the form 
f(x)  = k (k  runs through all the integers). Thus a dual 
graph of a quasicrystalline tiling is uniquely connected with 
some set f ,!(i = l,..,n) of linear functions of a plane. The 
points of the dual graph are given by the equations f; = ki 
(k, are integers). 

It is important that all the constructions considered in 
Secs. 1 and 2 can be formulated in terms of dual graphs. In 
place of the tilings we shall speak of graphs satisfying the 
conditions a),  b)  and c )  indicated above. We define the func- 
tions W.R *+R, called the rise of the graph. We choose a 
point x not belonging to the graph, and erase all the sets of 
lines except the ith set. We consider the function Wi, the 
value of which at a pointy not belonging to the graph is equal 
to the number of ith-set lines that separate y from x. The 
value of Won the graph line can be determined, for example, 
from the semicontinuity on the right or on the left (see Fig. 
3). Using the functions Wi ( i  = 1, ..., n), we determine the 
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FIG. 3. 

function W W(x) = W, (x) ,  ..., W,, (x )  ). The connections 
between the rise of a graph and that of a tiling is obvious. To 
each graph-line region in which all the functions W, 
(i  = 1, ..., n) take on constant values there corresponds the 
vertex of a parallelogram. Therefore the lift of a graph de- 
fines a function that takes on integer values on the vertices of 
the tiling. After an aditional definition inside the parallelo- 
gram with the aid of the linearity condition (see Sec. I ) ,  we 
obtain a function that coincides with the rise of the tiling. 
Conversely, a rise of a tiling determines a rise of a dual graph. 
We designate these two rises by one and the same letter W, 
since the rise referred to will always be clear. We present an 
expression for the rise W of a dual graph of a quasicrystal, 
specified with the aid of the linear functionsfl ( i  = 1, ..., n): 

w i ~  [fi] ( 3  

(the square brackets denote the integer part). 
We introduce maps and atlases for the graphs. We take 

an arbitrary point x of the plane, specify a number r, and 
consider the set of points y such that ( Wi (y)  - Wi (x)  I < r 
( i  = 1, ..., n). The part of the graph belonging to this region 
will be called the (r, x )  -map. The definitions of the r-atlas, r- 
rules, and strong and weak LR coincide verbatim with those 
in Secs. 1 and 2. 

Let us discuss in detail the properties of quasicrystal 
atlases. Assume a given set of linear functionsf;. ( i  = 1, ..., n) 
that give the 1ines.of the dual graph. The functions off, are 
called linearly dependent on the field Q of the rational 
numbers if they are connected by the relation 
aJ; + ... + ad,, = const (a, belongs to Q). We separate 
from the set fl ( i  = 1, ..., n) the maximum set of functions 
linear on Q. We assume them to be numbered from 1 to m. 
The remaining functionsf; ( i  = m + 1, ..., n ) are represented 
(apart from a constant) by linear combinations of indepen- 
dent functionsfl ( i  = 1, ..., m) with rational coefficients: 

by constants: 

fir=fiSci (ci=const; i=1,. . . , n), 
( 5 )  

a,, are rational numbers from (4) .  The quasicrystals ob- 
tained from these two sets differ by a parallel displacement of 
the duct in the incommensurate direction, or by a so-called 
phase shift. It is easy to verify that any r map of the graph 
fl = k,  ( i  = 1, ..., n; k,  are integers) is present also in the 
graph f ] = ki ( i  = 1, ..., n; ki are integers). Using this fact, 
we can check the validity of a statement which we shall need 
in Sec. 5. 

If two quasicrystalline tilings correspond to equivalent 
sets of linear functions [in the sense of Eq. (5)  1,  their r- 
atlases also coincide at all r. 

5. TWO-DIMENSIONAL QUASICRYSTALS 

The main result of this section is proof of the absence of 
local rules for a large class of quasicrystalline tilings. The 
main idea of this proof is the following. 

Assume the numbers s and q given (s > 0, q > 0)  and 
that we have found two points x and y in a two-dimensional 
crystal such that the tilings of the rings s < (z  - x (  < s  + 29 
and s < / z  - y 1 < s + 2q coincide, and the (s,x) and (s,y) 
maps are different. If strong r-rules exist for a certain r < 1, 
we proceed as follows: We prepare a new tiling of the plane, 
replacing the configuration in the (s, x)  map by the configu- 
ration of the (s, y)  map. The resultant tiling also satisfies 
these r-rules and is quasicrystalline, since, by assumption, 
the r-rules are strong. We have obtained two different quasi- 
crystalline tilings the coincide everywhere except in a circle 
with center at the point x and with a radius s. This is impossi- 
ble, and we find thus that there are no r-rules with r < q. 

We show now how to apply these premises to prove the 
absence of local rules. Assume a given set of straight lines 
fl = k, ( i  = I ,  ..., n; k,  are integers) of a dual graph of a quasi- 
crystalline tiling. Any three straight lines of this graph 
(from different sets) form a triangle when intersecting, since 
ternary intersections are forbidden. The equivalence trans- 
formation (5)  displaces these sets of straight lines (each set 
has a different displacement vector) and the traingles 
change shape (see Fig. 4). Clearly, if all the parameters ci in 
(5)  are smaller in absolute value than a certain small I ,  only 
sufficiently small triangles, of size not larger than const-I, 
can be restructured. Let us formulate these simple premises 
in the form of two statements that follow directly from (5) .  

a) There exists a constant C such that the equivalence 
transformation (5)  with Ic, 1 < 1 ( i  = 1, ..., m) does not re- 
structure triangles with area larger than CI2. 

b) if a triad of functions f,, f,, and f, is linearly indepen- 
(4) 

( i  = m + 1 ,..., n; j = 1 ,..., m;a are rational numbers). The in- 
commensurability of the quasicrystal structure is connected 
only with the independent functions f : ( i  = l,.. .,m), while 
the remaining functions correspond to decoration of the lat- 
tice. 

We call the two set of functionsf; and f: ( i =  1, ..., n) 
satisfbmg (4)  equivalent if the functions off: differ fromf; FIG. 4. Triangle restructuring under equivalence condition (5 ) .  
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dent over the field Q, there exists a constant C such that 
under one of the two equivalence transformations (5)  with 
ci * I, ci = 0 (i = 2 ,..., m )  any (k,, k,, k,) triangle of the 
form f, = k,, f, = k,, f, = k, and with area smaller than CI * 
becomes restructured. 

Assume now that we have found a circle with center at 
the point x and of radius r containing traingles of size smaller 
than I ,  and that all the triangles in the ring 
s < 1 %  - x I < s + 24 are much larger. In this case we can find 
an equivalence transformation (5) under which the trian- 
gles are restructured in the circle but not in the ring. Under 
this transformation, any (s + 2q, x)  map is transformed in 
some other map from the atlas of the same tiling. From the 
arguments presented above we find that there are no strong 
r-rules with r < q. Let us show how to make this heuristic 
reasoning rigorous. 

We introduce the following definition. We saw that the 
three linear functions Cf, = a,xl + b,x2 + ci ( i  = 1,2,3) 
meet the condition for the presence of a second intersection 
(the SI condition) if there exist integers n,, n,, and n, that do 
not vanish simultaneously and for which 

n, n2 ns 
det a, a, a, =O. I b1 b, 6.1 

This means that if for at certain c, in (5)  the three sets of the 
straight lines f; = k, have one triple intersection point x, 
they have also a second one y, with f; (y )  =f; (x)  + n, 
( i  = 1,2,3). 

We can now formulate the main statement of the pres- 
ent section. If strong local rules exist for a quasicrystalline 
tiling of a plane, and the dual graph of the tiling is obtained 
with the aid ofthelinear functionsf; ( i  + 1, ..., n), then the SI 
condition is met for any triad of functions f,f, 
(i, j,k = 1 ,..., n ) .  

To prove-this we must examine how the dual-graph 
small triangles are distributed over the plane, and we shall 
find it more convenient to speak of triangles not of small size 
I but of small area h. Let all the sets of straight lines of the 
dual graph be erased except for three, see the first, second 
and third. Each triad of lines f, = k,, f, = k,, f, = k, pro- 
duces a triangle on intersection, and all such (k,, k,, k,) 
triangles are similar. Three situations are possible. 

a )  The functions f,, f,, and f3 are linearly dependent on 
Q. In this case the linesf; = k, ( i  = 1, 2,3: k, are integers) 
form a periodic structure, and if h is small enough there are 
no triangles with area smaller than h at all. 

b)  The functions f,, f,, and f3 are linearly independent 
of the field of Q, but they meet the SI condition. In this case 
the triangles with area smaller than h are distributed as 
shown in Fig. 5a (if h is small enough). The triangles are 
located at a fixed (independent of h)  distance from one an- 
other. The distribution of the triangles over the plane has an 
average density of order h 'I2. It follows from the foregoing 
that the average distance between the lines on which the 
small triangles lie is of the order of h 'I2. 

C) The SI condition is not met for the functionsf,, f2 and 
f3. In this case triangles with areas smaller than h are uni- 
formly distributed over the plane at an approximate density 
h ' I 2  and are far from one another (see Fig. 5b). If we intro- 
duce a function d (h )  equal to the minimum distance be- 

FIG. 5. Distribution of small-area triangles over a plane: a-the SI condi- 
tion is met: b--the SI condition is not met. 

tween triangles of area smaller than h, then d(h)  tends to 
infinity when h tends to zero. All these statements follow 
readily from the equation for the area of the triangle made up 
of the three straight lines (aixl + bix2 = ci ( i  = 1,2,3): 

ai aj 
Ai j  = det 

Clearly, if the sets of straight lines f; ( i  = 1, ..., n) in- 
cludes three for which the SI condition is not met, there are 
no other triangles formed by the lines of these three sets 
around any of the small triangles formed by the lines of the 
same sets. It can be verified that there exists a small triangle 
surrounded by a broad ring that contains no other small 
triangle made up by triads of the lines of the other sets. We 
find that if strong LR do exist, the SI condition is met for any 
triad of straight line. 

Assume that an arbitrary qusicrystalline plane tiling ex- 
ists, that it satisfies some strong local rules, and that its dual 
graph is described by the linear functions described by the 
linear functionsf; ( i  = I,...&). We consider first a situation 
when only three of the functionsf; are linearly independent 
on Q. If n - 3 we find, using the statment of Sec. 3, that the 
tiling of the plane is periodic. This does not hold if n > 3. As 
shown above, however, the SI condition is met by all triads of 
functions. If all the functions are represented as linear com- 
binations of two, say f, andf,, we obtain 

Here ai,bi, and ci are rational numbers, different for each i; 
a, and b, are rational numbers and are equal at all values of i, 
g is not rational and does not depend on i. It can be verified, 
by the method used to prove the statement of Sec. 3, that for 
any arbitrarily large r it is possible to find a sufficiently small 
vicinity of the number g such that the r-atlases of all the 
quasicrystals (8)  with fixed ai,bi,ci,a, and b,, and with arbi- 
trary g that vary in this vicinity coincide. This means that 
there are no strong local rules. 

Let the number of linearly independent functions ex- 
ceed three. We choose four of them and designate them f,, f,, 
f,, f,. As shown above, the SI condition is met for any three 
out of these four functions. We write down this condition by 
representing f3 and f, (apart from a constant) as linear com- 
binations off, and f, with real coefficients: 
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We write down the SI conditions for the four triads ( 1,2,3), 
( 1,2,4), (1,3,4), (2,3,4) in the form (61, introducing four 
triadsofintegers (n,, n2, n3), (m,, m2, m3), (p1,p2,p3), (q,, 
q29 43): 

We obtain a system of four equations for a, b, c, and d. It is 
easy to verify that its solutions are of the form 

af ,a" ,  b', b ",cf,c",  d ' , d "  arerationalnumbersandDisan 
integer. Quadratic irrational numbers of type ( 11) form a 
field designated Q[D 112]. It is easy to verify that not only f2 

andf,  but also all the remaining ( i  = 5, ..., n) are expressed in 
terms off, and f2 with coefficients Q[D '''1 (with the same 
D).  This yields the following final result: 

If strong local rules exist for a quasicrystalline tiling of a 
plane, the number of functions that are independent on the 
field Q can be equal to: a )  two for a periodic tiling, b)  four for 
a tiling constructed with the aid of quadratic irrational 
numbers. In this case it is possible to find in the set 
( i  = 1, ..., n) two functions in terms of which all other can be 
expressed, with coefficient from Q [ D  'I2]. 

These results can be applied to quasicrystalline tilings 
with symmetry of order P. It is easy to verify that quadratic 
irrational values are obtained only for P=5,10  
( Q [ 5 1 1 2 ] ) , ~  = 8 ( ~ [ 2 " ' ]  and P = 12 (Q[3'I2] ), and that 
at P = 3,4, and 6 the structure is periodic. We find that there 
are no strong local rules for P = 7, 9, and 11 and for all P 
larger than 12. As for the strong local rules for the quadratic 
irrational values, this is apparently quite a difficult problem. 
The general situation has not been studied, and there only a 
few results for symmetric tilings. The existence of strong LR 
for P = 5 and 10 was proved in Ref. 6. It was proved in Ref. 9 
that there are no strong LR for P = 8. No answer is known 
for P =  12. 

6. TWO-DIMENSIONAL QUASICRYSTALS WITH QUADRATIC 
IRRATIONAL NUMBERS 

The main task of this section is to prove the existence of 
weak local rules for quasicrystalline tilings of a plane with 
quadratic irrational numbers (see the preceding section). 
The local rules that we shall consider are very easy to de- 
fine-they constitute the r-atlas of the quasicrystal for some 
sufficiently large r. 

We take first an arbitrary quasicrystal. After fixing a 
large number r, we find the r-atlas of this quasicrystal and 
take it to be the LR. We shall need some properties of tilings 
with such LR. We draw the dual graph of a tiling that satis- 
fies these LR. If r is large enough, one can find for each line 
of the graph a map on which is shown this line itself and two 
neighboring lines from the same set. Therefore the number 
of lines of each set in a dual graph of a tiling is infinite and 
they can be assigned integer numbers. We take to sets of 
graph lines, say the first and the second, and deform the 
graph in such a way that these lines are transformed into 

straight lines x ,  = k,, x2 = k, (k,, k, are integers), and the 
topology of the intersections remains unchanged. For the 
dual graph of the initial quasicrystalline tiling this deforma- 
tion can be carried out in such a way that the lines of all the 
remaining sets also become straight, fl = ki are certain 
linear functions, ki are integers, i = 3, .., n) .  The lines of the 
ith set of the dual graph of an arbitrary tiling ( i  > 2) need not 
necessarily become straight after this deformation. If, how- 
ever, the tiling satisfies the indicated r-rules for a sufficiently 
large r, it can be stated that the slopes of the lines of the ith 
set, relative to the lattice of the lines of the first two sets, will 
be close to the slope of the straight lines of the ith set of the 
dual graph of the quasicrystal. In fact, given the r-rules, the 
slope is fixed apart from edge effects on boundary of the 
map, and since the size of the map is of the order of r, the 
accuracy with which the r-rules determine the slope is of the 
order of const/r. 

This is true for an arbitrary quasicrystal, and not only 
for a quasicrystal with quadratic irrational values. We shall 
see that if the quasicrystal meets the conditions of item b)  of 
the statement of the preceding section (four functions inde- 
pendent on Q and quadratic irrational numbers), then the 
lift of the tiling satisfying the LR differs by not more than a 
constant from the two-dimensional subspace of the spare R " 
along which the lift of the initial quasicrystalline tiling pro- 
ceeds. 

In other words, the following statment is valid: 
Let the quasicrystal be such that: a) the linear functions 

that give the dual graph of the tiling include four that are 
linearly independent on Q; b)  it is possible to find among 
them two functions in terms of which the remaining ones are 
linearly expressed with coefficients from the field Q[D 
Weak local rules exist then in this case. 

The idea of the proof can be briefly described as follows: 
We deform the dual graph in such a way that the first two 
sets become rectified, and we consider the rise W of this 
graph. We neglect for the time being the discontinuity of W 
and assume that the components of the rise Wi ( i  = 1, ..., n)  
are smooth functions locally close to linear. The first two 
components of this lift are globablly close to linear functions, 
i.e., they differ from linear functions by not more than a 
constant. We consider Win a region whose size is large com- 
pared with the distance between the lines of the sets of the 
graph, but small compared with the scale over which the 
deviation of W, from linear function manifests itself (as 
shown above, this scale is large if the radius of the rules is 
large enough). The function Wcan be replaced in ths region 
by a linear one. For each triad of functions Wi, W,, W,, we 
can write an SI condition. If n > 3, these conditions deter- 
mine completely the linearized functions Wi, leaving no lee- 
way whatsoever. We find that the derivatives of Wi are con- 
stants, and the functions themselves are linear and therefore 
are equal tof;  ( i  = 3, ..., n) to within a constant. Of course, 
the functions Wi are neither continuous nor, all the more, 
smoothly varying in the strict sense of the word. The proof 
requires therefore a more accurate analysis, which will be 
reported elsewhere. 

7. THREE-DIMENSIONAL QUASICRYSTALS 

A few words concerning the quasicrystalline tilings of a 
three-dimensional space. The dual graph of an arbitrary til- 
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ing of a three-dimensional space consists of a set of two- 
dimensional surfaces, and for a quasicrystal it consists of a 
set of parallel planes. All the arguments used to prove the 
statements of Sec. 5 can obviously be applied to the three- 
dimensional case, where the second-intersection condition 
for triads of straight lines is replaced by a second-intersec- 
tion condition for tetrads of planes. We can say that the SI 
condition is met for the four linear functions 

= aix, + bix2 + cix, ( i  = 1,2,3,4) in space if we can find 
integers ni ( i  = 1,2,3,4), such that 

Repeating the arguments of Sec. 5 with allowance for this 
substitution, we verify that the following statement is true: if 
strong local rules exist for a three-dimensional quasicrystal, 
the SI condition ( 12) is met for any four sets of planes of its 
dual graph. 

It is more difficult to obtain an analog of the statement 
of Sec. 6. It must be borne in mind that the set of tetrads of 
integers n,  ( i  = 1, ..., 4) satisfying ( 12) can be one-, two-, or 
three-dimensional. Accordingly, we can introduce condi- 
tions SI- 1, SI-2, and SI-3. A complete analysis of all the ensu- 
ing possibilities is quite complicated. We point out only sev- 
eral obvious solutions. Let all the SI conditions be the SI-3 
conditions. In this case we are dealing with a commensurate 
periodic structure. A case of quadratic irrational numbers is 
also posssible, a characteristic example of which is a quasi- 
crysal with icosahedral symmetry. If, finally, only condi- 
tions SI-1 obtain, the solution comprises the cubic irrational 
numbers a + bD ' I 3  + cD 2'3. Some combined variants are 
apparently also possible. 

We consider now in greater deail an icosahedral quasi- 
crystal and show that the statement of Sec. 6 leads to the 
existence of weak local rules for this crystal. Let ei 
(i = 1.,,,.6) be unit vectors directed along the symmetry 
axes of the icosahedron. The dual graph of the quasicrystal- 
line tiling consists of six weeks of planes (ei,x) = ci + k, 
(x = (x,,x,,x,); i = 1 ,..., 6; ki are arbitrary integers). We 
choose an r-atlas of this graph with sufficiently large r and 
take it to constitute the local rules. We consider an arbitrary 
tiling or, more accurately, a dual graph of an arbitrary tiling, 
for which these rules are satisfied. We deform this graph in 
such a way that three sets of two-dimensional surfaces be- 
come rectified and coincide with the three sets of parallel 
plane of the dual graph of the initial quasicrystal (to be spe- 
cific, we shall refer to the first, second and third sets corre- 
sponding to the vectors el, e,, and e,). We choose any one of 
the obtained planes, say (e,, x )  = c,, and examine the lines 
of intersection of this plane with other surfaces of the graph. 
We obtain five sets of lines on the chosen plane. We note now 
that the three-dimensional r-rules induced two-dimensional 
r-rules on this plane and the latter, obviously, coincide with 
the rules for some two-dimensional quasicrystal and fivefold 
symmetry. For this quasicrystal, the number of functions 
independent on the field of Q is four, and all the irrationali- 
ties are contained in the quadratic field ~ [ 5 ' / ~ ] .  From the 
statement of Sec. 6 follows the existence of weak local rules. 
Since two out of the five sets of lines have already been recti- 

fied, it follows from the existence of LR that the remaining 
sets are also almost rectified, i.e., they deviate from the 
straight lines of the quasicrystal by not more than a constant. 
This means that the rise of the graph of our tiling differs from 
the rise of the graph of the quasicrystal by an amount that 
depends only on the coordinate along the vector e,. We note 
that we neglect everywhere, without additional stipulations, 
functions that are bounded in all of three-dimensional space. 
Thus, if the rise of the quasicrystal is equal to 
Cfi, f2,f3, f4,f5, f6), where f, = (e,,x), and the rise of the 
tiling considered by us is equal to ( W,, W,, W,, W,, W,, W6), 
where W, =J; ( i  = 1,2,3), are functions of the projection 
fl  (x) of x on the vector e,. If we choose the plane (e2,x) = c, 
in place of (e,,x) = c, and repeat fully all the arguments, it 
turns out that the quantities ( i  = 4,5,6) depend only on 
f2(x).  Comparing these two results, we find that Wi =f; 
(i = 1, ..., 6) apart from a bounded fudction. The existence of 
weak LR for an icosahedral quasicrystal is thus proved. 

8. CONCLUSION 

Our results show that quasicrystal with quadratic irra- 
tional numbers are "good" from the physical point of view. 
Their quasiperiodic structure can be fully specified by de- 
scribing a finite set of maps of fixed radius. By proving the 
existence of weak LR for quasicrystals with quadratic irra- 
tional numbers we have actually constructed a certain Ham- 
iltonian with a finite interaction radius between parallelo- 
grams, for which a configuration with minimum energy is a 
quasicrystal. In fact, assume that certain r-rules are speci- 
fied. We consider a Hamiltonian with a finite interaction 
radius, in accord with which the configurations with radii 
smaller than r, contained in the r-rules, have zero energy, 
while the remaining ones with the same radius have a large 
positive energy. We have proved that any structure with a 
minimal energy is close to a quasicrystal. Moreover, it can be 
shown that, for quasicrystals with unity codimensionality, 
one Hamiltonian with such properties cannot have a finite 
interaction radius. This means that no local interaction be- 
tween the parallelograms can stabilize an incommensurate 
quasicrystalline structure of this type. Although a proof of 
this statement exists only for quasicrystals with unity codi- 
mensionality, its connection with the general property of 
having no local rules is understood. It appears that no such 
Hamiltonians exist in all cases when there are no local rules. 

We conclude by pointing out certain questions that call 
for further research. First is a complete analysis of three- 
dimensional LR conditions and the study of the situation 
with weak LR in three-dimensional space (the analogs of the 
statements of Sec. 6) .  Second, it would be of interest to gen- 
eralize the constructions of Penrose and of de Bruijn (infla- 
tion-deflation procedure) to include the case of arbitrary 
quadratic irrationalities and to ascertain for which quasi- 
crystals with quadratic irrational numbers do strong local 
rules exist. 
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