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The spectrum of collective excitations due to fluctuations of the electron density in a degenerate 
semiconductor, in the presence of spin polarization of the conduction electrons, is investigated 
theoretically. Two types of excitation are considered-plasma and zero-sound. It is established 
that spin polarization does not influence the activation energy of the plasma oscillations, but can 
noticeably increase the coefficient of their spatial dispersion and enhance the dependence of the 
plasma frequency on the wave number. The influence of spin polarization on propagation of zero 
sound is investigated, and it is shown that its velocity increases with increase of the degree of 
polarization. The temperature corrections to the plasmon and zero-sound spectra at T = 0 are 
obtained and the coefficients of their collisionless damping are calculated. The contributions of 
these excitations to the dynamic structure factor of the system are calculated. The calculation 
results are used to determine the rate of the energy loss of the fast electrons in spontaneous 
emission of plasmons and the cross section for light scattering by zero sound. 

INTRODUCTION effect likewise verifiable by experiment. 

Much attention is paid of late to investigations of the From the standpoint of general physics, the present re- 

properties of various spin-polarized Fermi systems. These sults can be regarded as a generalization of the classical re- 

include liquid and gaseous 3 ~ ~ ~ ,  3~~ t - ~ e  11 solutions. sults of Ref. 7, pertaining to the dispersion and damping of 

3Het-4He gaseous mixtures (Refs. 1 and 2),  and spin-polar- Langmuir zero-sound waves in a degenerate plasma, to the 

ized electrons in metals and in degenerate semiconduc- when the electron component of the plasma is spin- 

t o ~ - ~ . ~ , ~  Spin-oriented carriers are produced in the latter ei- polarized. 

ther by injecting polarized particles through a 
ferromagnet-semiconductor tunnel junction or by optical 

1. HYDRODYNAMIC MODEL 

pumping. The second of these methods yields a high degree We carry out in this section a simple and physically 

of spin polarization of the electrons: lucid analysis of plasma oscillations in a spin-polarized sys- 
tem, in the framework of the hydrodynamic model. In this 

a= (n+-nhl(nt+n,), ( 1 ) model, which is widely used to describe many plasma phe- 

which reaches 100% in some crystals at the instant when 
they are excited with light 4(n,  and n ,  are the densities of 
electron with oppositely directed spins). 

Collective excitations in an electron system that is high- 
ly spin-polarized should have a number of interesting dis- 
tinctive features, as is attested, in particular, by the results of 
Refs. 5 and 6, in which svin waves in such a medium were 
investigated. These excitations include also plasma waves, 
whose dispersion properties are altered, as expected, in the 
presence of spin polarization. This question has neverthe- 
less, to our knowledge, been investigated heretofore neither 
theoretically nor experimentally. 

We study in the present paper the influence of spin po- 
larization on collective excitations produced by electron- 
density fluctuations in a degenerate electron plasma of a su- 
perconductor. We consider only low-energy excitations 
(with energy lower than the forbidden gap), i.e., excitations 
in the conduction-electron system. We shall show that the 
excitation spectrum is sensitive to the spin-polarization state 
of the system" in the entire investigated wavelength range, 
which includes both plasma waves of length A longer than 
the Fermi-Thomas screening radius A,, and the zero-sound 
waves that take their place in the region A <A,,. At suffi- 
ciently low temperatures both modes are quite stable and can 
be investigated by optical Raman spectroscopy. In addition, 
we shall show that an increase of the plasmon dispersion 
coefficient by the spin polarization is manifested in the rates 
of energy losses of fast electrons scattered by plasmon, an 

nomena, it is assumed that the plasma behaves as a conduct- 
ing liquid. The system of interest to us must be considered in 
this case as a mixture of two charged liquids consisting of 
electrons with oppositely oriented spins a = 1/2. The ini- 
tial equations that describe the behavior of the plasma in this 
case are the Euler equation and the continuity equation for 
each of the plasma components: 

and also the Maxwell equation for the electric field E 

VE=4n z p . + l n p i ,  (4) 
a 

where v,, p,, and p, = - en, are, respectively, the veloc- 
ity, pressure, and density of the plasma a component, andp, 
is the density of the ion charge that cancels the equilibrium 
electron charge. The condition for the validity of the applica- 
bility of the hydrodynamic equations (2 )  and ( 3 )  for the 
description of the wave processes (with characteristic time 
scale w - ' ) in a degenerate collision-free plasma is smallness 
of the parameter u,</w compared with the wavelength A, 
where uFo = (6~~n , ) "~ f i / r n  is the Fermi velocity of the 
electrons with spin projection a. 

To investigate small plasma oscillations we represent 
each of the variables v, ,p, andp, in the form of an equilibri- 
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um value and a perturbation due to the oscillations: 

We substitute Eq. (5) in Eqs. (2)-(4) and linearize the lat- 
ter with respect to the perturbations, assuming that the de- 
pendence of the latter on the time and on the coordinates is 
determined by the factor exp[i(q.r - wt)]. As a result we 
obtain a system of linear algebraic equations, the condition 
for their solvability yields a dispersion equation for the natu- 
ral oscillations of the plasma. The solution of this equation 
takes for an immobile plasma ( v r )  = 0) the form 

The first term in Eq. (6), which does not depend on the 
wave number q, is the square of the langmuir frequency 
6.1, = (4m~e~ / rn ) "~ .  Oscillations with this frequency are 
due entirely to the action of the electric field produced as a 
result of charge decompensation, so that the spin polariza- 
tion of the electrons is in no way manifested at this frequen- 
cy. The second term in (6), which establishes the depend- 
ence of w on q at small q(qvFr <wp), is connected with 
allowance for the influence of the usual acoustic effect on 
plasma oscillations. It is determined in the absence of spin 
polarization by the ratio of the electron pressure drop in the 
plasma to the plasma density, which is the same for both (T 

components of the plasma. The spin polarization, causing 
the Fermi surfaces of electrons with opposite spin orienta- 
tions to move apart, makes the electron pressure and density 
of each of the u components differ from each other. This is in 
final analysis the cause of the dependence of the oscillation 
dispersion on the degree a of the spin polarization. 

Let us determine the dependence of w on a at zero tem- 
perature, when the process of propagation of plasma oscilla- 
tions is adiabatic. One-dimensional adiabatic compression 
of a degenerate electron gas is described by the equation 
p = c o n ~ t . ~ ~ ,  which is easily obtained by a method similar to 
the one used in Ref. 8 to derive the adiabat equation for bulk 
compression. Calculating the derivatives in Eq. (6)  with the 
aid of this equation and using the equation of state for each of 
the two plasma components, we obtain ultimately the plas- 
ma-oscillation spectrum in the form 

where 

vF(O'  = (37?n)'13fi/m is the Fermi velocity of the electrons 
in the absence of spin polarization and is determined by their 
total density n = n, + n, . 

Comparison of expression (7)  with the dispersion rela- 
tions for plasma oscillations in an unpolarized system7 
shows that allowance for the spin polarization produces in 
the dispersion coefficient an additional component P(a) 
whose value, as follows from Eq. ( 8), increases by approxi- 
mately 60% when a changes from 0 to 1. Thus, the spin 
polarization can increase the dispersion coefficient notice- 
ably and, consequently, strengthen the dependence of the 
plasma frequency on the wave number q. Figuratively speak- 
ing, at finite q a plasmon in a spin-polarized electron system 
is more "rigid" than in an unpolarized one. We note also that 

although the entire preceding analysis pertrained to plasma 
oscillations of a free electron gas, the final result (7 )  is appli- 
cable also to the oscillations of interest to us, of an electron 
plasma of a degenerate semiconductor, if e2 in the expression 
for wp is replaced by e2/&, (E, is the lattice dielectric con- 
stant of the crystal), and take n and m to mean respectively 
the density and the effective mass of the electrons in the 
conduction band. 

The hydrodynamic approach used above, which en- 
abled us to analyze the influence of the spin polarization on 
the dispersion properties of plasma wave, is not suitable, 
however, for the investigation of more subtle effects that are 
sensitive to details of interactions in a system, such as colli- 
sionless damping of waves, the influence of exchange on 
plasmon dispersion, and others. We construct therefore in 
the next section a rigorous theory of plasma waves in a spin- 
polarized system, based on kinetic concepts and permitting a 
complete analysis of the problem. We shall verify with the 
aid of this theory, in particular, the validity of the results 
that follow already from the hydrodynamic approach. 

2. SPECTRUM AND DAMPING OF PLASMONS IN THE SELF- 
CONSISTENT-FIELD APPROXIMATION 

To develop a microscopic theory of plasma waves it is 
convenient to use a linear-response-function formalism 
within the framework of which the spectrum of the collective 
excitations due to the fluctuations of the electron density is 
determined from the condition that the longitudinal dielec- 
tric constant E ( w , ~ )  vanish. The function w (&,q) can in turn 
be obtained by a standard procedure based on a generalized 
random-phase approximation that takes into account the 
electron exchange interaction. We consider the later in a 
simple model in which the Fourier component of the ex- 
change potential V(k - k') is replaced by an effective cou- 
pling constant J-e2n ' 1 3 / ~ ,  that is independent of the parti- 
cle momenta. It is known that this model leads in many cases 
to results that agree satisfactorily with experiment. 

In the approximation indicated, the function ~ ( w , q )  is 
expressed in terms of a polarization operator II, (w,q) that 
describes the renormalization of the Coulomb interaction on 
account of the dynamic screening, in the form 

(9) 
where 

(10) 
E~ is the unperturbed electron energy near the edge of the 
conduction band, EFT = ( 1 + ( x ) ~ ~ ~ E ~ ( ~ '  and 
E ~ ,  (1  - a)213~F(0' are the Fermi quasilevels for electrons 
with oppositely oriented spins, is the Fermi level corre- 
sponding to the total electron density and to zero degree of 
spin polarization (a = O), and T is the temperature in ener- 
gy units. 
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Equation (9)  is in essence a trivial generalization of the 
known Lindhard formula for the dielectric constant of an 
equilibrium electron plasma to the case of a plasma in a qua- 
siequilibrium spin-polarized state. In p-type semiconduc- 
tors, in which optical pumping orients only the spins of the 
nonequilibrium electrons, such a state is realized if the ener- 
gy relaxation of the electron is faster than the spin relaxa- 
tion, and the time of the electron spin relaxation exceeds 
their lifetime. The results of experiments on optical orienta- 
tion of spins in the indicated semiconductors (see, e.g., Ref. 
4 )  is evidence that both these conditions can be relatively 
easily met, so that the use of Eq. (9)  for real systems of this 
type is quite legitimate. 

We proceed now to solve the dispersion equation 
E(O,Q) = 0 at zero temperature. We seek the solution in the 
quasiclassical region of q values (q (mu, / f i ) ,  assuming for 
the sake of argument that v,, > v,, , and regarding for sim- 
plicity the conduction band as isotropic and parabolic. Cal- 
culation of the polarization operator ( 10) yields in this case7 

where O(quFw - ( 0 1  ) is the Heaviside function. Using ex- 
pressions (9)  and (11) we find that in the region 
w > qv,, > qv,, , in which Im nu (w,q) = 0 the solution of 
the dispersion equation for small values of q(quFr 4 w, ) is of 
the form 

(12) 
This expression determines the spectrum of the plasma oscil- 
lations with account taken of spin polarization and ex- 
change. If exchange interaction is neglected, this expression 
coincides with the dispersion relation (7)  obtained for plas- 
mons within the framework of the hydrodynamic approach, 
and goes over in the limit as a -0 into the known expression 
for the spectrum of the plasmons in an unpolarized electron 
~ y s t e m . ~  

It is obvious from a comparison of Eq. ( 12) with Eq. 
(7)  that in the case considered the exchange interaction 
leads to an effect that is quite obvious from the viewpoint of 
the Pauli effect, viz., weakening of the plasmon dispersion. It 
is easy to verify that the polarization factor ( 1 + a2)/P(a) 
in the exchange term in Eq. (12) remains of the order of 
unity in the entire range of values of a ,  and therefore the spin 
polarization does not manifest itself at all in this effect. 
Therefore on satisfaction of the inequality J(E$), which is 
one of the conditions for the validity of relation (12), the 
exchange correction to the plasmon dispersion is small to the 
extent that the parameter J/E$') is small, just as in an unpo- 
larized system. Thus, the conclusion drawn in Sec. 1 that the 
plasmon dispersion is substantially enhanced if the degree of 
polarization is high, remains in force in this case, too. Allow- 
nace for exchange leads only to insignificant renormaliza- 
tion of the enhancement. Bearing this in mind, we shall 
henceforth, for simplicity, neglect the exchange. 

As already noted, in the regiono > qv,, > qu,, at T = 0 
the imaginary part of a(o,q) is equal to zero, so that there is 
no collisionless Landau damping of the plasma oscillations. 

The physical reason is that at T = 0 the system has no parti- 
cles with velocities u > u,, and capable of resonantly inter- 
acting with plasmons. At low but nonzero temperatures 
such particles do exist, and this leads to the onset of colli- 
sionless plasmon damping. In the case of weak damping, the 
real part of the frequency w and the damping coefficient 
y( y ( w  ) of the plasmons are determined from the equations 

Re E (o, q) =0, (13) 

Calculating the integral in Eq. ( 10) with the aid of the 
usual rule for bypassing the poles, and separating the real 
and imaginary parts of the polarization operator, we find 
that at T(E, 

Re Ho(o, q )  

(16) 

Substituting in Eq. (13) the expression (9) at J = 0 and 
using Eq. ( 15) we obtain an equation that determines the 
spectrum of the plasma oscillations with allowance for the 
thermal motion of the electrons. The solution of this equa- 
tion in the region q<w,,/u, is of the form 

where 
1 

$ ( a )  = -1 (l+a)'"+ ( I -a) '"] .  
2 

It follows from Eq. ( 17) and ( 18) that the value of the tem- 
perature correction to the plasmon dispersion decreases 
with increase of degree of the spin polarization. Estimates 
show that in the limiting case of total polarization of the 
electrons this decrease is approximately 40% of the value of 
the correction at a = 0. 

Using Eqs. (9)  and (14)-( 16), we obtain the coeffi- 
cient of collisionless damping of the plasmons 

where 

It is seen from Eq. (19) that at qil,, ( 1 the collisionless 
damping of the plasmons is exponentially small. The phys- 
ical cause is the exponential smallness (in terms of the pa- 
rameter qA,,) of the phase space of the states for which 
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energy exchange is possible between the electrons and the 
plasma mode. Of course, there is always collisional damping 
of plasmon, due to incoherent quasiparticle-scattering pro- 
cesses, but at 91% 1 (I is the electron mean free path it is 
smaller than the collision-governed damping. 

3. DECELERATING ABILITY OF SPIN-POLARIZED PLASMA 

The change of the plasmon dispersion coefficient as a 
result of spin polarization should influence the decelerating 
ability of the plasma. We consider here this effect, assuming 
that the plasma is in thermodynamic equilibrium, and that 
the charged particle losing energy in scattering from plas- 
mons is an electron excited by light high into the conduction 
band. In experiment, these assumptions are valid in the case 
of optical orientation of the spins in an n-type semiconductor 
with a straight conduction band that is doubly degenerate in 
spin. Actually, as first shown by D'yakonov and Perel','' 
and later confirmed experimentally in Refs. 11 and 12, an 
equilibrium spin-polarized plasma can exist in semiconduc- 
tors of this type under certain conditions. An appreciable 
degree of polarization of the equilibrium electrons is reached 
already at exciting-light intensities at which the density of 
nonequilibrium carriers is still low compared with the den- 
sity of the equilibrium ones. 

The general expression for the loss of energy loss of a 
rapid "probing" electron interacting with the electric field of 
the plasma-charge-density field fluctuations is of the form 
.(the plasma volume is V = 1 ) 

where W(p-p - fiq) is the transition porbability of an elec- 
tron of energy 8, from the state with monentum p = M u  
into a state with a momentum p - fiq, a probability connect- 
ed with the spectral distribution S(w,q) of the density fluc- 
tuations by the relation 

Equation (2 1 ) is valid if the following inequality holds: 

It is assumed here, as already noted, that u > u, . 
S(w,q) can be calculated by using the fluctuation-dissi- 

pation theorem, which permits S(w,q) to be expressed in 
terms of e(o,q) in the form 

We confine ourselves hereafter to plasma-particle densities 
such that the plasma frequency w, is far enough from the 
frequency a,, of the longitudinal optical phonons. In this 
case it is possible to neglect the interaction of the corre- 
sponding modes, which leads to their hybridization, and re- 
tain in the complete expression for the dielectric constant of 
the crystal only the terms that describe the plasmon contri- 
bution. We obtain then with the aid of Eqs. (9) ,  (15), (16), 
and (23) 

The spectral distribution of the fluctuations of the electron 
density is thus a sum of two Lonrentz distributions centered 
near w = + w, and having a width determined by the plas- 
mon damping decrement y, . The relation between the inten- 
sities of the maxima of these distributions depends on the 
temperature; at low temperatures (T<fiw, ) the main con- 
tribution to SF (w,q) is made by a maximum located in the 
Stokes region. 

We proceed now to calculation of the energy losses. At 
T = 0 there is no plasmon damping in first order in the pa- 
rameter e2/~,fiu~", and according to (24) S, (w,q) takes the 
form of a 8-function peak located at the point o = w, (9).  
The energy losses due to spontaneous emission of plasmons 
can be found in this case not with logarithmic accuracy but 
accurate to terms of order e2/~,fiu$". Taking in Eq. (23) the 
limit as Im&(w,q) -0 and using Eqs. (9),  (1  1 ), (21), and 
(22), we find after simple calculations 

where 

( I f  a)"- (I-a)" 
+a In -ln[ (i+a)"+(~-a2)'] }. (26) 

(l+a)'ls 

The result (25) differs from the well-known result for 
the energy lost by a fast electron passing through a plasma 
(see, e.g., Ref. 13) by its last term, which is due entirely to 
spin polarization. It follows from a numerical analysis of Eq. 
(26) that this term is negative at all nonzero values of a ,  i.e., 
spin polarization decreases the decelerating ability of the 
plasma. A quantitative estimate of this effect, based on Eq. 
(25) for a = 60-70%, when the factor F ( a )  reaches its 
maximum absolute value, shows that for electrons having a 
velocity higher by a decade than the Fermi velocity the de- 
creases of ( - dg/dt) ,  is approximately 10% of its value at 
a = 0. 

4. ZERO SOUND 

We have considered so far plasma waves whose phase 
velocity w/q greatly exceeds the electron Fermi velocities 
u,, and u,, . It is well known, however, that besides these 
waves there can exist in a plasma, at sufficiently low tem- 
perature, also waves of another type viz., zero-sound wave 
with phase velocity close to the Fermi velocity.' In contrast 
to ordinary hydrodynamic electron-sound waves, which 
propagate when the sound wavelength is appreciably larger 
than the electron mean free path (914 1 ), these waves propa- 
gate in the opposite limiting case (91% 1 ), when particle pair 
collisions are insignificant. 

We investigate in the present section the dispersion 
properties of zero-sound waves in a plasma in the presence of 
spin polarization. We begin the analysis with the case of zero 
temperature, when the dispersion equation &(w,q) = 0 can 
be written in the form 

Just as above, we assume that UF, > UF, . At large 9 (9 % w, 
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Upu, but q <muFu /fi as before), Eq. (27) has a single real 
root 

This root determines the propagation velocity of a zero- 
sound mode that is not damped at T = 0 and whose existence 
is due the presence of a self-consistent interaction between 
the particles. Under the condition that the second term in the 
curly brackets of (28) is much less than the first, Eq. (28) 
takes the form 

where wi, = 4 ~ n ,  e2/m&,. It is easy to verify that this condi- 
tion is violated only at values of a that are small compared 
with the quantity Jexp( - q2vp'2/3wi ), which is itself small 
compared with unity in the considered range of wavelengths. 
Relation (29) is therefore actually valid in the entire signifi- 
cant range of a. 

It follows from Eq. (28) and (29) that at T =  0, ne- 
glecting the exponentially small dispersion, the zero-sound 
phase velocity u, is equal to 

u::' (a) = v!O) (l+a) Ih. (30) 

The zero-sound velocity increases thus with increase of a 
and exceeds, at total polarization of the electrons its value in 
an unpolarized system by a factor 2'". 

Note that spin polarization influences the propagation 
velocity of the sound oscillations also in the hydrodynamic 
frequency range. This effect was first considered by Meyero- 
vichI4 in the framework of the Fermi-liquid theory, and was 
later discussed in a number of papers (see Ref. 15 and the 
literature cited there). In the case of interest to us, that of a 
weakly nonideal Fermi gas consisting of polarized particles, 
the expression for the first-sound velocity us can be obtained 
directly from Eq. (25 ) of Ref. 14 (or from the equivalent Eq. 
(3 1 ) of Ref. 15), by setting in it all the Fermi-liquid param- 
eters equal to zero. As a result we get for the real part of us 

(0) 1 U.(O) vs =- ( a )  a~ 3 ~ .  (g(a) )]I# . 
It can be concluded on the basis of Eqs. (30) and (31) that 
u:' (a) > us (a 1, and the dependence of the velocity ratio 
uff'/us on a is nonmonotonic. A numerical analysis of the 
expression for ulf'/us shows that as a varies from 0 to 1 this 
relation first increases, reaches at a z 0 . 8  a maximum ap- 
proximately equal to 2, and the begins to decrease and tends 
in the limit as a + 1 to the value 3'12 typical of an unpolarized 
system. Thus, at all value of a except a = 1 we have the 
inequality 

(0)  
u,, (a)  lu. (a) > u::' (0) lu .  (0). (32) 

At finite temperatures meeting the condition T<E, 
the solution of the dispersion equation &(w,q) = 0 corre- 
sponding to zero sound is complex. The expression for the 
real part of u, , obtained from Eq. ( 13 ) with allowance for 
Eq. ( 15 ) , takes in this case the form 

where uz '  is given by Eq. (29). It must be emphasized that 
the range of validity of Eq. (33) is bounded by the condition 

which is more stringent than simply that the plasma be de- 
generate. In this region, the second term of Eq. (33), which 
determines the temperature dependence of the dispersion of 
the zero-sound velocity, is much less than the first. 

As already noted, the zero-sound solution of the disper- 
sion equation contains at T #O an imaginary part. Its ap- 
pearance is due to the allowance for the contribution made to 
the polarization atom by the bypass of the pole of the inte- 
grand in Eq. ( lo),  and corresponds to the onset of collision- 
less damping of the zero sound. If this pole is close to the real 
axis in the complex w plane, the damping decrement can be 
obtained from the general Eq. (14). Putting in it 
w = w, = qu, and using Eq. (29), we get after simple cal- 
culations 

The criterion for the validity of this equation coincides with 
the condition (34). If the latter is met we find, from a com- 
parison of Eqs. (33) with (351, that y,, <a,. This agrees 
with the initial assumption made in the derivation of Eq. 
(35). The smallness of the collisionless damping is due in 
this case to the smallness of the number of particles that 
move in phase with the wave and participate in the energy 
exchange with it. Thus, at sufficiently low temperature satis- 
fying the condition (34), zero sound is a long-lived and 
hence well-defined collective excitation propagating with a 
velocity close to up, . 

5. LIGHT SCATTERING BY ZERO SOUND 

Zero sound can be investigated experimentally by a 
method based on observing the Brillouin scattering of light 
from an electron plasma photoinduced in a semiconductor. 
It is therefore of interest to calculate the cross section for 
light scattering with simultaneous excitation of zero sound, 
to which the present section is devoted. 

The differential cross section for scattering of an unpo- 
larized electromagnetic wave by the fluctuations of the elec- 
tron density is given in terms of the dynamic structure factor 
S(w,q) by 

X (1+cos2 6)S(Ao, q) do' do', (36) 
where Aw = o - w' is the difference between the frequencies 
of the incident and scattered waves, 9 is the scattering angle, 
and do' is the solid-angle element in the direction of the scat- 
tered wave. 
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Using Eqs. (23), ( 15), and ( 16) and recognizing that 
at low temperatures (T<+iqu,, ) the intensity of the anti- 
Stokes component in the Brillouin doublet is negligibly 
small compared with the intensity of the Stokes component, 
we obtain for the contribution of zero sound to the structure 
factor the expression: 

where a ,  = .z0fi2/me2 is the effective Bohr radius. Substitut- 
ing (37) in (36) and recognizing that the scattering involves 
a small change of the frequency ( Aw <w,wl), we obtain after 
integrating by parts the total cross section for scattering into 
a solid angle dof: 

4  VF++'-'P+ d = - ( q r , )  (qa, )2( l+cos2 6 )  
8n V F ~ - U F +  

where 

n(w) is the refractive index at the incident-radiation fre- 
quency. Integrating (38) over the angles in a coordinate 
frame with a polar axis directed along the wave vector x of 
the incident light, we obtain the total cross section for light 
scattering (per unit volume) 

where 

and y(a,b) is the incomplete gamma function. 
We estimate numerically, on the basis of Eq. (38), the 

cross section for light scattering by zero sound in GaAs crys- 
tals, which are customarily used in experiments on optical 
orientation of spins. Putting m = 0.07m, ( m ,  is the free- 
electron mass), &, = 12.9, a = 50%, n = 10" cmP3, 
w = 3.8. 1015 S-I, weobtainin 180" (backscattering) geome- 
try dI;:/do1- lop7 c m ' ,  i.e., a value of the same order as 
the cross section for light scattering by acoustic plasmons in 
these semicond~ctors."'~ Note also that owing to the high 
(close to u,, ) velocity of the zero sound the frequency shift 
in the scattering turns out to be larger by approximately two 
orders than in scattering by acoustic modes of the lattice. 
The identification of the zero-sound peak in the spectrum of 
the scattered light should therefore not be particularly diffi- 
cult. 

CONCLUSION 

The analysis presented shows that spin polarization of 
electrons influences substantially the properties of the col- 

a - 
lective excitations produced in degenerate semiconductors - 
by fluctuations of the electron density. The most important 
effects in this case are the enhancement of the spatial disper- 
sion of the plasma oscillations and the increase of the veloc- 
ity of the zero sound. These two predicted effects are easily 
studied by the light-scattering method. The pertinent experi- 
ment should consist of a simultaneous action, on the semi- 
conductor, by circularly polarized radiation that generates a 
degenerate spin-polarized electron plasma, and by a probing 
unpolarized (or linearly polarized) radiation that causes no 
additional spin disequilibrium. The structure of the spec- 
trum of the considered collective excitations can then be in- 
vestigated by a standard procedure based on the study of 
scattering of probing radiation by a photo-induced plasma. l7 

One more result of our study is establishement of the 
fact that spin polarization of electrons decreased the deceler- 
ating ability of a plasma. This effect is due to the dependence 
of the plasmon dispersion on a, and at a high degree of polar- 
ization (a - 60-70%) it is large enough (on-the order of 
10%) to be observable in measurements-of the rate of energy 
loss of electrons excited by light high into the conduction 
band. I s  
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