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An analysis is made of the behavior of a cholesteric liquid crystal under the influence of shear 
deformation. It is shown that such deformation creates structural distortions in a cholesteric. A 
study is made of the time dependence of such distortions. The results are compared with 
experiments reported by Barbero etal. [Z. Naturforsch. Teil A 39,1195 ( 1984) ] and by 
Scaramuzza et al. [Phys. Rev. A 32,1134 ( 1985) 1. 

The behavior of liquid crystals under the influence of 
shear deformation is of interest because a relatively simple 
experimental technique makes it possible to determine a 
number of parameters of liquid crystal systems and to pro- 
vide some information on the mechanisms of interaction 
between the structure and flows. 

Relatively recently it has been found's2 that brief shear 
deformation of a cholesteric liquid crystal with planar order- 
ing creates a stable distortion of the plane structure of cho- 
lesteric layers. This effect is interpreted on the assumption 
that shear induces an inhomogeneous (over the thickness of 
a sample) inclination of the director relative to the axis of the 
helix (in an unperturbed cholesteric the director is orthogo- 
nal to this axis). This hypothesis was checked independently 
by measurements of the positions of Bragg reflection maxi- 
ma in a somewhat different experimental ~i tuat ion.~ 

It follows therefore that in the case of a cholesteric (in 
contrast to layer liquid crystals of the smectic type), in 
which layers may glide relative to one another, there is a 
definite correlation between the layers (although the shear 
modulus is naturally zero). In fact, if relative shear occurs 
between layers in smectics, there are no changes in the mac- 
roscopic state and in this sense we can assume that the layers 
in smectics are uncorrelated. However, the experimental re- 
sults reported in Refs. 1-3 show that the situation in choles- 
terics is different. Shear creates an inhomogeneous distribu- 
tion of the director, which means a change in the 
macroscopic state of a cholesteric, i.e., there is a correlation 
between layers exactly as in solids. Therefore, a cholesteric 
can be regarded as the most "solid" among liquid crystals. 

The description provided in Ref. 2 applies to an already 
established deformed state of a cholesteric a fairly long time 
after a shear perturbation. However, the process of establish- 
ment of such a state is equally interesting. Moreover, al- 
though the explanation proposed in Ref. 2 is correct, the 
choice of the boundary conditions and equations of motion 
made in Ref. 2 is unsuitable for obtaining correct quantita- 
tive results. These are the topics which will be addressed in 
the present paper. 

We consider a cholesteric liquid crystal with planar or- 
dering. In the unperturbed state the axis of the helix is per- 
pendicular to the surfaces bounding the liquid crystal. We 
choose this direction to be the z axis. In an ul~perturbed state 
the components of the director are: 

where q, = 27r/p, andp, is the equilibrium pitch of the helix. 
For simplicity we assume that the size of a sample d in 

the direction of the z axis is a multiple of the equilibrium 
pitch of the helix. We shall see later that this hypothesis does 
not affect significantly the results but determine only the 
form of the boundary conditions. 

We also postulate that a shear perturbation is applied'*2 
to the upper plate bounding a sample for a fairly brief time 
interval to. During this interval the plate travels a certain 
distance S along the x axis. This shear distorts the distribu- 
tion of the director given by Eq. ( 1 ), which then becomes 

n,=cos rp  cos Ip, &=sin cp cos I), &=sin $. (2) 

The establishment of a distorted state of Eq. (2)  is de- 
scribed by the equations of hydrodynamics of cholesterics 
which-on the assumption that a liquid crystal is incom- 
pressible and thermostatted (which is practically always 
true)-are as follows: 

- ,  

y i  cos q' 2 

T dv,  I f v  d v ,  
f - s in2cp-+-s inrp tg$- ,  

2 a x  2  d x 

where Pis  the pressure; Eji is the viscosity tensor; Y = y2/yI; 
y, and y, are the viscosity coefficients; uji is the reactive 
stress tensor 

dn, d F  
(5.. = - - . I t , = -  

dF 

" ax,  a (ank/ax3)  ' 

F is the density of the free energy of a cholesteric: 

F=>/?K,(div  n ) 2 + 1 / 2 K , ( n  rot n+qo)'+'lzK3[n rot n] ' .  (7) 

In Eqs. (3)-(5) we have allowed for the geometry of 
the experiments, which postulates homogeneity of the sys- 
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tem in they direction and, consequently, the absence of the 
corresponding derivatives. On the other hand, the complete 
equations of motion for the velocities (6)  are very cumber- 
some, so that we shall consider only their general form. 

Obviously, it would be very difficult to obtain a consis- 
tent and complete solution of the system of equations (3  )- 
( 6 ) ,  so that we shall make several simplifying assumptions. 
First of all, we shall postulate that the quantities Sand to are 
such that the deviations of the angles $and e, from the initial 
equilibrium state are small (such an assumption is in full 
agreement with the experimental situation i n ' ~ e f .  2) .  More- 
over, using estimates of the characteristic times in Eqs. ( 3 ), 
(4), and (6), we shall assume that at the moment of comple- 
tion of the motion of the upper plate a steady-state distribu- 
tion of the velocities and angles is established in the system. 
This assumption makes it possible to bypass the description 
of the initial stage of formation of distortions in a cholesteric 
structure and to obtain directly the form of the structure at 
the moment when the shear deformation is completed (or at 
least to obtain estimates of the maximum attainable charac- 
teristic quantities). Obviously, a steady-state pattern, be- 
cause of its homogeneity along the x axis, contains only a 
dependence on z. It follows from the equation of continuity 
and the boundary conditions that the velocity is v, = 0. We 
can find the quantities g,, $, u,, and v,, of interest to us from 
the remaining four equations (the equation for v, contains 
the pressure P which is of no interest to us) and these are of 
the form: 

wherep = a, + a,, and ai are the corresponding Leslie co- 
efficients. In deriving Eqs. (8)-( 11) we used the condition 
$4 1 and also omitted from Eqs. ( 10) and ( 11 ) the contribu- 
tions proportional to a , ,  because usually a ,  < p. 

We can easily see that Eqs. ( 10) and ( 1 1 ) yield 

dv, - D(a,+p cosZ(p) -Cp sincp cos cp -- 
dz U , ( ~ I + C I )  

7 

where Cand Dare constants whose meaning becomes clear if 
we assume that the boundary conditions imposed on the an- 
gle g, in the form ~ ( 0 )  = ~ ( d )  = 0 are satisfied (this de- 
notes a rigid anchoring of the director to the orienting sur- 
faces relative to rotation in the xy plane). We then have 

An analysis of Eqs. (12) and ( 13) shows that the con- 
stant D should be identically equal to zero, because other- 
wise the velocity v, does not vanish on the upper plate, 
which is in conflict with the formulation of the problem. 
Therefore, the velocities v, and vy have finally periodic com- 
ponents which depend on the pitch of the helix. Moreover, 
v, has a component linear in z and unrelated to the presence 
of a liquid-crystal structure. Consequently, in the case of v, 
and vy we obtain the following expressions: 

u,=u,"[~--p sin 2qoz/2qo ( 2 a 4 + ~ )  Ild, (14) 

where v: = S /to is the velocity of motion of the upper plate 
(it is reported in Ref. 2 that this velocity is v: -0.1 cm/sec). 
Substituting now Eqs. (14) and (15) into Eqs. (8 )  and (9)  
and assuming that $, $& 1 ($ = g, - q ~ )  and also that 
$(<q,,z (which is confirmed by the results of calculations), 
we obtain the following expressions which are valid in the 
leading approximation: 

azll, 2a3ahv,0 
Ki - - K3qO" = COS goz, a zz (2a,+p)d 

d2@ 8 O 2az (a4+p) vzl' 
K Z - - y + 2 ( K 3 - K ~ ) ~ ~ $ d z =  - $  sin qoz. (17) 

az- (2a4+p)d 

Since we have gone over directly to the established 
steady state, we have to consider particularly the problem of 
the boundary conditions imposed on the variable $. If $ = 0 
is fixed rigidly at the boundaries (this is the limit of strong 
anchoring), the solution of Eq. ( 16) becomes 

where 

a=-2a:a,v,0/ (2a,+y) dqO2(KI+K?). 

h=qo(K3/K,)" --qoy. 

We can show that in this case there is no wave-like modula- 
tion in a cholesteric. Therefore, the very existence of a quasi- 
stationary wave-like modulation is an indication that in the 
course of shift the angle at the boundary should become 
$#O. This in turn means that the experimental conditions of 
Refs. 1 and 2 correspond to the limit of weak anchoring or 
that in the range of small values of $ of importance to us the 
anchoring energy depends weakly on the value of $. '' Then, 
under steady-state conditions, the value of $ at the boundary 
is found simply by equating the elastic and viscous torques: 

In Ref. 2 the boundary conditions are as follows: a strong 
anchoring at z = 0 ($ = 0 )  and a weak anchoring of Eq. 
( 18) at z = d. Moreover, we shall ignore the contribution of 
the periodic velocity in the interior. Such a situation corre- 
sponds best to the intermediate stage of establishment of an 
equilibrium state, when an equilibrium of the torques al- 
ready exists at the upper plate, but the entire perturbation is 
still concentrated near the upper boundary. Equation ( 16) 
subject to these boundary conditions gives 
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where b = a , u ~ / q o ( ~ l ~ , ) 1 1 2 .  Since the parameters of the 
problem are such that b )  a, this result is practically identical 
with that obtained in Ref. 2. 

We shall finally consider the case when the boundary 
conditions at the upper and lower plates stipulate equality of 
the torques. This situation corresponds either to a complete 
absence of anchoring to the surface for a variable value of $ 
or to long times for the establishment of a steady state and of 
such equality. Then, the angle 

$=b ch  Az/sh Ad+ a cos qoz (19) 

while small at the lower boundary, does not vanish identical- 
ly [the behavior of $ near the upper plate ( z z d )  is qualita- 
tively similar to the preceding case, if we bear in mind that 
the experimental conditions indicate that Ad % 1 1. We shall 
in future consider the situation described by Eq. ( 19). 

Substituting Eq. (19) into Eq. (17), and using the 
boundary conditions G(0) = g ( d )  = 0, we obtain 

+ - C  . c h h z  2ybc sh hz 
sin q,z - + --_- cos q0z - 

shhd  (I+yL) '  sh Ad ' 

where 

It is clear from Eq. (20) that the corrections to the depen- 
dence ~ ( z )  = q+ are very small and, therefore, the assump- 
tions made in the derivation of Eqs. ( 16) and ( 17) are fully 
justified. 

The next stage in our analysis is a study of the behavior 
of the system after stoppage of the upper plate. Before con- 
sidering details, we must make one comment. The viscous 
moment disappears after stoppage of the plate. However, in 
the case of weak anchoring a steady-state distribution of $ is 
still in equilibrium. This is due to the fact that the structure 
of a cholesteric is invariant to two transformations commut- 
ing with one another: translations along the axis of the helix 
and rotations about this axis. According to the Noether 
theorem, it follows that there should be two integrals of vari- 
ational equations first obtained in Ref. 5. These integrals are 
of the form 

where 9 represents the "pressure" of the helix and M is the 
moment of the force. We can see from Eq. (21) that the 
distribution of $ near the boundary obeying the law d$/ 
dz = f A$ is in equilibrium. This is the condition satisfied 
by our steady-state distribution subject to the boundary con- 
dition q0 governed by the equality of the torques. 

We shall now consider in greater detail the processes 
which occur in the system after the stoppage of the upper 
plate. The equations of motion (with the necessary preci- 
sion) are 
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du, d 8 @ dg 1 dv, 
azsincp-$+a3cos cp-+-- 

a t  az at  a t  2 a z  

X(ac+p cos2 c p )  + -2 sin 2 9  I , I 

4 az 

1 d v  + -2 (a,+p sin2 c p )  
2 az 

Omitting from the equations for the velocities the terms 
proportional to S$/St and S$ / S t  (further calculations con- 
firm the validity of this approximation), introducing an aux- 
iliary function w = u, + ivy, and adopting dimensionless 
variables 5- = az/d and r = t Ip 13/4pd ', we obtain the fol- 
lowing equation for w: 

where L = (2a, + p)/lpI; N = d /po = god Ra is the num- 
ber of itches of the helix; the bar marks a complex conjugate. 

Since the problem has two characteristic scales (d  and 
p,), it is natural to seek the solution of Eq. (26) in the form 
w = q, + f exp(4iNg), where 

Q = Q ~ + A ~ - ~ Q , + , ~ ~ - ~ ( ~ , +  . . . . f=N-'fQ+N-2fi+ . . . (27) 

and the characteristic scale of changes in the functions pi 
andA is d. Substitution of Eq. (27) into Eq. (26) and the 
subsequent solution of the resultant system of equations 
makes it possible to determine w with any precision in re- 
spect of the parameter N -'. 

Retaining only the first two terms of the expansion, we 
finally obtain 

where the function q,,({,r) should satisfy the heat conduc- 
tion equation 

d@o/a~=Aaz@oldg2,  A=L-L-'=4ak(ak+p)/I pl (2ac+p) .  

(29) 

The boundary and initial conditions for q,, are easily found 
if, using Eq. (28) and the definition of the function w, we 
write down the expressions for the velocities: 

and compare them with the steady-state values given by Eqs. 
(14) and (15). Consequently, finding of the function 
p0({,r) reduces to solution of Eq. (29) subject to 

Q o  (E, 0) =u,OE/n. Qo (0, r)  =0, Q Q  ( n ,  r) =u,(n, T). 

It should also be noted that the very nature of the initial and 
boundary conditions ensures that q,,(g,r) is real. 

Since we do not know the time dependence of the 
change in the velocity of the upper plate, we consider two 

V. G. Kamenskil and E. I. Kats 1009 



model cases. We assume first that the plate stops instanta- (30) the characteristic time of the vanishing of u, and u, I is 
neously, i.e., that v, ( n , ~ )  = 0. When this condition is 72:) cc A -'. Using the dimensional quantities, we find that 
obeyed, we have 

a 
t L,!,) - (2a,+ y )pd2/a4(a4+ y)n2-10-5 sec. 

Bo ( E ,  T )  = y.Ox exp ( -n2Ar)  (-I)"-ln-l sin nF. , (31) 
% = I  If we postulate that the plate is decelerated in accor- 

Obviously, in this case the characteristic time for the dance with a linear law v, (T,T) = u: [ 1 - T/T,] at ?<TO, 
vanishing of p,(l ,r)  [and, consequently, on the basis of Eq. then 

We can easily see that if ArOg 1, Eq. (32) reduces to Eq. 
(31). If  AT,)^, then at times T-A-' we have 
V,(~,T) -pO(l,O) and the characteristic time for the relaxa- 
tion of the function p, is then T!:' -rO% A - '. However, 
bearing in mind that the total time during which the plate 
moves is 10W2 sec in the experiments, it is reasonable to 
adopt an estimate ~ ! ~ ) - ~ ~ ( 1 0 - ~ - 1 0 - ~  sec. 

We shall now find the time dependence of $. Differenti- 
ating Eq. (23) with respect to z and introducing p = d$/b'z 
we obtain the following equation for the function u in terms 
of dimensionless variables { and T: 

x@~" cos 2NE + - " o~"' sin 2 ~ ~ 1 .  
8a,NZ 

We shall first consider the solution of Eq. (33) subject 
to the boundary conditions 

u (0 ,  T )  =0, u ( n ,  T )  =a3Ki-'u, ( n ,  T )  , 

and the initial conditions 

u(E, O)=yqob sh(2yNF)lsh (2yNn)-ago sin 2NF. 

A function po occurring in Eq. (33) is governed by the con- 
ditions of stopping of the plate and it is described either by 
Eq. (31) or Eq. (32). The constants B, R, and Q are deter- 
mined by the parameters of the problem and are described by 
the expressions 

In the case of instantaneous stopping of the plate, when p, is 
described by Eq. ( 3 1 ) and we have p ( n , ~ )  = 0, we obtain 
from Eq. (33) - 

where8=8(n,N) = n2 + 4?N2andG = A /B. I f r  = 0, this 
expression reduces exactly to Eq. ( 19). 

An analysis of Eq. (34) shows that if 

we can ignore the last two terms of the sum for any value 
n # 2N. Therefore, for characteristic velocity decay times 
T:,!,' -A -' the value of $ differs very little from the initial 
steady-state value. In the experiments reported in Ref. 2 we 
have N--, 150 and, therefore, the above condition is satisfied. 
The characteristic decay time of $ is ~2:' - (4gN2B)  - ' 
( t  2;' - y,/K3q: - lop4 sec). 

If the stoppage of the plate is linear, then under the same 
assumptions about the relationships between the quantities 
N, A, and B in the case when T > 7, the value of tC, is 

ee 

4as dv,O 
$=a cos 2NF + ----z (-1)"0-' cos nF 

n2K1 ",=l  

exp ( - ~ B T ~ )  -1 - L] 
xexp ( - ~ B T )  [- 

~ B T ,  2 
It is clear from this formula that for the characteristic veloc- 
ity decay time T!:'-T, the arguments of the exponential 
functions are -8(n,N)G - 'AT,. 

Since G is large and the estimated experimental value of 
AT, does not exceed 10'-lo2, it is clear that at least up to 
harmonics n - lo2-lo3 the exponential functions differ little 
from unity and, consequently, $differs little from its steady- 
state value. The characteristic decay time of $ is T::', exactly 
as in the preceding case. 

Using the values of u,, u, , and $ found in this way, we 
shall now determine the time dependence of from Eq. 
(22). We shall consider only the case of instantaneous stop- 
page of the plate (because generalization to the linear law is 
self-evident) and for 7-72;) we then obtain 

a 

4bc (-1)'' nnz qj= s i n ( T ) e x p ( - n 2 ~ T )  
n ( l + y Z ) 2  ,,=, 

+4ac sin 2g0z exp(-- i6N2W7),  (36) 
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where W = 4pK2/y, lpI. 
The above expression is derived bearing in mind that 

a, <a2 and that the ratio W/B = K2/K, is several times less 
than unity for the majority of known liquid crystals. It is 
clear from Eq. (36) that the characteristic decay time of is 

'4'- W - I  ( f  2h - 10 sec). Tch 

We shall now consider the case when after stoppage of 
the plate a steady-state value is retained at the upper bound- 
ary $ = $,, and we have (d$/dz),= ,, = A$,,. In the case of 
instantaneous stoppage of the plate in a time T >  T:;', we 
have 

201, dv; (clh ad + ?)- ch hz 
Ip = ~ n  (K,K,) 'I' b shad  

xi (-1)'' cap ( n n d d )  erp ( - ~ B T )  

n= I nZ+472N2 

+ a cos qoz exp[--4( l+y2)NZBz] .  (37) 

Since a / b  is small, the first term in the above expression 
hardly differs from the first term of Eq. ( 19) for the steady- 
state case. The second term contains a small coefficient, be- 
cause Ad) 1. At times T > 7::' the last two terms are expon- 
entially small. This means that during such times the angle $ 
<does not contain the dependence on the scale p,, remains 
constant, and is close to the steady-state value IC,,,. 

The time dependence of @ is then described by 

eb2 z 
( = -(- - *) + 4ac sin 2q0r exp( - 1 6 N 2 r / r ~ ~ 1 )  

2yKZ d sh2hd 

x exp[-0 (2N)  B z ] .  (38) 

If T ) T : ~ ) ,  we can drop the last term from the above expres- 
sion and for T > 7::' the value of @ is altogether independent 
of time and of the scale p,. 

Conceptually simple, but fairly time-consuming analy- 
sis of Eqs. (24) and (25) carried out using the expressions 
obtained for $, @, v, , and v,, shows, to the same accuracy as 
that in the derivation of the function win Eq. (28), that the 
above hypothesis of the smallest of the terms proportional to 
a$/dt and dG /at is justified. 

We have thus shown that after stoppage of the plate in a 
sufficiently short time - T:,!,' or - r$', the velocities of mo- 
tion u, and v,, vanish in the principal order. Then, the values 
of $ and G are still practically equal to the steady-state values 
$,, and G,, and remain such right up to times -7;:' and T::) 

or even longer. 
An inhomogeneous distribution of the angle $ across 

the layer thickness can be described as the result of the action 
of some effective field, which is known6 to create a wave-like 

modulation of the cholesteric layers. Such a deformation has 
indeed been observed2 at times of the order of 10 sec. 

The development of a wave-like modulation can be de- 
scribed by solving the system of equations (3)-(6) using the 
principal nonlinear terms - and - the initial conditions v ,  
= vy = 0, $ = $st, and q, = q,,, . It is necessary to allow for 

the dependences of the variables on the coordinates x and z.  
Clearly, this is a very difficult task. However, since we are 
not interested in the nature of modulation over a small scal- 
ing length p,,  the problem can be reduced to an analogous 
problem for a smectic A (Ref. 6 )  by a large-scale approxima- 
tion. The dynamics of appearance of a wave-like modulation 
in the case of a smectic A was discussed in detail in a paper by 
one of the present authors7 and the results solve the problem 
formulated above if simple transformations of the param- 
eters are adopted. The appearance of a wave-like modulation 
has a threshold and it depends on the value of $ (i.e., on vz ). 
However, just above the threshold the characteristic time for 
the establishment of a modulated structure is long and can be 
considerably greater than 76:'. In this case a modulated 
structure does not develop. Bearing this fact in mind, we 
conclude that the experiments of Ref. 2 are better described 
by the quasisteady case of Eq. ( 37 ) . 

Since the results of our analysis provide a complete in- 
terpretation of the experimental data of Ref. 2 and not only 
for the stage asymptotic in time, we shall consider one other 
feature of shear distortion of a cholesteric. 

An inhomogeneous tilt of the director relative to the 
axis of the helix shifts the selective reflection by a cholesteric 
and corresponds to an effective reduction in the pitch of the 
helix, which can be estimated from2 

Here, Sp is the change in the pitch because of the tilt of the 
director, E, is the permittivity anisotropy, and .? is the aver- 
age permittivity. 

In addition to this apparent reduction in the pitch of the 
helix [Eq. (39) 1, there is a real increase in the pitch de- 
scribed by Eq. (38). If T >  T::', then 

Inversion of the sign of. the change in the pitch of the helix 
occurs at times 

The time interval t, - 1 sec is in qualitative agreement with 
the experimental data which is again an argument in support 
of the quasisteady state. 

Although we considered and used the assumption that 
the number of pitches N is large, the main result remains 
valid also for "moderate values" N- 10. In this case the time 
7::) increases considerably and a wave-like modulation may 
appear if the boundary conditions are other than those corre- 
sponding to the quasisteady case. Therefore, it would be of 
interest to investigate experimentally thinner samples and to 
determine the dependences and nature of the effect on their 
thickness. 
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