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It is shown that autoresonance acceleration can play an important role in electron cyclotron 
heating of a plasma. It is apparently responsible for the formation of a ring of high-energy 
electrons in electron-cyclotron-resonance heating of a plasma in open traps and in bump toruses. 
It is also found that autoresonance effects can weaken the heating of the bulk of the electrons 
confined in magnetic traps. 

INTRODUCTION 

The operation of a number of charged-particle accelera- 
tors is based on the autoresonance (autophasing) phenome- 
non, i.e., on automatic preservation of the condition of cy- 
clotron resonance when the system parameters vary slowly. 
Thus, an increase of the magnetic field strength or a lowering 
of the frequency of the acclerating rf field leads to an increase 
of the particle energy in accordance with the resonance con- 
dition w = w;mc2/&. Here E is the particle energy (to be spe- 
cific, we consider electrons), w the frequency of the acceler- 
ating rf field, w; = eBo/mc the cyclotron frequency 
calculated for the electron rest mass, and Bo the magnetic 
field induction. 

The magnetic field in most plasma traps is stationary," 
and fixed-frequency oscillations are used for rf heating of the 
plasma. Under these conditions, autoresonance acceleration 
becomes possible as a result of the inhomogeneity of the 
magnetic field of the trap, as the charged particle move 
towards the increasing magnetic field. 

In our opinion, autoresonance acceleration is the cause 
of the appearance of a group of high-energy electrons 
( E  - mc2 2 100 keV) in electron cyclotron resonance 
(ECR) heating of a plasma in a magnetic trap. Investiga- 
tions of open traps and bumpy toruses have revealed that 
these electrons form an annular layer located near the inter- 
section of the resonance surface (w = we ( r ) )  with the sur- 
face of the minima of the magnetic field on the force lines 
[ (BoV)Bo = 01, see e.g., Refs. 2-4. 

We show in the present paper that if the cyclotron reso- 
nance condition is met in at a point of minimum magnetic 
field on some force line, the electrons moving along this force 
lines with sufficiently low velocity are particularly easily 
"captured" into autoresonance. They are then localized in 
the vicinity of the magnetic-field-minimum point. The low- 
frequency oscillations, which are almost always spontan- 
eously excited in magnetic traps, should cause the autore- 
sonance electrons to drift across the magnetic field. Drift in 
the direction of the stronger field is accompanied by an in- 
crease of the electron energy. As a result, a layer of high- 
energy electrons is produced near the part of the 
(B,V)B, = 0 surface where w! > w. The magnetic-field ge- 
ometry of open traps and bumpy toruses is such that this 
layer should be annular. 

At a sufficiently high amplitude of the rf field, autore- 
sonance influences the ECR heating of the bulk of the elec- 
trons that oscillate freely along the inhomogeneous magnet- 
ic field of the trap. If such an electron moves towards the 
stronger field, it can be "captured" into autoresonance on 

p,assing through the electron-cyclotron resonance zone. The 
autoresonance acceleration process, however, is reversible 
and the electron gives up energy to the rf field as it moves 
back towards the weaker magnetic field. The resultant ener- 
gy changes is zero at the same accuracy with which is con- 
served the adiabatic invariant that characterizes the autore- 
sonance state (see the main text below). It is important that 
the electron capture into autoresonance is accompanied on 
the phase plane by a passage of the trajectory through the 
separatrix of the finite and infinite trajectories. Such transi- 
tions can alter the adiabatic invariant (see Refs. 5-7). Ac- 
cording to Refs. 6-8, after many passages through the cyclo- 
tron-resonance zone the changes of the adiabatic invariant, 
and with them the changes of the energy of the electron mo- 
tion across the magnetic field, E, a p ,  turns out to be uncor- 
related. (Here, p = p:/2mw; is the value of the adiabatic 
invariant in the absence of an rf field.) Diffusion i n p  should 
therefore set in. The diffusion coefficient decreases with in- 
crease of the rf field amplitude2): D, a E - I .  

In the case of a weak rf field, when no new adiabatic 
invariant is produced, we have D, cx E (see, e.g., Ref. 11 ). 
There should therefore exist an optimal rf field amplitude 
such that the diffusion coefficient is a maximum and, conse- 
quently, ECR heating is most effective. We estimate in this 
paper the optimal value of E. 

1. TRANSVERSE ADIABATIC INVARIANT IN THE ABSENCE 
OF AN RF FIELD 

The electron motion in a stationary magnetic field in 
the presence of rf oscillations is described by the Hamilto- 
nian (see, e.g., Ref. 12) 

We use the following notation: 

is the electron energy, A is the rf-field vector-potential am- 
plitude, @ = 8 - a t ,  and 8 is the phase of the Larmor rota- 
tion of the electron. We consider the simplest case of oscilla- 
tions with w =we, right-hand polarization of the electric 
field vector, and with a wavelength in the direction trans- 
verse to the magnetic field much longer than the Larmor 
radius of the electrons. The Doppler effect is disregarded. 
The canonically conjugate variables in ( 1 ) arep, @ andp,, ,z, 
where z is the coordinate along the stationary magnetic field. 
A canonical transformation 8+ @ = 0 - wt of the phase led 
to the appearance of the second term in ( 1 ) . 

Usually the phase @ manages to change by much more 
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Rapid motion over the (p, @) phase plane is character- 
ized by an adiabatic invariant I= $pd@. In the region 
p z p , ,  using the expressions for the adiabatic invariant of a 
nonlinear pendulum (see, e.g., Ref. 5 ) , we get 

where K and E are coplete elliptic integrals, x = (w/2v) 'I2, 
w = (Ho - H + B)/2a, v = fl /2a. The upper expressions in 
(4)  should be used for trajectories encircling the origin and 
on which the phase @ changes without limit; the lower 
expression should be used for trajectories with bounded vari- 
ation of a. By analogy with the nonlinear pendulum, we 
refer to the first regime as rotational and to the second as 
vibrational. 

Relations (4)  express I in the form of a function of 
w:(z),pll, andx(w:,pll ,H). If (4)  is used to find the inverse 
function H [w: (z),pll  ,x(w:(z),pll ,I) 1, we obtain a Hamil- 
tonian that describes slow motion along the magnetic field, 
averaged over fast (transverse) oscillations, 

FIG. 1 .  Phase portrait o f  system described by the Hamiltonian ( 1 ) :  
a*:<@; t F - w : - w = + w ( e ~ / ~ * ) ~ / ~ ;  c - : - o =  3 o ( ~ A / E * ) ~ / '  
+ 6 0 ,  G o ( w ( e A / ~ * ) ~ / ~ ;  d - m :  - o $ o ( e A / ~ * ) ~ ' ~ .  

than a ,  during the time of passage of the electron along the 
trap so that the variablesp and @ can be regarded as fast, and 
pll and z as slow. 

The picture of the phase trajectories on the plane of the 
fast variables at given values of the slow ones is shown in Fig. 
1. At < w the phase trajectories are close to circles with 
center at the point (p, z (eA) 'w/~E* (w: - w)',0), see Fig. 
la. Here 

With increase of w: the phase trajectories are "compressed" 
from the left, and at w: = w [ 1 + 3 ( eA / E * )  *13/2 1 a new sta- 
tionary point is created (pi z (E* /~w)  ( eA /E*) 213, a ) ,  see 
Fig. lb. With further increase of w,* the region occupied by 
the trajectories surrounding the point @:,a) broaden, and 
the point itself approaches the origin. At the same time, the 
stationary point (p, ,0) shifts towards larger values ofp (see 
Figs. lc, d)  . Thus, at w: - w 3 w (eA /&*)'I3 we have 

The autoresonantly accelerated electrons are those moving 
along the orbits surrounding the point (p, ,0) . 

Ifw: - w %w(eA /&*)'I3, the Hamiltonian ( 1 ) takes in 
the region p zp, the form 

W z H o ( p l , ,  z ) - c ~ ( y - p , ) ~ + P  c o s  @, (2)  

where 

We determine now the conditions under which an adia- 
batic invariant I exists, i.e., the longitudinal motion is slow 
compared with the transverse. The electron oscillates along 
the magnetic trap at the so-called bounce frequency 
w, -pll /mLo, where Lo is the characteristic scale of vari- 
ation of the magnetic field. When the electron is far from the 
cyclotron resonance point z, (we (z, ) = w), the adiabaticity 
condition is of the form (we - wl %max( lhe 1 'I2, lije 1 ' I3) .  

(The quantity he vanishes if the electron is stopped at the 
cyclotron-resonance point or if this point coincides with the 
point where the function we (z) is a minimum). The forego- 
ing condition is obviously violated when the electron lands 
in the electron band, where we z w .  The motion, however, 
remains adiabatic also in this case if the frequency In of the 
transverse oscillations under the action of the rf field exceeds 
,ax( lhe ('I2, lije 1 'I3), considerably. using ( 1 ) and (2),  we 
obtain a- w (Ep, /Bomc) 'I2.  If the point z is displaced far 
enough from the magnetic-field minimum 
(we (z, - we, ,in 2 In), the adiabaticity condition becomes 

The values of he and ij, were estimated here with the aid of 
the Hamiltonian H=H, [see Eqs. (5)  and (3 )  ] : 

where 

At we (z, - we, ,in 5 the motion is adiabatic if 

We have used here the estimate lij,/wl- ( p l I / m L ~ ) ' ,  
where 

Lo= I (dZo /dzZ)  / 2 o  ( *Zts. 
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2. HEATING UPON MOTION ALONG THE MAGNETIC FIELD 

a )  Consider the motion of an electron whose initial- 
momentum transverse component is small enough: pi,/ 
mcg (E/BO)'l3. We assume that at the initial instant the 
electron was in a region where w > we. By virtue of the con- 
servation of the adiabatic invariant, the electrons considered 
always move in a small vicinity of a stationary point (p,, 0), 
see Fig. 1. Their motion can therefore be described by the 
Hamiltonian 

where 

and ps is defined by the equation (dH /dp)@ =, = 0. 
The advance of the electron into the strong-field region 

is accompanied by a growth ofp ,--,us, and consequently also 
by a diamagnetic force F = - pecB A/&, that pushes the 
electron into the region of the weak magnetic magnetic field. 
The maximum value o f p  depends on the longitudinal com- 
ponent of the initial momentum. 

In the weakly relativistic case Eq. (8)  leads to simple 
expressions for p,,, . Thus, if poll /mc< (E / B , ) ~ / ~ ,  the 
electron is reflected from the region of the strong magnetic 
field (the magnetic mirror) without reaching the cyclo- 
tron resonance point, in which case (,urnax 
z (p~,/2m3cZw) ( Bo/E) (p /mcz  ( P ~ ~ ~ / ~ C ) ~ B ~ / E ) .  If 
poll /mc% (E/Bo)2/3, we have p,,, zplloc/w(p,,,, /mc 
z ( 2pllo /mc) 'I2, E, ,,, z ( 2 ~ ~ ~ ~  mc2) 'I2). The processes con- 
sidered, however, are reversible-their sequence is reversed 
after reflection from the magnetic mirror. As a result, p re- 
turns to its initial value p,. 

Thus, whereas in the case of a weak rf field an electron 
passing through the cyclotron resonance region acquires a 
finite energy increment AE cc E (see, e.g., Ref. 1 I ) ,  under 
conditions (7), which ensure the existence of a transverse 
adiabatic invariance, the resultant energy increment turns 
out to be zero. 

Assume now that an electron with p, /mc< (E /Bo) 'I3 

is located at the initial region in the region of the strong 
magnetic field (w: - w)w(eA Such electrons are 
located on the phase plane in the vicinity of the stationary 
point ( p ; , ~ ) .  When the electron is displaced into the weak- 
field region the point (pj,n-) comes close to the hyperbolic 
(see Fig. 1).  After the coalescence of the points, the elec- 
trons considered turn out to be on the phase plane on a cer- 
tain orbit that encircles the point p,, and in this case 
p, -mc(E/B,) I J 3 .  When the electron returns to the strong- 
field region, the probability of landing in the place where a 
new stationary point is produced, i.e., of having @ = n-, is 
negligibly small. The electron has therefore a probability 
Pz 1 of remaining on the orbit encircling the point (p, ,0) 
and will accordingly have p, - mc (E /go) 'I3. 

b) Consider now electrons withp, /mc > ( E  /Bo) 'I3 and 
assume that as they move along an inhomogeneous magnetic 
field they enter a region in which the condition 
(a,* - o) > + w(eA / E * ) ~ / ~  is met. The phase trajectories of 
such electrons can cross on the (p, @) plane the separatrices 
of the regions of rotational and vibrational motion. In accor- 
dance with Refs. 5-7, the transitions of a phase trajectory 
through a separatrix should change the adiabatic invariant 

by A14 1. Methods for calculating AIif the parameters of the 
system are linear in time have by now been developed. The 
decisive factor in our problem is the temporal dependence of 
the quantity we [z(t) ] - w. It can be regarded as linear if the 
cyclotron-resonance point is far both from the minimum 
point of w, (z) and from the electron stopping point 
(pg =O). 

The value of AI depends substantially on the phase @ at 
which the passage through the separatrix takes place. In the 
case of multiple transitions, the variation of I becomes ran- 
d ~ m . " ~  

A simple expression for AI can be obtained in the region 
p% (mc2/w) (E/BOl2/' ((p,/mc) ) (E/B,)'/~), where the 
picture of the phase trajectories on the (p, @) plane is close 
to the phase portrait of a nonlinear pendulum (see Fig. 1 ) . In 
this region, not all the electrons are captured by oscillations 
on passage through the cyclotron-resonance point. Assum- 
ing a uniform distribution over the phases, the capture prob- 
ability is 

where 

is the area of the vibrational region. Calculating So and S, 
from the Hamiltonian H z  Ho [see ( 3  ) and (5 ) 1, we get 

Thus, on passage of the high-energy electrons through reso- 
nance the capture probability is low and most electrons go 
over from the region of the backward rotation 
(& = we - w < 0)  into the forward region 
(@ = we - w > 0)  along trajectories of type C in Fig. 1. 

We calculate A1 using the results of Ref. 6. For an elec- 
tron that passes twice through resonance (on moving 
towards the stronger field and back) we obtain in the first- 
order approximation 

where f and 6 ' depend on the values of the phase @ at the 
instant of the transition through the separatrix of the finite 
and infinite motions in Fig. 1. In accordance with Refs. 6-8, 
the quantities f and 6 ' can be regarded as random, indepen- 
dent, and uniformly distributed on the segment (0,l). The 
quantity AI can then also be regarded as random with zero 
mean value and with a variance 

The diffusion coefficient is then equal to D,, = w, 4. 
It is known (see, e.g., Ref. 11 ) that at sufficiently low rf 

field amplitudes, when the adiabaticity condition is not met, 
we have 

Thus, the diffusion coefficient is a maximum on the bound- 
ary of the adiabaticity region defined by conditions (6)  and 
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point. If E~~~ is assumed equal to the energy of electrons pro- 
duced by ionization - 10 eV), which corresponds to the 
conditions of Refs. 2-4, we obtain E,,, - mc2- 1 keV. 

3. HEATING IN MOTION ACROSSTHE MAGNETIC FIELD 

FIG. 2. 

( 7 )  (see Fig. 2). Note that at (pII  /pI ) ( c / L , o )  > ( p , / m ~ ) ~  
the diffusion coefficient vanishes if E /Bo > (pl l  /p,  ) (c /  
L s w ) .  

The diffusion can be substantially enhanced by heating 
with oscillations having a more complicated spectrum, say a 
combination of two monochromatic oscillations with fre- 
quencies that differ by Aw 4 w .  The amplitude of the resul- 
tant rf field will vary on account of the beats. If an electron 
moving towards the stronger magnetic field passes through 
the resonance region during the period with the rf field am- 
plitude increases, the capture probability increases. The cap- 
tured electron acquires more energy in accordance with the 
autoresonance condition E = mc2w:/w. The decrease of the 
amplitude of the RF field stops the autoresonant accelera- 
tion. While the electron is in the autoresonance state, its 
energy increases by AE = mc2(w:,, - w:,, ) /w ,  where 
w:,, (w:,, ) is the cyclotron frequency at the instant of going 
"into" ("out of ' )  autoresonance. It is assumed that 
w:,, > w:,, . Since transitions with a:,, < w:,, , are also possi- 
ble, the electron heating has the character of diffusion in E ,  

the diffusion rate is maximal3' at Aw -w, . 
It is possible that the described heating mechanism was 

observed in experiments4 in which the heating became more 
effective when the rf oscillation spectrum was more compli- 
cated. 

In conclusion, we find the maximum energy that an 
electron can acquire by ECR heating. The heating is ac- 
counted for in the Hamiltonian ( 1 ) by the last (small) term 
-cp, eA /E .  Since it is resonant-secular, it entails energy 
changes S E )  cp, eA /E .  To determine them we can assume 
approximately that the motion is over the surface 
H (O' = E - pw = const. Combining this relation with the cy- 
clotron-resonance condition w = ecB0/&, we get 

The quantity p ,  and with it the electron energy 
E = H(O) + pw is a maximum if the resonance condition is 
met at the instant when the electron motion along the mag- 
netic field is halted ( pil = 0 )  : 

where p,  is the initial value of the magnetic moment and 
w:,,,, is the maximum cyclotron frequency reached in the 
motion along the trap prior to turning-on the rf field. 

In the weakly relativistic case it is convenient to repre- 
sent (9)  in the form p,,, =: (2el lS mc2) 'I2/w, and corre- 
spondingly E,,, - mc2 =: ( 2 ~ ~ ~ .  me2) ' I 2 .  Note that the same 
expression for E,,, was obtained in Ref. 12 for the motion of 
an electron in a weak rf field. E ~ ~ ,  in the expressions for p,,, 
and E,,, , is the initial energy of the longitudinal motion of 
the electrons at the instant of passage through the resonance 

In motion described by the Hamiltonian ( 1 ), the elec- 
tron cannot reach the energies - 100 keV observed in the 
 experiment^.^^ We therefore widen the scope of the problem 
by invoking a new factor, viz., motion across the magnetic 
field. 

Assume that the resonance condition w = we ( z )  is met 
on some force line of the magnetic field at the point where 
we ( 2 )  is a minimum. An electron with a sufficiently small 
longitudinal momentum component pli <p,  (E /Bo) ' 1 4 ( p ,  / 
mc) 'I4, moving near the minimum of the magnetic field, is 
autoresonant. Low-frequency oscillations that cause drift 
across the magnetic field are spontaneously excited in practi- 
cally all magnetic fields. If the drift velocity is directed 
towards increasing Bo and the motion is slow enough 
(max( Ihe 1 ' I 2 ,  l ije ( ' I 3 )  4 O ) ,  the energy of the autoresonant 
electrons will increase in accordance with the condition 
E = mc2w;/w. 

Drift in low-frequency oscillations is as a rule random. 
By virtue of the autoresonance condition, the spatial diffu- 
sion should be accompanied by a diffusion with respect top:  

where D is the coefficient of spatial diffusion and L, is the 
characteristic scale of the transverse inhomogeneity of the 
magnetic field. 

We consider now longitudinal motion of autoresonance 
electrons. They are localized in the vicinity of the minimum 
of the magnetic field, where w: ( 2 )  =: w:, ,in [ 1 + ( z /L , )  1. 
Assuming that w:, ,in = w&/mc2, we get from ( 3 )  

Assuming that in the case of drift across the magnetic 
field the longitudinal adiabatic invariant I l l  = $ pll dz is cov- 
ered along with the transverse one, we obtain from ( 1 0 )  
z,,, = ( I l l  Lo/n-p, ) ' I 2 .  This expression shows that with in- 
crease ofp, the swing of the electron oscillations along the 
magnetic field decreases. Thus, autoresonance heating 
should lead to formation of a thin layer of high-energy elec- 
trons localized near the surface ( B o V ) B ,  = 0 .  

In  experiment^^^ on the spatial distribution of high- 
energy electrons, the intersection of the cyclotron-resonance 
surface with the surface ( B o V  ) Bo = 0 is a circle. In this case, 
the high-energy electrons should form an annular layer, as 
was in fact observed in Refs. 2-4. In view of the substantial 
transverse inhomogeneity of the magnetic field in Refs. 2-4, 
the drift of the autoresonance electrons was perfectly capa- 
ble of imparting to them an energy - 100 keV. 

The authors thank A. V. Zvonkov for a discussion of the 
work. 

' ' A plasma trap with a magnetic field that increases with time, placed in 
an rf electromagnetic field (plasma synchrotron), was investigated in 
Ref. 1. 

"The decrease of the effectiveness of the resonant cyclotron interaction 
with increase of the rf-field amplitude, due to the onset of a new adiaba- 
tic invariant, was noted in Refs. 9 and 10. These references dealt with 
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ion-cyclotron oscillations propagating across a magnetic field, and rela- 
tivistic effects were disregarded. 

"A similar diffusion-enhancement mechanism was considered in Ref. 13, 
where heating of a hydrogen plasma in oscillations with k l  = 0 was 
considered. 
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