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We study the field of electric and magnetic dipoles of infinitesimal dimensions in the post-quasi- 
static approximation. We find expressions which completely describe the structure of the 
singularities of the field in the near zone of the source and the region of the resonance cones. We 
obtain the conditions for the applicability of the quasi-static approximation. In the case of a 
weakly gyrotropic medium we find the field at any distance from the dipoles and the resonance 
cones. 

1. INTRODUCTION 

The field of antennae in anisotropic media and particu- 
larly in a magnetized plasma has continued to be of interest 
already during several decades and has thus been the subject 
of many papers (see, e.g., Ref. 1, and also the review articles 
of Refs. 2,3,  and the literature cited therein). The timeliness 
of this problem has recently increased considerably in con- 
nection with active experimentation in the ionospheric and 
magnetized plasmas. It then turned out that not only the 
field in the wave zone of the antenna but also the field in the 
near zone and the resonance cones, which reach appreciable 
values, are important. The basic equations for the near zone 
and the resonance cones in an anisotropic medium were ob- 
tained in the "quasi-static" approximation in Ref. 4. Their 
applications to dipole and ring antennae were considered in 
Refs. 4-6. However, the equations of the quasi-static ap- 
proximation contain only the main order singularities. 

In the present paper we consider the next approxima- 
tion for electric and magnetic dipoles. We consider also the 
important limiting case of radiation in weakly dispersive me- 
dia. We start from the general equations for the electromag- 
netic field of the source in an anisotropic medium,' which we 
rewrite in a form convenient for our study. We then assume 
everywhere the plasma to be collisionless, cold, and fixed 
relative to the source, thus neglecting dissipation and spatial 
dispersion. The expressions obtained are applied further to 
study the fields of infinitesimal electric and magnetic dipoles 
which are oriented along the external magnetic field. Using 
an approach based upon the analysis of the behavior of the 
Fourier components of the Green function for large wave 
numbers, we find explicit formulae for the fields near the 
source and the resonance zones. We show that they describe 
completely the structure of the field singularities which oc- 
cur here. From them it follows that there are added to the 
expression with the main singularities, which follow from 
the quasi-static approximation, a series of terms containing 
weaker singularities." With increasing distance from the 
source and the resonance cones, the relative contribution 
from these terms increases and they become important on 
going to the wave zone. In particular, the results lead to the 
the necessary conditions for the applicability of the quasi- 
static approximation. 

In the last section we consider the case of radiation in a 
weakly gyrotropic medium. In first approximation in the 
gyrotropy parameter we find expressions, which are valid in 

the whole of space, for the fields of electric and magnetic 
dipoles oriented along the external magnetic field. Compar- 
ing these expressions with the formulae for the field near the 
source and the resonance cones in the case of arbitrary gyro- 
tropy parameters, we can trace the connection between the 
quasi-static and the wave zones and thus to obtain a qualita- 
tive idea about the structure of the transition region for di- 
pole antennae in an anisotropic medium and, in particular, 
in a cold magnetoactive plasma. 

From what we have said above it is clear that we ignore 
in the present paper a number of factors which in some spe- 
cific problem or other may turn out to be important. For 
instance, together with the spatial dispersion we neglect all 
effects caused by the interaction of charged particles with 
the surface of the source, such as double layers and the ab- 
sorption of particles by the surface. Double layers can some- 
times be taken into account phenomenologically by intro- 
ducing an appropriate form factor. The role of absorption 
often turns out to be small thanks to the special coatings 
applied to the antennae or to their small dimensions. In any 
case, this large class of problems falls outside the scope of the 
present paper. Finally, we neglect non-linearities, which 
have partly already been considered in several of the papers 
cited above, and to which we intend to return separately. We 
note that the criteria obtained here for the quasi-static ap- 
proximation turn out to be useful also for the study of non- 
linear effects. 

An extended variant of the present paper was published 
in the form of a preprint.' 

2. BASIC EQUATIONS 

Assuming that 

j (R, t )  =Re {j(R)e-'"l), E(R, t )  =Re{E(R)e-'"l), 

H(R, t )  =Re{H(R)e-'"'}, 

we shall start from the Maxwell equations for the complex 
amplitudes: (2.1 ) 

4 x i o  ic 
i R )  - cZ j (R) , H (R) = - -rot E (R) , (2.1 ) 

0 

where 

the indices i and k take on the values x ,  y, and z, A is the 
Laplace operator, and cik is the dielectric permittivity tensor 
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whose non-vanishing components have in the "cold" plasma 
approximation the form (the z axis is directed along the ex- 
ternal magnetic field) 

dY'"' o2 d2G E, = - ---- ax + pg-7- c dydz' 

One can find, e.g., in Ref. 9, how the quantities E, 7, and g 
depend on the frequency and the plasma parameters. 

The solution of the first Eq. (2.1 ) using a Fourier trans- 
formation gives7 

E,(R)=W-{A, ~ G ( R - R ~ )  j , ( ~ . )  aft (2.4) 

where 

Changing to the cylindrical coordinates r, p ,  z we get 
instead of (2.12) and (2.13) 

8 ?V (P'  (r, z) 
E, = - (2.16) 

dr ' 

where 

4nic dn exp {i (olc) nR) 
G(R)=  -- j- 

o ( 2 n ) V ( n ,  0) l (2.6) 

P(n,  0) = n ' ( ~  sin' 0+q cos2 0) -n2[eq (l+cos2 0)  

+ (~'-g') sill2 01 +q (~'-g'). (2.7) 
These formulae together with E, from (2.14) and H from 
(2.1 ) give the general expressions for the field of an electri- 
cal dipole oriented along the z-axis. 

For a "point" magnetic dipole with moment 
M ( t )  = Re{Me-'"') ( M  = n-a21/c, a-0, M +O) we have 

Here eijk is a completely antisymmetric third rank unit pseu- 
do-tensor, and 8 is the angle between the z axis and the di- 
mensionless ''w2ve vector" n. The components of the differ- 
ential operator A, are explicitly written out in Ref. 8. 

We give also for the function G(R) another representa- 
tion which is obtained from (2.6) after changing to cylindri- 
cal coordinates x = r cos p, y = r sin p ,  z and, correspond- 
ingly, n, = n, cos $, n, = n, sin $, n, = nil. It is convenient 
in that case to write the function (2.7) in the form 

j (R) =crot{MG(R) )=-c[MXV6(R)] (2.18) 

(see, e.g., Ref. 10, $29). In the simplest case when the mo- 
ment M is parallel to thez-axis we find from (2.4) and (2.5) 

I'(nlI, n,) =q (nllL-12,') (nIl2-nz2), (2.8) 

where 

where 
o 

Y (")=igM - AIG, 
C and to integrate in (2.6) over $and n In the case when n:,, 

> 0, the function P - '(rill - n, ) has poles on the real axis. 
One must go around them assuming that the frequency w has 
a small positive imaginary part, i.e., one must substitute 
w-+w + i s ,  6 -  + O  . After this the poles + n ,  and + n ,  
acquire non-vanishing imaginary parts. To be specific, we 
assume in what follows that n, (n, ) and n,(n, ) lie in the 
upper half-plane. As a result we get the following expression 
for G(R):' 

In cylindrical coordinates Eqs. (2.19) and (2.20) give 

G (R) =G (r, z) 

The corresponding expressions for other orientation di- 
rections of the electrical and magnetic dipoles are considered 
in Refs. 8 and 1 1. 

C - _l n, J,(onlr/c)- ( ~ 1 0 7 ~ ~ l z ~ ' c  d m " 1 "  

0Y (, n1z-n22 ni 
) dn,. (2.10) 

n2 

3. STRUCTURE OFTHE SlNGULARlTlES OF THE FIELD OF 
ELECTRICAL AND MAGNETIC DIPOLES. REGION OF 
APPLICABILITY OF THE QUASI-STATIC APPROXIMATION 

As the simplest examples we consider an electrical and mag- 
netic dipole of infinitesimal size with moments which oscil- 
late at a fixed frequency w. 

Let p( t )  = e ( t ) l =  Re{pe-'"')(l-O, p#O) be the 
electrical dipole moment. The current amplitude is then 

We use the formulae obtained above to find the field 
near the dipoles and the resonance cones. 

It is well known that resonance cones arise when the 
quantities E and 77 (see (2.3)) in the dielectric tensor have 
different signs. We shall everywhere in what follows assume, 
to be definite, that E > 0 and 7 < 0 and we introduce the pa- 
rameter 

j (R) =-iopfi(R). (2.11) 

We assume that the dipole is oriented along the z axis, 
i.e., p, = p, = 0, p, = p . Equations (2.4), (2.5) then give 
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We consider the representation (2.10) for the function 
G(R). We study the asymptotic form of its integrand for 
large wave numbers n,. It follows from (2.9) that the roots 
n,,, (n, ) of the polynomial P(nll  ,n, ) can be written in the 
form 

nl, 2 = R ~ ,  z (n i ) f  xI, 2(nl) ,  (3.2) 

where 

and the functions x , ,  (nl ) for large n, behave as n; 3. For 
fi,,, in (3.2) we choose those values of the square root from 
Eqs. (3.3) which, starting from some sufficiently large value 
of n,, lie in the upper half-plane. We then assume that 
Re yZ > 0, Im > 0; moreover, let Re xi > 0. 

Using (3.2) we write the function G(r,z) from (2.10) in 
the form .- 

where the tilde indicates that in the integrand in (2.10) we 
use fi ,,, instead of the exact values of the roots n ,,, . Using the 
asymptotic form of the functions~,,, (nl ) we can show that 
the function f(nL,z) behaves like 
O(lzln; 6,n,7)exp(iwii,,, Izl/c) as n, - co. Therefore, the 
second term in (3.5) and all its spatial derivatives up to and 
including the fourth are bounded. Neglecting such terms in 
what follows we shall thus consider only those regions of 
space where the fields reach appreciable values, i.e., the re- 
gions not too far from the singularities. We illustrate this 
approach using as an example dipoles directed along the z- 
axis. 

We consider first of all an electrical dipole. We start 
from the exact expressions (2.12)-(2.17) for the field, in 
which we put G(r,z) z c ( r , z ) .  We note first that the func- 
tion G(r,z) [like G(r,z) ] is bounded in the whole of space. 
This follows from the integral representation (2.10) if we 
use the fact that n,,, -fils, -n, as n, - a. To calculate the 
singular part of E, we must thus know AG, d2c/dz2 and 
6% /dzdr. Using (3.3 ), (3.4) we can bring the expressions 
for these quantities, after a few transformations, to the fol- 
lowing form: 

(3.8) 
Evaluating the integrals in (3.6), (3.7) (Ref. 12) we get 

y e l ~ ~ ~ Q / ~  0 2  
- -  c~ x22G, Q (3.9) 

where 

implying here and everywhere in what follows that 

O when I y z l  >r  

arg =I % when 1 y z i  <r 
(3.12) 

For x,,, we have everywhere taken the arithmetic value of 
the square root of x:,,. Using (3.9) we find for the potential 
(2.15) 

Substituting (3.9) and (3.13) into (2.14) and then using 
(3.10) we get (apart from bounded terms) 

To calculate the components E, and E, we consider 
Eq.(3.8). The second term in it is bounded in the whole of 
space. Neglecting this term and evaluating the first integral, 
using Ref. 12, we have near the singularities 

(3.15) 
Substituting (3.13) and (3.15) in (2.16) and (2.17) we get 
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The first two terms in the square brackets of Eq. (3.14) 
and the term -rz/Q5 in (3.16) correspond to the quasi-stat- 
ic approximation of Ref. 4. The additional terms obtained 
here take into account weaker singularities of the field at the 
origin and in the resonance cones. Equations (3.14), (3.16), 
and (3.17) thus fully describe the structure of the singulari- 
ties of the field of an infinitesimal electrical dipole which is 
oriented along the z axis. 

We now consider a magnetic dipole. Using (3.9) and 
(3.10) to obtain an expression for A,G and substituting it 
into (2.22) and (2.23) we shall have 

The derivative a@ /dr is bounded in the whole of space since 
its integrand contains a first order Bessel function that van- 
ishes as r+O . This is clear from the expressions under the 
derivative sign in (3.8) and (3.15). The boundedness of 
d g  /dzfollows from an analysis ofthe convergence of the two 
integrals corresponding to the two terms in (2.10) : the loga- 
rithmic singularities corresponding to them cancel one an- 
other. In the approximation considered we can thus neglect 
thesecond termsin (2.24), (2.25), (3.18), and (3.19). Asa 
result we get (apart from bounded terms) 

The first two terms in the brackets in (3.20) and (3.21) and 
also expression (3.22) correspond to the quasi-static ap- 
pro~imation.'~ The terms proportional to l/Q describe an 
additional weak square-root singularity of the components 
E, and E, on the resonance cone. Formulae (3.20)-(3.22) 
describe completely the field of an infinitesimal magnetic 
dipole oriented along the z axis. 

We note that in principle one can also carry out the 
procedure for selecting the singular terms using spherical 
coordinates in wave number space, as was proposed in Ref. 
13. However, one obtains then in the simplest manner only 
the quasi-static terms.I4,' The selection of the next terms en- 
tails an analysis of complicated double integrals of unbound- 
ed rapidly oscillating functions over angles. 

The results obtained here for electrical and magnetic 
dipoles enable us to consider the problem of the region of 
applicability of the quasi-static approximation. We found 
the solution in the form E = E,, + AE, where E,, is the field 
in the quasi-static approximation, and AE the additional 
terms describing the weaker singularities of the field. There- 
fore, the necessary and sufficient condition for the applica- 
bility of the quasi-static approximation is 

For fixed values of the parameters of the problem this condi- 

tion can be assumed to be the definition of the quasi-static 
zone as a region of space. 

Away from the singularities, the relative contribution 
of AE increases. The region of space where 

may be called the transition zone. Here the transition to the 
spatial oscillations of the field of the wave zone starts. 

We give some simple conditions which are sufficient to 
satisfy (3.23). For an electrical dipole they have the form of 
a set of two equations: 

Indeed, when (3.25) is satisfied the main terms are those in 
the square brackets in Eqs. (3.14) and (3.16) which describe 
the field of the quasi-static zone. Furthermore, comparing 
these terms with the last terms in (3.14) and (3.16), respec- 
tively, we are led to two conditions the second of which turns 
out to be the strongest. This can be easily shown by using the 
inequalities - 1 < Q 2 / R  2 >  f and 0 < y2 < co . Combining 
this condition with the condition lEp I IE, / we arrive at 
(3.26). 

For a magnetic dipole (3.23) is satisfied when (3.25) is 
satisfied. 

4. THE WEAK GYROTROPY CASE 

When the gyrotropy parameterg is a small magnitude it 
turns out that it is possible to obtain for the fields explicit 
expressions valid in the whole of space. Indeed, it is clear 
from (2.5) that the function G ( R )  of (2.6) containsg2rath- 
er than g. This enages us to write the components of the 
Green tensor T,, = A,, G to first order in g in the form 

where 

and the index (0)  labels quantities for g = 0 while the cor- 
rections ST;, are, in accordance with (2.5), given by the 
expressions 

The components Tjj' are evaluated explicitly in Ref. 8. 
As an example we consider again electrical and magnet- 

ic dipoles oriented along the z axis. Substituting (2.1 1 ) into 
(2.4) and using (4.1), (4.3) and the expressions for Tjj' 
from Ref. 8 we shall have after changing to cylindrical co- 
ordinates 
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For the magnetic dipole (2.18 ) we have similarly 

+ exp (ioe'"R/c) 
R 

where wpi is the ion plasma frequency and ope and w ,  are the 
electron plasma and cyclotron frequencies. In this range the 
quantity 

is small only when the additional conditions 

are satisfied. Combining (4.8) with (4.9) we get finally 

+ exp ( i ~ & " . R / c )  
R 

For g = 0 the results of Ref. 15 follow from (4.4) and (4.5). 
We note also that in the case of the electrical dipole the pres- 
ence ofgyrotropy destroys the shadow region ( r  > lyz(), as is 
clear from (4.4). 

Considering (4.4) and (4.5) near the singularities we 
obtain for the field the expression obtained in the previous 
section, if we neglect terms in the latter of order g2 and, in 
particular, put x: =: - 7, x: Z E .  On the other hand, com- 
paring, for instance, (3.14), (3.16), (3.17) with (4.4), we 
see that away from the dipole and the resonance cones the 
terms containing singularities start to acquire on oscillating 
structure in space. The expressions obtained for the fields in 
the previous section thus give also a qualitative idea about 
the structure of the transition zone of dipole antennae. 

We finally consider the region of applicability of the 
results of the present section. It follows from (2.7) and also 
from the general expressions for the Ti, that the correspond- 
ing condition has the form 

In particular, (4.6) is realized for a two-component cold 
plasma when 

i.e., in the band of the gyromagnetic oscillations ( 0 ,  is the 
ion cyclotron frequency). As to the electron oscillations one 
must here first bear in mind that the conditions E > 0 , 7 < 0 
assumed above are satisfied when 
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