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A self-consistent determination of the atom-level perturbation in a conducting medium is 
considered. The solution is obtained for the case of a hydrogen atom in a metal. Correct matching 
of the atom to the medium decreases the shifts of the atomic levels and changes the qualitative 
dependence of these shifts on the density of the medium. The levels approach asymptotically the 
continuous spectrum with increase of density. The shift of the 1s ground level of a hydrogen atom 
in an alkali metal is relatively small and can be calculated by an appropriate perturbation theory. 

1. Knowledge of the variation of the binding energy of 
atomic electrons when the atoms land in a plasma medium is 
important for many applications. A rarefied plasma alters 
greatly the energies of highly excited states, and this in- 
fluences the emission spectra near the limits of the series, and 
also the probabilities of such processes as impact-radiative 
recombination, dielectric recombination, and others. In 
dense media at both high and low temperatures (e.g., in met- 
als under normal conditions), even the ground states are 
strongly perturbed, so that the existence of even one bound 
state remains questionable. 

If a particle with charge Z is placed in a plasma medi- 
um, the total potential rp is given in the linear approximation 
by' 

where r is the distance from the particle and D is the Debye 
screening radius. Here and below we use atomic units 
(e2 = me = f i  = 1 ) in which, for example the unit of length 
is the Bohr radius a, = 5.29. cm. 

To determine the energy-level shift of an atom in a plas- 
ma medium one frequently uses the method of quantization 
in the potential ( 1 ). It is assumed that the free electrons of 
the plasma screen the atomic nucleus, while the bound elec- 
trons move in this screened potential. Various modifications 
of this method are also used and are based on similar phys- 
ical premises. 

The number of bound states in the potential ( 1 ) is finite 
and decreases with decrease of D. For a certain sufficiently 
small D (or sufficiently high density) there are no such 
states at all. The Debye radius D for a dense plasma in a 
metal is so small that the ground state level of, say, a hydro- 
gen atom turns out to be close to the con t in~um.~  It is as- 
sumed on this basis2v3 that a proton in a metal has apparently 
no bound electron. The presence or absence of a bound elec- 
tron is important for the energy loss by atoms entering into 
metals at low velocities, v 4  10' cm/s. 

Quantization in the potential ( 1 ) to determine the ener- 
gies of bound atomic electrons is in fact an illegitimate oper- 
ation that leads to wrong results. The error is due to incor- 
rect coordination of the atom with the plasma medium. 

When an atom lands in a metal the parameters of the 
atom and the metal deviate from their unperturbed values in 
a coordinated manner: the perturbations of the metal and the 
atom depend on one another. In particular, perturbation of 
the metal and its reaction on the atom depend on the charge 
state ofthe atom itself. The potential ( 1 ) is established in the 

plasma medium only if the charge Z has no bound electrons, 
and the screening is only by the metal electrons. 

A correctly coordinated determination of the atomic 
levels should take into account the presence of the bound 
electrons whose energies are sought. The plasma is then per- 
tubed by a particle that already has bound electrons. The 
energy levels, say, of a neutral atom should be determined 
under the condition that the plasma medium is perturbed by 

1 a neutral particle and not by a charged one, and this in turn 
decreases substantially the perturbation of the atom. 

Quantization in the potential ( 1 ) is incorrect for one 
other reason. 

The potential ( 1 ) is established in the case when a posi- 
tively charged nucleus Z is screened by the charge, of equal 
absolute value, of the free electrons located in a sphere of 
radius -D. Quantization in the potential ( 1 ) means addi- 
tion to this system of one more electron, so that a negatively 
charged system is obtained. This contradicts the principle of 
total screening of the charge in the conducting medium. It 
will be shown below, in the actual solution of the problem, 
that this discrepancy is eliminated by a nontrivial (for the 
Thomas-Fermi method) subdivision of the screening elec- 
trons into free and bound ones. 

Our present task is to find the shifts of the atomic level 
for correct coordination of the atom with the metallic plas- 
ma medium at arbitrary value of its density and a Thomas- 
Fermi description of its electrons. The atomic electrons will 
be considered by a quantum-mechanical approach. A gen- 
eral analysis is carried out of the qualitative dependence of 
the binding energy of the atomic electrons on the plasma 
density, and it is shown that this dependence is different than 
for the potential ( 1 ). The atomic levels approach the contin- 
uum asymptotically with increase of the density of the medi- 
um, and there are no finite densities at which the levels can 
be pushed out into the continuum. 

A quantitative solution will be given for the case of low 
plasma-metal densities, when the shifts of the atomic levels 
can be calculated by perturbation theory. Owing to correct 
coordination, the metal-electron densities at which pertur- 
bation theory is valid turns out to be much larger than for 
quantizing in the potential ( 1 ) , so that perturbation theory 
can be used for many real metals. 

2. Let us prove some general statements concerning the 
shift of the atomic levels, using the assumption that the 
charges of the medium and of the atom are additive, i.e., 
assuming that the total charge density Q of the combined 
atom + medium system is equal to the sum of the charge 
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densitiesp of the plasma-medium electrons and of thep,, of 
the atomic electrons: 

Let us see first how serious are the constraints imposed 
by the assumed additivity of the charges. The electrons of the 
atom and of the medium interact in the combined medium 
both directly and by exchange, and this interaction is in gen- 
eral not small. It is therefore impossible to single out some 
electron group that can be assumed to belong only to the 
atom and not to the medium. The atomic electrons are con- 
tinuously exchanged with the electrons of the medium. This, 
however, does not mean in general that the density additivity 
assumption breaks down. Since the electrons are indistin- 
guishable, it is immaterial which of them are located at a 
given instant on atomic orbits. In the Hartree-Fock (HF) 
approximation, which takes the exchange into account, the 
total density Q of the charges of the atom + medium system 
is equal to the sum of the densities from individual orbitals 
$4 : 

N 

( N  is the number of orbitals filled with electrons), since the 
different are mutually orthogonal. It is this equality which 
ensures the additivity we need. A fraction of the orbitals +, 
(and a large one at that) describes the states of the electron 
in the continuous spectrum of the conduction band of the 
metal, and constitutes the charge density of the medium. If 
the HF orbitals include some that are localized around an 
atom, the latter must be regarded as atomic and they repre- 
sent the charge density of the atomic electrons. Additivity is 
thus present in the HF approximation. Since the H F  method 
describes well enough the properties of many-electron 
atoms, there is every reason for assuming that the charge- 
additivity condition is quite well met in our present problem. 

Let us show that if the charges are additive, introduc- 
tion of a neutral atom into a medium of any density allows all 
the electrons to remain bound to the atom. 

The total potential q, of the electric field satisfies the 
Poisson equation 

V29=-4n (PO-p - pqU + 26 (r) ) , 

wherep, is the average density of the positive charge (of the 
atom nuclei) of the medium, and S ( r )  is the delta-function. 
The core of the introduced atom is at the point r  = 0. 

In a conducting medium, the positive charge Z of the 
introduced atomic nucleus is completely screened by the 
charge of the electrons. Some of these electrons can be on 
bound orbits, and the remainder is supplied by the conduc- 
tion band, so that the neutrality condition that follows from 
(2)  on the basis of the Gauss theorem can be written in the 
general case in the form 

where 

is the number of electrons bound to the atom. 
Assume that all electrons remain bound to the atom, 

i.e., N = Z.  We then obtain from (3)  

meaning that the total charge supplied by the medium to the 
region of the atom is zero. The medium is only polarized. 

From the integral neutrality condition (5)  for themedi- 
um follows validity of the assumption N = Z  that the num- 
ber of electrons bound to the atom is consierved. Indeed, the 
total potential q, can be written on the basis of the charge 
additivity in the form of the sum 

rp=Z/r+@, + @,, , ( 6 )  

where a,, is the potential produced by the bound (quan- 
tum) electrons, Z  /ris the potential of the introduced atomic 
nucleus, and a, is the potential produced by the charges 
p -p, of the medium. From condition (5), or from the con- 
dition that the total charge of the medium be zero, it follows 
that at large distances from the core of the introduced atoms 
(r -+  c~ ) the value of @, decreases more rapidly than r - ' .  
This means in turn that the potential 

in which the bound electrons move has, just as in the unper- 
turbed atom, a Coulomb asymptotic V - Z / r .  Obviously, Z 
electrons can be bound in a potential well with the same 
a~ymptot ic .~ Moreover, all the electronic excited states pres- 
ent in the underpertubed atom at V - Z  / r  remain bound in 
such a potential. (We emphasize that Vis the potential act- 
ing on the entire bound-electron system as a whole.) 

Thus, by assuming the equality N = Z, we arrive at still 
stronger statement: all the electrons remain bound to the 
atom, and furthermore not only in the ground state but also 
in all the excited states. This means that the condition that 
the number of electrons bound to the atom be preserved ac- 
cords with the correct coordination of the atom with the 
medium. 

Naturally, the system considered can be also in an ion- 
ized state if several electrons are removed from the atom by 
some process. 

The foregoing qualitative analysis based on a consistent 
coordination of the medium and the atom leads for the 
atom's energy levels in a medium to an entirely different 
behavior than the method of quantization in the potential 
( 1). There exist no finite values of the medium's density at 
which the atomic levels can be pushed out into the contin- 
uum. Of course, an increase of the density of the medium 
leads to a stronger screening of the atomic core by the elec- 
trons. More electrons of the medium penetrate into the 
atomic orbits. By virtue of the integral neutrality ( 5 ) ,  how- 
ever, at larger distances r  there is produced an excess of posi- 
tive charge of the medium, so that the potential V  again ap- 
proaches the Coulomb potential Z  /r.  The quantum orbits of 
the atom are located precisely in the region of space with 
excess positive charges. 

What decreases exponentially as r -  cc is the total po- 
tential. In the case of a neutral atom, q, is equal to the sum of 
terms that are mutually cancelled out on the asymptote, viz., 
the potential @,, of the bound (quantum) electrons, 

and the potential V  due to the core and the medium, with an 
asymptotic value, as already mentioned, + Z / r .  
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FIG. 1. Filling of energy states of the continuous spectrum in the region of 
the atom by T F  electrons. The thick line shows the total poential for the 
electrons ( - p). 

3. We consider specifically the energy levels of a hydro- 
gen atom in a metal under normal conditions, when the met- 
al temperature is much lower than the Fermi energy p,. In 
this case the electrons of the metal can be described using the 
Thomas-Fermi (TF)  approximation. Their density is deter- 
mined by the local value of the potential p ,  which is attract- 
ing for them in the region of the atom (see Fig. 1 ) .  

In the usual T F  method it is assumed' that at any point 
of space the electrons fill all the states with momenta from 
zero to the maximum Fermi momentum. Such a filling of the 
momentum space is in our case unsuitable for the following 
reasons. We describe a bound electron of the hydrogen atom 
on the basis of the quantum-mechanical Schrodinger equa- 
tion. If the density of the remaining electrons is expressed 
with the aid of the usual T F  expression, it turns out that part 
of these electrons will have negative total energies and will be 
consequently bound to the atom. The number of all the elec- 
trons bound to the atom is then indeterminate. If we place a 
bound electron on a quantum orbit, we must see to it that all 
the remaining electrons be only in the continuous spectrum 
of the conduction band (see Fig. 1 ). To this end we could 
subtract from the usual density of the T F  electrons the den- 
sity of those whose energies are negative. This, procedure, 
however, is not enough. 

One more circumstance complicates somewhat the for- 
mulation of the problem, a formulation perfectly correct 
with respect to the number ofbound electrons. In view of the 
integral neutrality condition (5) ,  the total potential p 
should be of alternating sign. Equality of the total charge of 
the medium (5)  to zero requires that the densityp - p, be of 
alternating sign as a function of distance. This means (if the 
electrons are described by the T F  method) that if a region 
attracting the band electron exists near the nucleus, a region 
that repels them should exist far from the nucleus. The total 
potential for the electrons (i.e., - p) should have a maxi- 
mum. The bound electrons will then be those with energies 
lower than the top p, of the potential barrier (see Fig. 1 ). It 
is the density of just these electrons which should be sub- 
tracted from the total density of the T F  electrons. The 
charge density p - p, of the medium, which tends to zero at 
infinity (by virtue of the neutrality condition), is then equal 
to 

2% 
*I2 

P-QO = -, [ (qo+q)"- ((P,+(P) ( r o )  -cpo I ,  ,{n- 
( 8 )  

where B(r,) is the step function: B(r<r,) = 1 , 6 ( r  > r,) = 0. 
The first term in the square brackets of (8 )  is the total den- 
sity of electrons with momenta from zero to the maxima 

corresponding to the maximum energy of the occupied state 
of the band-the Fermi energy p,. The second term is the 
density of electrons with energies lower than the top of the 
potential barrier p , ,  i.e., the density of the electrons bound to 
the atom. The last term in ( 8 ) is the density of the positive 
charge of the ions of the metal, which we shall assume to be 
independent of the coordinates (the model of smeared ion 
charge) and which is not changed when an additional atom 
is introduced into the metal. 

The equations describing the atom + metal system can 
now be written in the form 

where $and E are the wave function and energy of the atom- 
ic electron described with the aid of the quantum Schro- 
dinger equation ( 10). The Poisson equation ( 9 )  for the po- 
tential @, of the metal is obtained from the Poisson 
equation by an identity transformation, viz., by substituting 
in it the total potential p in the form of the sum (6)  and 
eliminating the potential of the core on the basis of the equa- 
lity V 2 ( Z / r )  = ZS(r )  and of the potential of the quantum 
electron on the basis of the equalities 

The system (9 )  and ( 10) must be solved subject to the 
condition that the wave function $ be finite (this permits 
finding the eigenenergy E ) ,  and that the potential @, be 
finite as r-0 and decrease as r- a. 

Under the foregoing assumptions, the wave function IC,O 
of the unperturbed atom remains spherically symmetrical 
also inside the metal. We can therefore seek in this case 
spherically symmetric solutions $ and @, of Eqs. (9 )  and 
(10). Introducing new functions, we get 

These sets of equations contain two unknown param- 
eters: the height p, of the potential barrier and the distance 
r, at which p(r,,) = pi. They can be obtained from the fol- 
lowing considerations. At the point r, we have a zero deriva- 
tive p '(r,) = 0, i.e., a zero electric field. This means that the 
neutrality of the total charge is so to speak twofold: the total 
charge inside the sphere r<r, is zero, and the total charge in 
the outer region r,<r < a is separately equal to zero. 

4.1. We consider now the solution of the system ( 11 ), 
(12) in the limit of a rarefied medium, i.e., low values ofp, 
and accordingly of p,. For metals under normal conditions 
these parameters are small in atomic units. The atomic unit 
of density is a, = 6.76. cmP3. The densities of the 
quasi-free electrons of the conduction bands of metals are in 
the range 8. lo2'-9. lo2' ~ m - ~ ,  orPo=: ( 1.2-0.14) X l oP2  in 
atomic units. The Fermi energy is in the range 0.3-0.06 a.u. 
(7-1.5 eV). 

The perturbation of the atom inside a rarefied medium 
is small, and the total potential p is close to the static (unper- 
turbed) potential (P::' of the atom: 
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which is - 1 in the principal region. This allows us to expand 
the density of the band electrons ( 8 )  in the region of the 
atom in terms of the small ratio (p,/p) 4 1 ( 0  = 1 in this 
region) : 

Let us assess the order of magnitude of this density. In 
an unperturbed metal the band electron density obtained by 
TF method is p( co ) = (21/2a-2) p i".   he density ( 1 5 )  is 
much higher than this unpertubed density. The ratio 
I (p - po)/pol z ( p  /pol ' I 2  % 1 (it will be shown below that 
p, ( 9 ,  as p,-0). Thus, a relatively large amount of elec- 
tronic charge flows into the region of the atom. Its absolute 
value, however, remains small, since ( 1 5 )  is proportional to 
the small quantity p, (two inequalities are satisfied: 
p,4 Ip, - pi4 1 ), and the perturbation of the atom remains 
weak nonetheless. 

Using ( 14), we obtain from the Poisson equation ( 1 1 ) a 
relation for the calculation ofx, (or +, ): 

The right-hand side of this relation contains no unknown 
function, so that X, is determined by double integration. 
The boundary condition thatx, must satisfy at r = 0 should 
obviously be X ,  (0 )  = 0, since <P, (0 )  should be finite by 
virtue of the integral neutrality ( 5 ) .  As r+  co we can also put 
X ;  ( co ). Indeed, the expansion ( 1 5 )  [and hence ( 16) ] is 
generally speaking incorrect as r-- CO. At large distances, 
where the expansion ( 1 5 )  is not valid, the total potential 
tends to zero as r- m , and becomes small, of the order of p,, 
so that it can be set equal to zero when the principal term of 
the expansion of X, is determined. We obtain thus 

7 P1 

CP, - 2"a(qrqi) - - j dy J [ @ : ~ ) ( x )  1 r dx. 

In first-order approximation the atomic-level shift is 

which leads, when ( 17) is used, to 
rn T m 

This expression is the end purpose of the calculations in the 
perturbation-theory approximation. It contains the un- 
known quantity p,  which we now proceed to calculate. 

4.2. We shall show that p, & p, as p, - 0, and therefore 
the quantity p,  can be neglected in Eqs. ( 17 ) and ( 1 8 )  above 
in the case of perturbation theory. In other words, in pertur- 
bation theory the condition that there be no bound T F  elec- 
trons is met if the free electrons fills an interval of positive 
energies {O,p,} at any point of space. 

With decrease of the density of the medium, the total 
potential p should obviously approach, in an ever increasing 
volume around the atom, the unperturbed static potential of 
the atom p - @$". This means that the point r, should in this 
case move farther away: r,- m as p,- m .  We shall show 
below that p, &p, as p, -- 0, so that we can use for the density 
( 8 ) the linearized expression 

Equation ( 1 1 ) takes then the form 

x; - A 'x, = A 'r@ip) (r>ro), (20) 

where 

),,-i~D=2-V~n'hcp,-'l~ ( 2 1 )  

is the Debye radius for a degenerate Fermi gas. 
Equation (20) has a general solution that decreases as 

r +  CO, viz., 

where the indeterminate constant C will be determined be- 
low from the condition p '(r,) = 0. 

The static potential +::' of the atom is equal to the sum 
of the potentials of the core and of the atomic electrons (7) .  
For a spherically symmetric neutral-atom wave function it 
can be written in the form 

rn 

For a neutral hydrogen atom in the ground state we have' 

In the case of a neutral atom, 

a'::' - exp (-2ar), 

and the integrals in ( 2 2 )  and ( 2 3 )  can be calculated by parts, 
by integrating the exponential and differentiating the re- 
maining integrand. This operation corresponds to expansion 
in powers of r; & 1. Integrating once, we get 

We obtain similarly the asymptote of the atomic potential: 

QLP) ( r )  = Po2 ( r )  /4a2r2. ( 2 5 )  

The condition p ' (r,) = 0 (vanishing of the charge inside the 
sphere r<r,) determines C: 

while the vanishing of the total charge outside the sphere 
r = r, allows us to find the value of r,: 

the maximum barrier height p,  turns out to be 

At low density, the Debye radius D is larger than the elec- 
tron shell of the atom, so that according to ( 2 7 )  the point r, 
is located far outside the atom and moves farther away with 
decrease of p, (with increase of D) . It can be seen from ( 2 8 )  
that p,  decreases exponentially with decrease of p,. Conse- 
quently p ,  can be neglected in the equations above. 

5. We consider now quantitative results for the case of a 
neutral hydrogen atom. Neglecting p, in ( 18), we write the 
expression for the ground-state energy shift in the form 
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2 ' 1 2  
AE = re-" dr  j dy dx, 

3-c 0 

( 2 9 )  
0 u 

Integrating by parts several times, we reduce this expression 
to the form 

cm m 

25//1 
AE = --rp,[ j (X~+Z)'~-~ dr-  j (r+i) (x'+~)"e-'~ dx] 

n o  0 

Numerical calculation of the integrals yields 

AEE,,,,= 1 .87q0=0.58/D4. (32) 

For p , s 2  eV (alkali metals) we obtain AE = 3.0 eV, which 
is 4.5 times smaller than the initial binding energy 13.6 eV of 
the ground state of the hydrogen atom, so that perturbation 
theory can be used. For dense metals such as iron we have 
pa- 5 eV and the shift increases to - 10 eV, so that perturba- 
tion theory cannot be used. Perturbation theory overesti- 
mates the electron density near the core of the atom, so that 
the exact shift should be smaller. 

Applying perturbation theory to the potential ( 1 ), we 
obtain AE-D -', which is much larger than ( 3 2 )  as D+ w . 
Thus, correct coordination leads in the perturbation-theory 
limit to much lower perturbations of the atom. 

6. Perturbation in a dense plasma of multiply charged 
aluminum ions was considered in a recent paper,5 likewise in 

the smeared-positive-charge model but using the ion-sphere 
approximation.6 The boundary condition imposed on the so- 
lution did not accord with the problem considered: it was 
assumed in Ref. 5 that a nonzero electric field exists only 
inside a sphere r<R, (the radius R, of this sphere was as- 
sumed equal to the average distance between the plasma par- 
ticles), and outside this sphere, at r>R,, the plasma was 
assumed to be not perturbed at all by the ion. Such solutions 
are usually considered in investigations of compressed mat- 
ter or crystals, and they are continuous on the boundaries of 
individual atoms at r = R,. In the case of an impurity atom 
in a solid or plasma, however, the boundary conditions must 
be applied as r-+ W ,  taking into account by the same token 
the perturbation of the plasma by the atomic particle. 

'L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon, 1978. 
'B. A. Trubnikov and Yu. N. Yablonskii, Zh. Eksp. Teor. Fiz. 48, 1618 
(1965) [Sov. Phys. JETP 21, 1088 (1965)l. 

3 Y ~ .  V. Gott and Yu. N. Yavlinskii, Interaction of Slow Particles with 
Matter and Plasma Diagnostics [in Russian], Atomizdat, 1973. 
4L. D. Landau and E. M. Lifshiftz, Quantum Mechanics, Nonrelativistic 
Theory, Pergamon, 1978. 

*D. Salzman and H. Szichman, Phys. Rev. A35, 807 ( 1987). 
6B. F. Rozsnyai, J. Quant. Spectrosc. Radiat. Transfer 27, 21 1 (1982). 

Translated by J. G. Adashko 

958 Sov. Phys. JETP 66 (5), November 1987 M. I. Chibisov 958 


