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We develop an analytic theory of the diffraction of light from a rough surface with an arbitrary 
"deep" profile. The crucial factor enabling one to go from an infinite set of equations for the 
amplitudes of the diffracted waves to a finite, analytically solvable system is the separation of 
resonant waves. The effectiveness of the proposed procedure is demonstrated by examples dealing 
with the suppression of specular reflection, the calculation of the maximum attainable local fields 
near the surface, and anomalous absorption of light by the surface. For these problems, our 
method makes it possible for the first time to trace in detail the effects ofanharmonicity and of the 
depth of the surface relief. We discuss new possibilities for controlling the reflection and 
absorption of light by a rough surface. The approach we have developed seems promising in the 
theory of light scattering from a statistically rough surface, and in nonlinear surface optics. 

1. INTRODUCTION 

The problem of the diffraction of light from a nonplanar 
interface first arose in the theory of reflecting diffraction 

and in the theory of molecular scattering of light 
from the surface of a liquids4 Modern laser optics has posed a 
number of new physical problems which belong essentially 
to this same class. Foremost among these are Raman scatter- 
ing of light by molecules adsorbed on a surface,"' and a var- 
iety of problems associated with nonlinear reflection from a 
surface.'-lo 

One unexpected circumstance was that both linear and 
nonlinear interactions of light waves diffracted from a sur- 
face may be strong; under suitable conditions, the pattern of 
linear and nonlinear reflections from a rough surface differ 
fundamentally from the pattern produced by a smooth sur- 
face. A classic example of this type is the famous Wood 
anomaly.2 Besides the already well known surface-enhanced 
Raman scattering of light from a rough surface, the most 
recent intensive research has been directed towards the sup- 
pression of specular reflection from metals, semiconductors, 
and dielectrics,"-18 anomalous absorption of light by a cor- 
rugated surface, '9-2 laser-induced development of instabili- 
ties in surface relief,22-24 and low-threshold breakdown near 
a surface.25 Other topics discussed (see also the present pa- 
per) include the possibility of effective reflection control, 
and obtaining at a surface strong nonlinear effects leading to 
optical bistability and optical chaosz6 These are obviously 
problems which cannot be solved by standard perturbation 

since strong interactions among the diffracted 
waves dominate. 

The diffraction of light from a nonplanar interface un- 
der conditions for which perturbation methods do not work, 
such a diffraction from "deep" gratings with a sinusoidal or 
biharmonic profile, has been investigated numerically for 

in Ref. 24, however, which allows for many gratings, was 
developed with a severe upper bound on the amplitude of the 
relief; this prevents consideration of the phenomenon of to- 
tal suppression of specular reflection, and of questions relat- 
ing to the maximum attainable local fields and to anomalous 
absorption of light by a surface. 

In the present paper we develop an analytic theory of 
the diffraction of light by a surface with an arbitrary profile 
and with a fairly large modulation amplitude of the surface 
relief (making it necessary to take account of cross-scatter- 
ing between the diffracted fields); this theory is valid for 
metals, semiconductors, and dielectrics for which 1 ~ 1 %  1. 
That such a theory can be constructed is due to the existence 
(for J E I  % 1)  of sharp resonances in the amplitudes of the 
diffracted fields. The latter circumstance enables one to go 
from an infinite set of equations for the amplitudes of the 
diffracted waves to a finite, analytically solvable system for 
the individual resonant waves. Simple expressions have deen 
derived in explicit form for the amplitudes of the diffracted 
fields in vacuum and in a medium. We have investigated the 
conditions for total suppression of specular reflection 
(TSSR) in the presence of many gratings, as well as the con- 
ditions for attainment of the maximum local field at a rough 
surface. We have determined the optimal relieffor which the 
absorption capability A of a surface with spatially modulated 
relief can be much greater than that of a surface with planar 
relief (A, ,  = 1-3%), and can, under certain circumstances, 
approach 100%. Using as an example surface with two grat- 
ings oriented arbitrarily with respect to one another, we have 
investigated the conditions under which there is practically 
total conversion of the energy of the incident field into the 
energy of a wave reflected into the vacuum are propagating 
in a previously specified direction which differs from the 
direction of the specular reflection. 

certain specific instances. ' Moreover, it is obviously 
highly desirable to extend analytic methods beyond the lim- 

2. STATEMENT OF THE PROBLEM INITIAL EQUATIONS 

its of perturbation theory. Naturally, this is the approach Assume that an electromagnetic wave given by 
which makes it possible to expose the physics of strong inter- Ei(x, y, z, t )  =Ei e x p  ( ik , y+  ik , z - io t )  + c.c., 
actions and self-action of light waves at a surface. Along 

kt=ko sin 8, k,=ko cos 0, 
these lines, a number of analytic results for a sinusoidal grat- 
ing appear in Refs. 15-17, 20, and 21. The theory discussed is incident from a vacuum on the surface of medium with 
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dielectric constant ~ ( w )  = ~ ' ( w )  + i ~ " ( w )  = (n + im)' 
and magnetic permeability p = 1, which fills the semi-infi- 
nite space z> f(x,y ) ; here k, and k, are the projections of the 
wave vector k,(k, = w / C )  of the incident wave on they and 
z axes, 0 is the angle of incidence of the wave, and f(x,y) is a 
function which describes the surface relief. 

As a result of diffraction of the incident radiation by the 
modulated interface z = f(x,y), diffraction fields arise both 
inside and outside the medium. The fields E(x,y,z,t) 
= E(w)exp( - iwt) + C.C. in vacuum and E1(x,y,z,t) 
= E1(w)exp( - i d )  + C.C. in the medium satisfy Max- 

well's equations: 

rot E ( o )  =ikoH ( a ) ,  rot E' ( a )  =ikOHf ( o )  , 
rot H ( o )  =-ikoE ( o ) ,  rot H' (o)  =-ik,~ ( o ) E 1 ( o ) ,  ( 1) 

div E ( o )  =0, div [ E  ( o )  E' ( o ) ]  =0, 

div H ( a )  =0, div H' ( o )  =O. 

The boundary conditions, which formulate the equality 
of the tangential components of the electric and magnetic 
fields at the boundary z = f(x,y) and the equality of the nor- 
mal (to the surface) components of the electric and magnet- 
ic induction vectors, may be written in the form 

where n =  (fxx+f,y - -z ) / ( l  + f: + f;)"' is the unit 
normal to the surface z = f(x,y) and is directed into the 
vacuum; x,y, and z are unit vectors along the x, y, and z axes; 
f, = df(x,y)/ax and& = af(x,y)/ay. 

We represent the surface relief f= f(x,y) by its Fourier 
spectrum: 

where lg, is the complex amplitude of the corresponding 
Fourier component of the surface relief, r = (x,y,O), and g, 
= (g,, giy ,O), where for uniqueness in the specification of 

the gratings we assumeg, >O (ifg, = 0, theng,, < 01. Con- 
sider the set {Zipigi) of vectors Zipigi, wherep, = 0, + 1, ... 
. In this set we can set apart a subset {q) of mutually distinct 
vectors q. We seek fields E(w) in the vacuum and E1(w) in 
the medium in the form 

where k, = (O,ki ,O). The value q = 0 corresponds to Fres- 
nel waves specularly reflected into the vacuum and refracted 
into the medium. The expressions for the fields H(w) and 
H' ( W )  in the vacuum and the medium have exactly the same 
structure, and are obtained from Eqs. (4)  and (5 )  by making 
the replacements Ei,Eq ,E; + Hi,Hq ,HA. The amplitudes of 
Hi ,  H, , and H; may be expressed in terms of the amplitudes 
of E,, E, , and E; via the Maxwell equations ( 1 ). Substitut- 
ing Eqs. (4)  and (5)  into Eq. ( I ) ,  we find 
r: = (k, - q)'- ko2 and < = (k, - q)'- k i ~ .  We then 

have Re yq >O; Re Tq >O if Ik, - ql aka; Imr ,  ( 0  if 
Ik, - q(<k,. In what follows, we employ the notation 
Eq =Eq,  E'=E' 4 -  q 7  I- q -  =r  q 9  "/4 El'q) and 
kq = ( k q x , k q y , O ) k ,  - q. 

3. FIELD DISTRIBUTION IN VACUUM AND IN THE MEDIUM 
TAKING ACCOUNT OF INTERACTIONS BETWEEN 
DIFFRACTED FIELDS WHEN /& I  1 

We consider media in which I E I  1. Under these cir- 
cumstances, when f: , f:, and rxf, I ( 1, almost all the ener- 
gy of the electromagnetic field in the medium is contained in 
the diffracted waves E; and H; for which 

so we can assume that all yq -- y r  k,,( - & ) ' I 2  

= k,,(m - in). Equation (5 )  then takes the form 

E1 ( a )  =exp(-yz) ZE,. erp (ik,.). (7) 

We also have an analogous relation for the magnetic field in 
the medium. 

A. The system of equations governing the field amplitudes in 
vacuum 

The boundary conditions (2 )  are expressed in terms of 
the fields in vacuum and in the medium. We now derive 
approximate boundary conditions containing only the fields 
in vacuum. On the one hand, from the exact boundary condi- 
tions (2)  with f:, f;, and r x f y ) < l  and I E I B ~ ,  we find 
(z =f(x,y) 

On the other hand, from Eq. (7)  and the Maxwell equation 
ik,,H1(w) = curlE1(w), bearing in mind the relation 
E d  = (ik, E Z, + iK,E & ) /y  which follows from div 
E1(w) = 0, we have 

Eliminating the fields in the medium from Eqs. (8 )  and (9),  
we arrive at a system of boundary conditions at z = f(x,y) 
containing only the fields in vacuum: 

E,(o)+f3,(o)=-ik0H,(o)ly, 

We now calculate the field distribution in vacuum under the 
conditions 

Integrating both sides of the first inequality in ( 11 ) with 
respect to x and y over the region Sand making use of Parse- 
val's theorem, we obtain 

- 1 
k,2f'= l im s 

S+- jjk.'f .5 
(x,y)dxdy=2k.'E 1, IEg, 1 2 ~ 1 .  

The conditions ( 1 1 ) thus impose constraints on the spec- 
trum of the surface relief and on the mean squared deviation 
of the relief from a plane surface. 
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If in Eq. ( 10) we express the field H(w) in terms of the 
field E(w) using the Maxwell equation ik,H(w) 
= curl E(o) ,  we find using Eq. (4) that 

P 
(12) 

[ (yk ,+  ik,Z) / k t - y f u l E i z  exp ( i k , f )  

In the system ( 12), we expand exp(ik,f) and exp(T,f) in 
Taylor series, and by virtue of ( 11 ), we keep only the first 
two terms. Equating terms of equal degree, we arrive at a 
system of coupled equations for the amplitudes of the dif- 
fracted fields. Using this system to express the components 
Eqx, Eqy , and E,, in terms of the amplitude of the incident 
field and the amplitudes of the other diffracted fields, and 
bearing in mind that div E(w ) = 0, we have for the compo- 
nents of the zeroth-order diffraction field E, 

and for the components of the fields E, (q # 0), we obtain 

where lq-qt=lkqr-kq=lg, if q - q l = k q ,  - k q = g , ;  

6,-q, = 6; if q - q ' =  -g,; and Cq-,, = 0 if 
q - q'# + g, . The solution of Eqs. ( 13) and ( 14) deter- 
mines the amplitude of the diffracted fields in vacuum when 
the radiation is incident with arbitrary polarization at an 
arbitrary angle on a surface with arbitrary profile. The sys- 
tem ( 13), ( 14), which takes account of cross-scattering be- 
tween the fields E, , E,, , for which k, - k,. = + g,, is valid 
fortheconditions ( 6 ) ,  (11) and f;, f:, V;f,1(1. 

It is not possible to obtain a general solution to the infi- 
nite-dimensional system ( 13), ( 14). Below, we develop a 
method for solving this system which holds both for "shal- 
low" and "deep" relief. The possibility of constructing such 
a method is a consequence of the existence, for J E I )  1, of 
sharp resonances in the amplitude of the diffracted waves. 

B. Electromagnetic resonances and the possibility of 
obtaining analyticsolutions for relief with a "deep" profile 

For small modulation amplitudes of the relief 
( (k , ( l ,+O) ,  thesystem (13), (14) can besolved by pertur- 

bation methods. Since perturbation theory enables one to 
make sense of the approximations made below and to clearly 
define the concepts of "shallow" and "deep" relief, we pres- 
ent the basic qualitative results obtained by this method. 

According to perturbation theory, we assume that, to 
zeroth order, the amplitude of E, is given by the Fresnel 
equations E, = E, (see ( 13) ), and that E , ,  = 0. To first 
order in kogq, the amplitudes of the E , ,  = 0 are found by 
substituting E, = E, into Eq. ( 14). To second order in kogq, 
the amplitudes of the fields E,, E, (q#O) are obtained from 
Eqs. ( 13), ( 14) using the values of the E , ,, = 0 already 
found, etc. As a result, the expressions for the amplitudes of 
the diffracted fields are of the form 

+ . . .I Ei, 

- 
where ii, , b,,  and Z,,, are quantities of order unity. 

From ( 14) and ( IS), we find that the amplitudes of the 
diffracted fields are proportional to the factor 

We now introduce the following notation (E"' = n + im): 

With this notation, the real and imaginary parts of I ,  may be 
represented in the form 

It is then obvious that when I & /  $ 1 and 2, = 0 (i.e., when 
k, - k,,), 11, I = (m2 + n2)/n $1, whereupon ( 14) implies 
that there is a pronounced increase in the amplitude of the 
diffracted fields E,, for which k, zk,,, both in metals 
(m > n )  and dielectrics (m < n).  We will call such fields E,, 
resonant, along with their associated vectors kg,, q,. The 
width of the resonance is governed by the factor P,, when 
k, > k,, and 0, when k, < k,,. for resonant fields (see ( 14 ) , 
( 16) ), we have 

We refer to the fields E, with q$O, for which 
k, #kc,( I E ~ ,  I ) I y (  ), as nonresonant, along with their asso- 
ciated vectors k, , and we denote these by the symbols E,, , 
kqn . 

We consider the relief to be "shallow" if in calculating 
the field amplitudes by perturbation methods (see ( 15) ), we 
can stop at the terms linear in k0gq. In the absence of reso- 
nant fields, this can be done when the conditions ( 11 ) hold; 
when they are present, but there is no cross-scattering 
between them (see ( 15) and ( 16) ), we must have 

In the presence of both resonant fields and cross-scattering 
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between them, the relief can be considered "shallow" if 

When either ( 18) or ( 19) fails to hold, we refer to the relief 
as being "deep." Perturbation theory is then inapplicable. 
We now describe a method for solving the systems of ( 13) 
and ( 1 4 )  which is valid for both "deep" and "shallow" re- 
lief. 

It is clear from ( 13 ) that when ( 1 1 ) holds, the presence 
of nonresonant gratings has no particular influence on E,. 
Significant corrections to E, = E, can only come from reso- 
nant gratings. In line with this, the summation in the expres- 
sions for E, (see ( 13) ) can be carried out over the resonant 
gratings exclusively. We reach a similar conclusion with re- 
gard to the other nonresonant fields. In the expressions for 
the resonant fields E,, (see ( 14) ), the sum must be taken 
over both the resonant fields E,,. (qi #q, ) and the nonreson- 
ant fields E,, , since the latter can make a substantial contri- 
bution to the field E,, through the resonant factor ( 1 6 ) .  

Let the spectrum of the surface relief contain a finite 
number of resonant gratings g, which scatter the fields E, 
and E, into the resonant waves E,, (k , ,  = k t  + g , ) .  Then 
when 

we have from ( 1 4 ) ,  with ( 1 1  ), ( 1 7 ) ,  and the foregoing re- 
marks taken into consideration, that the amplitudes E,, of 
the nonresonant fields with k,, = k t  + g, or k t  g, gi 
can be represented in the form 

Eqnx = - i i lkz (Eix - Eox) + kqnx (Eiz + Eoz)I Fq, 

while the component E,, of the resonant fields may be writ- 
ten as 

The amplitudes E,, ,  E,,  are then given by 
(Eo, = k,Eo,/k, 

Substitution of ( 2 0 )  into ( 2 1 )  eliminates the nonresonant 
fields from the system ( 2 0 ) - ( 2 2 ) .  The resulting expressions 
are 

Eqrz -= - { [kzkqp  (Bix - L'ox) 

where 

The system ( 2 2 ) ,  ( 2 3 )  is the foundation for further analysis. 
If deviations from the Fresnel equations are significant, the 
solution of ( 2 2 ) ,  ( 2 3 )  completely determines the amplitudes 
of the fields E,, E,, . The dimension of this system is finite, 
and is related to the number of resonant fields. After the 
amplitudes of E, and E,, are found, the amplitudes E,, of 
the nonresonant fields and the components E,, , E,, of the 
resonant fields are calculated using Eqs. ( 2 0 )  and ( 1 4 ) .  
When the deviations from the Fresnel equations are minor 
(which is also possible when there are resonant gratings with 
large I&, I ), the amplitudes of the fields E, E,,, E,, , are 
obtained from ( 1 3 ) ,  ( 14) by perturbation methods, where 
as the zeroth-order approximation, we use the amplitudes 
E,, E,, found by solving the system ( 2 2 ) ,  ( 2 3 ) .  The pro- 
posed method is analogous to the perturbation approach em- 
ployed in quantum mechanics when there is degeneracy in 
the levels.34 

C.The relationship between the field amplitudes in vacuum 
and in the medium 

Assume that the field distribution in vacuum is known. 
We now express the field amplitudes in the medium in terms 
of the vacuum field amplitudes. With /&I  $ 1 ,  it follows from 
Eqs. (5 )  and ( 7 )  that the field E 1 ( o )  inside the medium is 
determined by the value E 1 ( o )  at the boundary: 

If we make use of Eqs. ( 8 )  and (9)  to express the field 
E' ( o )  I , =  ,- in ( 2 4 )  in terms of the field H ( o )  I , = f ,  we find 
that 

E,'(o)=-expi-y(z-f)likoH,(o) l,=t/y, 
( 2 5 )  

E Y 1 ( u )  =exp[-~(z-f) I i k o H x ( o )  Iz=tly. 

In these equations, we can express the field H ( o  ) 1 ,  = ,- in 
terms of the field E ( o )  using i k , , H ( o )  = curl E ( o ) .  
The expressions obtained in this way may be represented in 
the form 

where 
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The equations (26), taken together with the condition 
div Ef(w) = 0, completely determine the field amplitudes in 
the medium if the vacuum field distribution is known. 

The difficulty involved in analyzing Eqs. (22) and (23) 
is that one encounters such a multitude of different situa- 
tions when the surface relief is arbitrary. The amplitudes of 
the diffracted fields depend sensitively on the angle of inci- 
dence and the polarization of the radiation, on the mutual 
orientation and magnitudes of the vectors k, and gi, on the 
magnitudes of the amplitudes {,, and on the number of reso- 
nant fields. We next go on to discuss with specific examples 
some of the general features of mutual interaction between 
the gratings and the field distribution in vacuum. 

D. Analytic expressions for the amplitudes of diffracted 
fields in vacuum for p-polarized incident radiation 

Consider the case (which fairly well takes in the typical 
features of the field distribution in vacuum) in which there is 
one resonant field and several non-resonant ones. Let the 
incident radiation bep-polarized (Eix = 0, E, +O), and let 
g,llk, (seeFig. l).ThenfromEqs. (20), (221,and (23),we 
find (cos 6% 1/1~1 ' I 2 ,  I E ~ , ,  I > I y l )  

where 

Eio = koEiz/ktr kqr = kt - grr 

When E,, is a surface wave (k,, > k,), we have (A 
=ReA-iIm A) 

It can be seen from Eqs. (27) and (28) that the amplitudes 
of the diffracted fields are nonmonotonic functions of the 
amplitudes{, and {,, of the relief, and are determined by the 
magnitude of the resonant denominator A. The last term in 

FIG. 1. Mutual orientation of the vector k, of an incident field, the vector 
g, of a resonant grating, and the vectors g, ( j = 1,2, ... ) of nonresonant 
gratings. The radius of the circle is approximately k,. The vector 
k,, = k, - g, corresponds to the resonant wave E,,; the vectors 
k,, = k, + g,, k, - g, + g,, k, + g,, and k, - 213, correspond to nonre- 
sonant diffracted waves E,, . 

the expression for A results from cross-scattering between 
the fields E, and E,, at the grating g,. The third term in A 
comes from cross-scattering between the fields E,, and E,, 
at the gratings g, and gJ (the summation in this term is to be 
carried out over the nonresonant waves E,, with 
k,, = k, - 2g,, k, - g, + gJ (see Fig. 1 ) ). Depending on 
the type of wave (a  wave E,, is a nonradiating surface wave 
if kg, > k,, with rq, > 0; it is a radiating, detached wave if 
k,, < k,, with Im r,, < O), the corresponding cross-scatter- 
ing makes a contribution to the real or imaginary part of the 
resonant denominator A. It is clear from (27) that the condi- 
tion Re A = 0 determines the maximum value of the field 
E,, for given amplitudes {,,, {,, of the surface gratings, and 
is the dispersion relation for the resonant wave E,, . For the 
case of an s-polarized incident wave (E,, #0, El, = 0 )  and 
g,lk,, it is easy to find expressions analogous to (27) from 
(20), (22), and (23). 

4. INTERACTION OF DIFFRACTED WAVES AND WOOD'S 
ANOMALY 

The.strong dependence of the amplitudes of the dif- 
fracted fields (26), (27) on A and 6 (Wood's anomaly) 
shows up in a great many effects, some of which we now 
consider. 

A. Total suppression of specular reflection 

Making use of Eqs. (27) for the specular reflection co- 
efficient R, = IEo12/IEi 12, we have 

where Re A and Im A are given by (28). It is easy to see from 
(29) that R, attains its minimum value when Re A = 0. An 
analysis of Eqs. (27)-(29) shows that for nonmonochroma- 
tic relief, with nonresonant gratings present in addition to 
resonant ones, TSSR (E , ,  = E,,, = E,, = 0 )  occurs for p- 
polarized incident radiation (k,, > k,) when 
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ReA=O, 

n , 2 kr (kqT -b1,)12 I grEgr I 2  
m 2 + n Z T i  <io ko I Yq7, I 1 E9r-4n l 2  = - c o s o  - 

4n 
(30) 

E,, then corresponds to a surface wave. For given g,, l,, g,, 
and k,, Eq. (30) determines the optimum amplitude /l,,I 
and optimum angle of incidence 8 ofp-polarized radiation, 
as required to exhibit TSSR. When cross-scattering between 
the fields E,, and E,, is neglected, Eq. (30) is transformed 
into the corresponding expressions of Refs. 15-17 for sinu- 
soidal relief. Figure 2 shows qualitatively the $-dependence 
of R, corresponding to Eqs. (29) and (28). It can be seen 
from Fig. 2 that, compared with sinusoidal relief, the pres- 
ence of additional gratings which scatter the field E into 

,1 
surface waves E,, results (for fixed l,,) in a change in the 
optimum angle 0 at which R, is minimized, and the presence 
of gratings which scatter the field E,, into radiation fields 
E,, changes 8, reduces the depth, and increases the width of 
the dip in R,(8). 

A question which then arises is what types of surface 
relief make total suppression of specular reflection possible, 
and which do not. The answer is that if the shape of the src 
relief is specified, and only the depth h of the relief can be 
changed, then there exists a relation 

where the coefficients a, - ,, are determined by the shape of 
the relief. With this in mind, the requisite conditions for 
TSSR take the form 

m Re A = [(sin 0 + gr/ko)" 1p - - 
m" n2 

Since k g 2 x , y )  1, as can be seen from the first equality in 
(32), if TSSR is possible, then it is only so in over a small 

FIG. 2.8-dependences of R,, based on Eqs. (27)-(29) for fixed amplitude 
&,. Curve 1 is for sinusoidal relief with the optimum value of lg, (see 
condition (30) ); curve 2 is for nonrnonochromatic relief. The parameters 
of the resonant grating are the same as for curve 1, but with additional 
nonresonant gratings with amplitudes gg, which scatter the resonant wave 
E,, into surface waves E,, . Curve 3 is  for the resonant grating corre- 
sponding to curve 1, with additional nonresonant gratings which scatter 
the wave E,, into radiation fields E,,, . 

range of angles 82 arcsin {-gr / k ,  + [ 1 + m2/ 
(m2 + n2)2] I/'). If there are in the spectrum of the relief 
gratings which scatter the field E,, into radiation waves, 
such that over this range of angles the expression in curly 
brackets in the second equality in (32) is negative, then for 
the given shape of the surface relief, TSSR is impossible at 
any angle of incidence 8 or depth h. 

Using Eqs. (29) and (28), a method of determining the 
optical constants m and n of a material with a nonplanar 
surface can be developed, based on the experimentally mea- 
sured location and depth of the dip in R,(0). 

B. Possibility of controlling the reflection of light 

Let us calculate the coefficient 17,, for conversion of 
energy of the incident field Ei into energy of the vacuum 
radiation field E,, . From Eqs. (27) and (28), we find 

Now let there be only a single radiation field E,, (i.e., apart 
from the resonant grating, there is only a single nonresonant 
grating g, in the relief spectrum, scattering the wave E,, into 
the wave E,, ) . The simplest example of such a surface is one 
consisting of only two gratings, with each of the values 
/ k t - g , + g , / < k ,  (see Figs. 1 3 )  Then when 
Re A = 0, Eq. (33) takes the form 

In order for the coefficient 7," to be a maximum at fixed y,, , 
it is necessary that x,, = 1 + y,, , which corresponds to the 
second condition in (30). Then 

Equation (34) implies that vqn < 1, and that it tends to unity 
as y,, - co (this is possible when I E I  > 1 ). We then have IE,. 
, 1 2 = :  IEiO l 2  (m2 + n2)/n ( 1 + yqn ) .  Thus, when the condi- 
tions (30) for TSSR are met, the energy of the incident field 
is redistributed among the fields E,, and E,,,  and as 
y,, - CO,  it is practically entirely transformed into energy of 
the radiation field E,, , which propagates in a direction other 
than that of specular reflection (see Fig. 3 ). 

We see from the foregoing discussion that by dynami- 
cally varying the surface relief (for example, by exciting sur- 
face acoustic waves), it is possible to control the direction of 
a beam reflected into the vacuum, with a high transmission 
coefficient for energy coming from the incident field. 

When there are two gratings on the surface, with vec- 
tors g, Ilk, and g, = 2g, (see Fig. 1 ), there are two contribu- 
tions to the non-resonant field E,, + ,,: the first is due to scat- 
tering of the incident field Ei and the zero-order diffraction 
field E, by the grating g,, and the second is due to scattering 
of the resonant field E,, by the grating 2g,. Interference 
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FIG. 3. Conversion of energy of the incident field E, into energy of the 
vacuum radiation field E,, . Heavy arrows indicate the direction of propa- 
gation of the incident wave and the wave E,, . The radius of the circle is 
approximately k,. 

FIG. 5. Dependence of the local field-amplification factor L on / & , I  at 
optimum 0 (see (30) ) for the case of nonmonochromatic relief. 1) Relief 
for which nonresonant gratings do not scatter the resonant field E,, into 
radiation fields; 2)  the relief spectrum contains nonresonant gratings 
which do scatter the fields E,, into radiation fields E,, . 

between these two contributions leads to the Wood anomaly 
for the coefficients T~,+ g,. The @-dependence of qk,+ g, (see 
(27),  (28)) ,  as shown in Fig. 4, is qualitatively consistent 
with the experimental and numerical results in Ref. 33. The 
high sensitivity of vk, + ,, to the phase and amplitude rela- 
tions between harmonics of the surface relief (see Fig. 4)  can 
be exploited to reconstruct the actual surface profile.33 

C. Local fields near a surface with arbitrary profile 

We now calculate the maximum attainable local fields 
near a rough surface. We define a local-field augmentation 
factor L = /E(w)l/lEi 1, where E(w) has been defined in 
(4) .  An analysis of Eqs. (27) and (28) shows that L is maxi- 
mized under conditions for which E,, is resonant (k,, -- k,) . 
Since near resonance, the amplitude lE,, I of the resonant 
field is much greater than that of any other diffracted field 
(see (27), (26) ), we have 

For fixed lgJ,  the amplitude ratio (35) increases with in- 
creasing 1, reaches a maximum for some value of Itgj 1, 
and then decreases as l(gJ,,l increases still more. It is easily 
seen that (35) reaches its maximum when (30) is satisfied, 
i.e., under conditions supporting TSSR; the maximum value 

FIG. 4. Behavior of the conversion coefficient T ~ , + ~ ,  for energy in the 
incident field E, into energy in the wave E,, + ,, as a function of the surface 
relief z = 2(g, cos(g,y) + 242g, cos(2gry), at fixed amplitude gg, > 0 and 
for various values of &,: 

( 1 )  ( 3 )  (2) 64) 
I )  E z g ,  = 0; 2 - 4)  E z g ,  > E z g ,  = - E z g ,  . 

It is clear from (36) that when la/ 3 1 (then n/ 
(m2 + n2 1 for both metals and dielectrics) and /<,,I is 
small, the factor L 3 1. For example, when one illuminates a 
silvered sinusoidal grating of period d = 1.4 p m  with light 
having a wavelength A = 1 p m  (E = (0.129 + i.6.83)2, Ref. 
35), the maximum of L, according to (30) and (36), occurs 
at 6' = 17.24" and 41(,,1 = 0.0046pm, and is equal to 18.6. 
Since I,,,, /I,, - L (Ref. 6) ,  where I,,,, is the intensity 
of surface enhanced Raman scattering from molecules ad- 
sorbed on the surface, and I,, is the Raman scattering inten- 
sity from the same molecules at a distance from the surface, 
it is to be expected that for the sinusoidal grating in under 
consideration, I,,,, /I,, = 1.2.10". A similar enhance- 
ment associated with the increase in L should also occur for 
other linear and nonlineaar optical effects at the surface. 
This is quite important for the development of spectroscopic 
methods for small numbers of molecules adsorbed on a 
rough surface. The qualitative dependence of L on /Eg,I pre- 
dicted by Eqs. (35) and (36) is shown in Fig. 5. 

We see from Eq. (36) that compared with a sinusoidal 
grating, the maximum value of L decreases with increasing 

I(,, I and with an increasing number of gratings gj scattering 
the field E,, into radiation fields (see Fig. 5).  If only nonre- 
sonant gratings are present in the spectrum of the relief (so 
that only nonresonant surface waves E,, (k,, > k,) result 
from scattering of the field E,, ), the optimum amplitude 
/lg, I and maximum L take on almost the same values as for a 
pure sinusoidal grating with g = g, (see Fig. 5) .  The minor 
difference between the quantities is due to the change in the 
optimum angle 6'(see condition (30),  Re A = 0 ) .  The fact of 
the decrease in the local field in the presence of an additional 
nonresonant grating is discussed in Ref. 20 phenomenologi- 
cally. 

If the shape of the surface relief is given, then in accor- 
dance with (31 ), (27), and (26), the maximum amplifica- 
tion L of the local field occurs when 
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and is equal to 

Clearly, then, the optimum 6 and lg, (and consequently the 
optimum overall depth of the surface relief) and the maxi- 
mum value of L are sensitive functions of the shape of the 
surface profile, and can differ significantly from the corre- 
sponding values for a sinusoidal profile. 

It can be seen from a comparison of the second expres- 
sion in (37) and the second expression in (32) that when the 
shape of the surface relief is fixed, the amplitude ltg,l of a 
resonant grating (and thus the overall depth h of the surface 
relief) for which L = L,,, is lower than the corresponding 
value for which R, = (R,),,,, We can account for this by 
noting that as the depth h of the relief increases, scattering of 
the field E, into the field E,, dominates at first; for further 
increases in h, the scattering of E,, into radiation fields E,, 
becomes important, which then reduces the amplitude of the 
local field. 

D. Anomalously hlgh absorptlon of llght by a rough surface 

Up to this point, we have dealt with vacuum fields. We 
now consider whether the presence of both resonant and 
non-resonant gratings in the spatial Fourier spectrum of a 
surface has any effect on the absorption factor A of a rough 
surface, which is determined by the fields in the medium. We 
can calculate the absorption factor using the relation 
A = S:/S,, where S: = c (E1XH')/4.rr is the z-compo- 
nent of the Poynting vector in the medium, S, is the z-com- 
ponent of the Poynting vector for the incident radiation, and 
E' is the field in the medium (see ( 5 ) ) .  The superior bar 
denotes averaging over time and over x ,  and y. For I E  I $1, we 
have from (27) and (26) 

A =  4n (' + 
(Re (m2 + n2) cos 0 

FIG. 6. Dependence of A on 0 for fixed amplitude Cg,, according to Eq. 
(39). Curve 1 is for sinusoidal relief with the optimum value of C,,; for 
curve 2, the surface relief is a superposition of a resonant grating (with the 
same parameters as for curve 1) and nonresonant gratings, which scatter 
the field E,, into the surface fields E,, ; for curve 3, we have supplemented 
a resonant grating with the same parameters as for curve 1 with nonreson- 
ant gratings which scatter the field E,, into the radiation fields E,, . 

where Re A and Im A are defined in (27),  (28). The factor 
preceding the curly brackets in Eq. (39) represents the ab- 
sorption factor (A < 1 ) for a plane surface, with /E /  $1  andp- 
polarized incident radiation.36 If the tg, are fixed, the opti- 
mum values of 6 and Itg, I (the optimal surface relief) will be 
given by (30),  i.e., by the conditions required for TSSR. 
Then A will reach a maximum value equal to 

where the factor L is defined in (36).  If in fact we are given 
the shape of the surface profile (see section 4C),  the optimal 
relief will be defined by (37).  The maximum of A is then 
determined by Eq. (40),  in which L is given by Eq. (38). We 
have plotted the 0-dependence ofA from (39) in Fig. 6. If the 
surface relief is optimal (i.e., an angle 0,,, exists for which 
either (30) or (37) holds), and no fields E,, are reradiated 
into the vacuum, then A,,, = 1 (see Fig. 6) .  If there is rera- 
diation of E,, into vacuum radiation fields, then A,,, < 1. 
This qualitatively distinguishes between nonmonochroma- 
tic and sinusoidal profiles. If the relief is actually not opti- 
mal, then A,,, < 1 always. Such behavior of A as a function 
of 6 is consistent with experimental research reported in Ref. 
19, in which there was a fivefold enhancement of absorption 
in a duraluminum grating with d = 13.6 ,um illuminated 
with radiation at a wavelength A = 10.6,um. Thus, the appli- 
cation of a surface profile with y<A can significantly en- 
hance absorption, up to a value of unity, by an initially high- 
ly reflecting plane surface. 

5. CONCLUSION 

We now wish to reemphasize the main ideas, based on 
an analytic solution for the diffraction of light from a rough 
surface having an arbitrary deep profile. For maximum clar- 
ity, we use the example of a sinusoidal grating with vector g. 

1 ) When I E I  $ 1 and k g 2 ( x , y )  < 1, the exact boundary 
conditions ( 2 )  can be replaced by the approximate bound- 
ary conditions ( l o ) ,  containing only the fields in vacuum. 
We thereby obtain an infinite set of linear algebraic equa- 
tions in the amplitudes of the vacuum fields. 

2)  Since k g 2 ( x , y )  < 1, we can limit our attention in this 
system to fields E, of low diffraction order, with 
k, = k,,k, f g, and k, + 2g. This leads to a system of 15 
algebraic equations, which cannot in general be solved ana- 
lytically. 

3 )  The presence of resonant fields makes it possible to 
eliminate nonresonant fields from this system. As a result, 
we arrive at a system of equations solely for the amplitudes of 
the zero diffraction order fields E, and the E,, of the reso- 
nant fields ( I E,, I $ I E,, I ,  1 E,, 1 ), which takes into ac- 

952 Sov. Phys. JETP 66 (5), November 1987 Akhmanov et aL 952 



count cross-scattering between zeroth-, and second-order 
diffraction fields. 

4) When there is only a single resonant field E,, 
(k,, =: k , ) ,  the system of three linear algebraic equations for 
theamplitudesEox, Eoz (EOy = k,E,,/k, ), and E,, permits 
of a simple, compact analytic solution. The technique for 
obtaining an analytic solution when the surface relief is com- 
prised of many gratings is similar. 

A detailed comparison of the analytic results with ex- 
perimental and numerical results for a sinusoidal profile (see 
Refs. 16, 17, and 21), and for a profile composed of two 
gratings (see section 4B of the present paper, and Ref. 3 3 ) ,  
shows that both qualitative and quantitative agreement are 
good. The accuracy of the method improves with increasing 
I E ~ .  For fairly small values of I E /  ( I E I 5 lo) ,  we have qualita- 
tive agreement. In order to obtain good quantitative agree- 
ment, subsequent corrections to the field amplitudes, of or- 
der I E I  -"*, must be taken into account. This has been done 
by the authors. The equations obtained for the amplitudes of 
the diffracted fields are reasonably simple, but of a some- 
what more involved form (compared with the analytic re- 
sults in the present paper). 

The approach described here enables one to formulate 
regular methods for the solution of new problems dealing 
with the diffraction of light from a surface. Among these, 
problems of special interest include the following. 

Firstly, when considering the statistics of surface irre- 
gularities, the present approach can serve as a foundation for 
further development of the theory of light scattering from a 
rough surface with a fairly high-profile modulation ampli- 
tude, which would take resonant scattering channels into 
consideration. 

Secondly, the nonlinear (in the profile modulation am- 
plitude) theory of light diffraction can be used to describe 
the nonlinear regime in the production of periodic structures 
of complex form, localized cavities, protruberances, and so 
on, by high-power radiation at a surface. 

Thirdly, effects similar to those considered here should 
also show up at a planar surface with spatially modulated 
dielectric constant E = E, + E ,  (x,y,z)  ( I E I  3 1 ). When E de- 
pends nonlinearly on the field E, one would expect to see 
optical bistability effects, such as a hysteretic dependence of 
the reflected signal on the intensity of the signal incident at 
the surface. There is also a great deal of interest in the possi- 
bility of controlling the reflection and absorption properties 
of a surface via external radiation. 

The authors express their heartfelt thanks to V. I. Eme- 
l'yanov, N. I. Koroteev, V. Ya. Panchenko, and S. V. Alek- 
seev for numerous discussions of this work. 
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