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The differential and total backscattering coefficients of the surface of a medium are found for 
arbitrary angles of incidence and emission of particles from the medium. These coefficients are 
obtained by solving the transport equation for the density matrix with account taken of multiple 
incoherent scattering as well as the refraction and reflection of waves by the interface between two 
media. It is shown that in the case of grazing angles of incidence a nonspecular peak can appear in 
the angular spectrum of the backreflected particles. 

INTRODUCTION A theoretical analysis of the angular distribution of 

When a particle or a photon moves in a medium, the 
wave function is formed as a result of interference between 
waves scattered by different atoms in a substance. Coherent 
or incoherent addition of waves may occur, depending on 
the positions of the scattering centers. 

Well inside a scattering medium with a random distri- 
bution of atoms, when nA3< 1 ( n  is the number of atoms per 
unit volume and A is the wavelength of a particle), the waves 
add up incoherently and the cross section for the scattering 
by a small volume of the substance is proportional to the 
number of atoms contained in such a volume. The exception 
to this rule is only a small range of solid angles near the 
"backward" direction, where the coherence effects are man- 
ifested by waves that have traveled along the same paths in 
the scattering medium in the forward and reverse direc- 
tions. '-' 

On the other hand, near the surface of the medium the 
situation is very different, since the very existence of an in- 
terface between a substance and vacuum alters the condition 
for the interference of scattered waves. If this interface is 
sufficiently abrupt compared with the mean free path I of the 
particles or photons in the substance, the condition of quasi- 
homogeneity of the wave field is no longer obeyeds and it is 
generally not possible to go over from wave equations to the 
transport equation for in ten~i t ies .~  In other words, near an 
abrupt vacuum-medium interface the mutual coherence 
function of the wave field of particles or photons 

cannot be represented in the formX 

p (r, r') (r-r'; (r+rr) 121, 

where the characteristic scale of the change of @ in respect of 
the difference variable r - r' is considerably less than the 
scale of its variation along ( r  + r1)/2 (Ref. 10). Conse- 
quently, the angular distribution of particles scattered in a 
randomly inhomogeneous medium with an abrupt boundary 
differs greatly from the solution of the corresponding prob- 
lem in transport theory. 

The presence of an abrupt boundary of a medium re- 
sults in specular reflection and in refraction of the incident 
and scattered waves and, consequently, causes diffraction- 
induced deformation of the angular spectrum of incoherent 
scattered radiation emerging from the medium. 

scattered particles, allowing for the reflection and refraction 
at the boundary of a substance, is of interest in studies of the 
interactions of neutrons with solids, " in electron spectrosco- 
py with angular resolution,'* and in x-ray and y-ray optics of 
surfaces."-'5 

We shall solve the transport equation for the density 
matrix (mutual coherence function) to find the angular 
spectrum of particles emerging from a medium. The solution 
obtained allows both for reflection and refraction of waves at 
the interface between the medium and vacuum, and for the 
usual incoherent multiple scattering. It is assumed that the 
wavelength of the incident particles (photons) is many 
times greater than the characteristic size of the scattering 
centers and that the differential cross section for single scat- 
tering is isotropic. The case under discussion is realized in 
practice in the interaction of neutrons with atomic nuclei, of 
electromagnetic waves with atoms and molecules as well as 
with small optical inhomogeneities of a medium, and of slow 
electrons with impurity centers. 

1. TRANSPORT EQUATION FOR MULTIPLE SCATTERING OF 
WAVES IN A RANDOMLY INHOMOGENEOUS MEDIUM 

We shall consider the motion of a nonrelativistic zero- 
spin particle in a substance with a random distribution of 
atoms (the results obtained below remain valid also in the 
case of scattering of electromagnetic waves in randomly in- 
homogeneous media). If we ignore the recoil of atoms collid- 
ing with an incident particle, we can reduce the problem of 
calculation of the angular distributions and other character- 
istics of the wave field of the scattered particles to a deter- 
mination of the average (over the distribution of atoms) so- 
lution of the equation 

where the averaging operation represents integration of the 
density matrix from Eq. ( 1 ) using the coordinate function of 
the distribution of atoms in matter: 

p (r, rr) = 1 d ~ ,  . . . dRNp (r, rr ; R1 . . . RN) F (Rl . . . RN) . ( 2 )  
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In Eq. ( 1 ), E = fi2pi/2m is the total energy of the inci- 
dent particle, the summation over a = 1,2, . . . , Nis carried 
out over all the atoms in the medium, and Ua is the operator 
of the interaction of a particle with an individual atom. In 
the case of uncorrelated positions of the scattering centers 
the distribution function of Eq. (2 )  is 

where B(Rj is equal to unity within a volume Voccupied by 
the scattering medium and vanishes outside this volume. 
When the condition ( N  / V)A = nA < 1, is satisfied and the 
reflection into a narrow range of angles A$-A / I  in the 
"backward" direction is ignored,'-' the averaging of Eq. ( 1 ) 
with the distribution function (3 )  yields forp(r,  r ' )  a trans- 
port equation which has the following operator form 16," [a  
bar is used for the operation of averaging of Eq. (2) ,  which 
yieldsp = p ( r ,  r ' ) ]  

A 

where Ya is the matrix representing the scattering by a sin- 
gle atom": 

A h 

K = - (fi2/2m )a '/&' is the kinetic energy operator, and G 
represents the solution of the equation 

The quantity p, in Eq. (4 )  describes the wave field of parti- 
cles which do not undergo incoherent scattering: 

At large distances from the boundary of the scattering medi- 
um the fieldp, is a superposition of the incident waves and of 
the waves reflected coherently from the surface of the sub- 
stance. 

In the operators 2 - '  and (2 I ) +  are applied on the 
left and right of Eq. (4) ,  we obtain the differential form of 
the transport equation: 

A A 

whereG,,= (E- K+iO)-I .  

A 
I^f on the right-hand side of Eq. ( 8 )  we assume that 

G = Go, we obtain the transport equation of Migdal and Po- 
lievktov-NikoladzeI9 for fast particles. Physically, the 
change from Eq. (8 )  to the equation derived in Ref. 19 repre- 
sents neglect of the influence of the medium on the propaga- 
tion of the scattered wave. 

Equations of the type (4 )  and (8 )  make it possible to 
describe multiple elastic scattering allowing for the influ- 
ence of inelastic collisions. If we ignore the energy lost by the 
particles, the only inelastic scattering channel is the absorp- 
tion. 

A 
In the s-scattering case a matrix element of the operator 

Ta in the coordinate representation is 

where f is the scattering amplitude. The total scattering cross 
section is utot = (4n-/p,) Imf ,  the elastic cross section is 
a,, = 4 ~ 1  f l 2  and the difference between them uin = utot 
- u,, is the cross section for the absorption of particles by a 
single center. 

Substituting Eq. ( 9 )  into Eqs. (4 )  and (6 ) ,  we obtain 
respectively an equation for the density matrix (2 )  averaged 
over the distribution of the atoms 

p (r, r') =po (r, r') +n (2nfiZ/m) 1 f 1 

x Jdr" 0 ( r ~ )  G (r, rl') p (r*, P) G* (I., il) (10) 

and an equation for the Green function G(r,  r ' )  

If the quantum-mechanical state of the particles inci- 
dent on a medium is a pure state,20 we can representp, (r ,  r ' )  
by a product of wave functions 

po(r, r ' )=Yo(r)Wo*(r ') ,  (12) 

each of which satisfies according to Eq. ( 7 ) ,  the equation 

d Z  (, + p.l+4nnf~ (r) ) Y o  (r) =o. 

For a plane wave exp(ip,,*r) incident on a substance from 
z = - cc the boundary condition for Eq. ( 13) is of the form 

Yo (rIinc l l= - ;o=e~p  (ipor). (14) 

Equations ( l o ) ,  ( 1 1 ), and ( 13) together with the boundary 
condition ( 14) determine completely the density matrixp(r, 
r ' )  both inside the medium and outside it, and can be used to 
calculate the distribution of scattered particles for arbitrary 
angles of incidence and escape from the medium. 

2. COHERENT WAVE FIELD AND GREEN FUNCTION 

Before we solve the equation for the density matrix 
( l o ) ,  we must calculate the Green function G and find the 
coherent wave field. 

We shall consider the case when the scattering medium 
occupies the region in space where z > 0. Then Eq. ( 13) can 
be rewritten in the form of the Schrodinger equation 

using the optical potential 

The imaginary part of U, is related to the total scattering 
cross section of a single atom by the optical theorem 

Allowing for the continuity of \V, ( r )  and its derivatives at 
z = 0, and also using the boundary condition ( 14), we readi- 
ly obtain 
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2ko 
cpo(z) =- exp (ixoz) , z>0. 

ko+xo 

where k, = (p,), =p&" and 7to = ( k i  + 4mf ) ' I 2 .  The 
second term in Eq. ( 17) in the z < 0 case describes a wave 
reflected specularly by the surface of the scattering medium. 

The solution of Eq. ( 11 ) for the Green function can be 
found using the Fourier transform with respect to coordi- 
nates parallel to the surface: 

G (r, r') = 1 (2n) -' dq erp {iq (r,-rLr) }gq (z, 2'). 

The function gq (z, z') satisfies the equation 

The conditions of continuity at z = 0 yield9 

2im 1 
g,(z,z')= --- exp (ixzl-ikz), ztO, 

A2 k+x 
(19) 

im k-x 
gq ( 2 . ~ ' )  = x{li+X exp (ix (z+z1) ) -exp (ix ( z-zf I ) ), 

where 

k=(po2-q2)'", x=(k2+4nnf)"', Re x>0.  

Comparing Eq. ( 19) with the Green function of an infinite 
medium 

Ginf (r-r') = - 
m 1 -- exp (i (poZ+4nnf)'i21 r-r' I), 

2nA2 1 r-r' 1 

we can easily show that the presence of a surface has a strong 
influence on the motion of a particle at depths 

c< (4nnl f (20) 

only at grazing angles of incidence or emission from a medi- 
um when 

lpl, ~ ~ < ( 4 n n l f l ) '  1 ~ ~ ~ 1 .  (21) 

In Eq. (2  1 ) we havep, = cost'?,, andp  = cost'?, where 9, and 
9 are, respectively, the angles between the inward normal to 
the surface and the angles of incidence and emission of the 
particles. 

3. ANGULAR SPECTRUM OF BACKSCATTERED PARTICLES 
ANDTOTAL REFLECTION COEFFICIENT 

The angular and energy distributions of particles 
emerging from a medium are described in quantum mechan- 
ics by the diagonal elements of the density matrix in the 
momentum representation2': 

p(p, p') = j dr drt eip{-ipr+ip'rr) p (r, r ' ) .  (22) 

Calculation of these elements generally requires integration 
of Eq. (2)  over all three spatial coordinates. However, in the 

adopted formulation of the problem, when all the particles 
emerging from a medium have the same energy E, the angu- 
lar distribution can be determined if we know the distribu- 
tion of particles between the components of the momentum 
parallel to the surface q = (q,, q, ) in the limit z- - 0: 

p (q, z; q, 2) l z--0 

The diagonal elements of Eq. (23) are related simply to 
the angular spectrum of the backscattered particles: 

where 

S(p) is the density of the flux of particles reaching an ele- 
ment of a solid angle 2n-d Ip I, and I: is a surface area. 

Integrating Eq. (10) in accordance with Eq. (23), we 
find that 

Equation (26) readily yields the distribution of incoherently 
scattered particles: 

m 

p,. (q, 0; q. 0) =n (2nR2/m)'Z I f I dz I g. ( 0 , ~ )  l 'p (2, z) . (27 
0 

It follows from Eq. (27) that to calculate the angular 
distribution of particles emerging from a medium it is neces- 
sary to find first the density of the particlesp(z, z )  = p ( z )  in 
the scattering medium for z > 0. A closed equation for the 
density p ( z )  can be obtained by substituting r = r' in Eq. 
(10): 

L.. 

where 

An explicit expression for the kernel A(z, z') is readily ob- 
tained by substituting Eq. (19) into the integral (29). 

An analysis shows that an allowance for the refraction 
and reflection of noncoherently scattered waves [i.e., the 
first term in Eq. ( 19) for gq (z, z') when z > 0]  changes little 
the solution of Eq. (28). The corresponding corrections are 
of the order of the ratio of the width of the angular region 
where the diffraction effects are important [Eq. (21 ) ] to 4 ~ :  

Consequently, the solution of Eq. (28) can be found in 
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the form of an expansion in terms of a small parameter 
(= (nl f lA2)'12: 

p (z) =p(O)(z) + ~ p ' ~ '  (z) + . . . . (30) 

The expression for the angular spectrum of the back- 
scattered waves given by Eq. (27) is also in the form of a 
series in terms of the parameter 5. Then, in the leading (in 
respect to {) approximation, the angular spectrum is simply 
expressed in terms of p'''(z). 

Neglecting in the calculation of the integral (29) terms 
of the order of (n I f l/Z ') ' I 2  < 1, we find that the kernel of Eq. 
( 28 ) becomes 

dq I z-z' I A (zl zl) = (: ) j - exp{-rzalol 
*<PO (2n) (1-q2/po2) 1 

where 
JD 

E l  ( I )  = (dt/t) exp (--ad) 
i 

is the exponential integraL2' 
Using Eq. (3  1 ), we can reduce Eq. (28) to 

0 

p 0  z = 1 q0 z  1 + J d z ~  n o  z - z  ) P o  z ,  ,(32) 
0 

where 

Equation (32) differs from the equation for the density of 
particles in the usual transport theory22 only by the source 
function I &,(z) 1 2.  

The solution of Eq. (32) po(z,p,) with the source func- 
tion 

is well known.22 The angular spectrum of backscattered par- 
ticles is then given by the expression23 

co 

and the total reflection coefficient (ratio of the number of 
the backscattered particles to the number of the incident 
particles) is 

1 

1 
Ro(pa) =- J ~ I ~ I  I P I S ~ ( I ~ I )  

Po 0 

In Eqs. (35) and (36) the quantity H(p ,  w )  is the Chandra- 
sekhar function (Ref. 23) .') In the classical transport theory 
the coherent reflection of radiation from the surface is ig- 
nored. Therefore, Eqs. (34) and (35) describe the angular 
spectrum and the backscattering coefficient of an incoherent 

wave field under conditions when the refraction and reflec- 
tion effects can be ignored. 

The solution of Eq. (32) with the source function (33) 
can easily be expressed in terms of the solution po(z, po) of 
the transport theory: 

Substituting now Eq. (37) into Eq. (27) for the angular 
spectrum of backscattered particles, we find that 

m 

The integral (38) is readily calculated using the equality 
(35). Consequently, the angular distribution of incoherent- 
ly scattered particles is given by the expression 

where the indices 0 and 1 represent, respectively, the inci- 
dent and emitted (by the medium) particles 

At large incidence and emission angles [p,, 
Ip I % (n I f lA ') 'I2] Eq. (39) reduces to the classical result of 
Eq. (35). At grazing angles (p, 4 1 or JpJ < 1 ) the difference 
between S(p) and So (p) is of the order of the quantity So 
(p) itself. 

If Eq. (39) is integrated with respect to the angles, 
allowance for the inequality (n 1 f lil 2 ,  ' I 2  1 yields the fol- 
lowing expression for the total incoherent-reflection coeffi- 
cient 

R .  = 4ko Re x, [1-(1-%) '" H(L,Z)] Rex . (40) 
I n  1 ko+xaI2 OrOi po oror 

Bearing in mind also that the coherent reflection coefficient 
of a surface is [see Eq. ( 17) 1 

we can readily find the total reflection coefficient of parti- 
cles: 

R<ot=Reoh+Rin  

ko Re xo " Rex 
=I-4  ( -  H ) .  (42) I ko+xo 1 ator PO alot 

If the scattering in the medium is purely elastic (a,, 
= at,, ), the number of backscattered particles is simply 
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equal to the number of incident particles and we have 
R ,,, = 1. 

Since Eqs. (39) and (40) are derived including only the 
first term of the expansion (30), we are essentially assuming 
that the refraction and reflection effects influence only the 
transmission of the incident and backscattered particles by 
the boundary of the medium and do not affect multiple scat- 
tering inside the medium. This assumption is based on the 
inequality (n I f Iil 2,  ' I 2  4 1. A correct calculation of the next 
term of the expansion (30) in powers of (n I f Jil 2 ,  ' I2  and of 
the corresponding corrections in Eqs. (39) and (40) will 
generally be outside the framework of the initial transport 
equation (4)  [i.e., it is then necessary to include in Eq. (4)  
additional terms of higher degree in ( n  I f lil 2 ,  ' I 2  ( 1 1. 

4. DISCUSSION OF RESULTS 

Equations (39) and (42) obtained above represent, re- 
spectively, differential distribution of incoherently scattered 
particles over the angles of emission and the total back- 
scattering coefficient for arbitrary angles of incidence of the 
initial flux on the surface of a medium and for any ratio of the 
cross sections of the elastic and inelastic interactions with 
single atoms. 

The dependences (39) and (42) are of the greatest in- 
terest at the grazing angles of incidence and emission when 
jpl I - (4rn I fj I ) 1/2/po, and when the refraction and reflec- 
tion effects alter radically the angular spectrum of the back- 
scattered radiation. 

We shall begin with an analysis of Eq. (42) for the total 
backscattering coefficient. At very low grazing angles of in- 
cidence when p, 4 (4rn I fj 1 ) '12/po we find from Eq., (42) 
that R ,,, = 1, which is identical with the familiar results ob- 
tained in electrodynamics of continuous media.25 The value 
of R reaches unity because at very low grazing angles practi- 
cally all the particles are reflected coherently and the coher- 
ent reflection coefficient itself tends to unity. The corre- 
sponding value found from the classical theory of radiative 
transfer2' ignores completely coherent reflection and, there- 
fore, does not give an expression which is correct in the limit 
p, -0 (Ref. 23): 

Ifp,) ( 4 m  1 fj 1 ) ' /2po ,  Eq. (42) becomes identical with Eq. 
(36) obtained earlier by solving the transport equation. The 
dependence (42) of the total backscattering coefficient of 
particles on the angle of incidence p, = cos9, is plotted in 
Fig. 1. It follows from the above discussion that the value of 
R,,, found by solving the transport equation (4)  for the 
range of low values of p, is several times greater than the 
corresponding result obtained from the classical theory of 
radiative transport. It is also clear from Fig. 1 that the back- 
scattering is stronger for f l  < 0 than for f, > 0. This behavior 
of R,,, (p, ) follows clearly from Eqs. ( 15) and ( 16). In the 
case when f, <O, the scattering medium is optically less 
dense than vacuum [Re U, > 0 is a potential "wall"] and the 
specular reflection coefficient of waves incident on a surface 
[Eq. (41 ) 1 is higher than in the f, > 0 case. 

We shall now consider the differential angular spec- 
trum of particles leaving a medium as a result of multiple 
collisions with atoms. 

An analysis of the differential angular distribution is 

FIG. 1.  Dependences of the total reflection coefficient on the direction of 
incidence of particles on the surface of a substance. The parameters of the 
scattering medium are nl f,lR '/lr = nlf21A 2/lr = 3X lo-', a,,/ 
a,,, = 0.3; curves 1 and 2 are calculated on the basis of Eq. (42) for f, < 0 
(curve 1) and f, > 0 (curve 2); curve 3 is calculated using the theory of 
radiative transfer.23 

important because of the discovery in 1963 of the anomalous 
reflection of x rays,26 the onset of an additional nonspecular 
peak in the angular distribution of radiation scattered at 
grazing angles from substances with a disturbed surface lay- 
er. As pointed out in Refs. 14 and 15, this effect has not yet 
been explained consistently. 

The expression for the reflection function (or the num- 
ber of particles crossing a unit surface area per unit time in 
the direction p) J(p) = IpIS(p) can be deduced from Eq. 
(39), which gives 

The symmetry of Eq. (43 ) under transposition ofp, and p , 
is a consequence of the reciprocity theorem. Comparing Eq. 
(43) with J,(p) = IpIS,(p) of Eq. (35), we note that 
(apart from a factor) the formula for the angular spectrum 
of Eq. (43) can be obtained from the classical expression 
(35) if we replace the arguments of p, and p by Re(xl /p,) 
(i = 0, 1 ). Such a transformation in the f2 = 0 case can be 
explained quite simply: along the direction 1p 1 = I c o d  I we 
observe waves in vacuum which had traveled in a medium in 
the direction p = x,/p, and were refracted on crossing the 
boundary of a substance. Iff, < 0 (when the medium is 
optically less dense than vacuum) the waves incident on the 
interface from inside along the direction cos9-0 emerge 
from the investigated substance at a finite angle 
[ lp, 1 = I C O S ~ ~  I = (4rn 1 A f; ) Since inside the medi- 
um the flux density of backscattered particles always has a 
peak in the direction p = 0 ifp, ( 1 [Eq. (35) 1, the refrac- 
tion shifts this peak by an amount equal to the critical angle 

= cos- 'p, . Consequently, in the case of the grazing inci- 
dence of particles on a surface optically less dense than vacu- 
um the scattering medium exhibits not only a specular peak 
in the angular distribution of incoherently scattered radi- 
ation, but also a maximum near the critical angle 6, (see the 
Appendix). 

On the other hand, if f, > 0, this peak does not appear 
because particles moving inside the medium along the direc- 
tionp = 0 may not leave the investigated medium because of 
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FIG. 2. Dependence af the reflection function on the direction of emission 
ofparticles from a medium. Parameters of the scattering medium: n I f, IR 
/a = nl f,lA */a = 3 X 10V5, gel /utot = 0.3. The direction of inci- 
dence of particles when the medium is p, = 0.009; curves 1 and 2 are 
calculated on the basis of Eq. (43) for f, < 0 (curve 1 ) and f, > 0 (curve 
2); curve 3 is calculated using the radiative transfer theory.13 

reflection by its boundary. Therefore, the angular spectrum 
of incoherently scattered radiation depends monotonically 
on the emission angle p if f ,  > 0. 

The angular spectra of scattered particles calculated 
from Eqs. (39) and (43), confirming the pattern described 
above, are shown in Fig. 2. In particular, the J(p) curve 
corresponding to f l  < 0 shows clearly a peak near 

In spite of the fact that the model of isotropic scattering 
discussed above is unsuitable for the description of the inter- 
action of x rays with a disturbed layer of matter, the angular 
distribution of the scattered particles described by Eq. (43) 
for the case f ,  < 0 is similar to that found experimental- 

l ~ . ~ ~ *  13-15 It is quite possible that the anomalous reflection of 

x rays and y 13-" is due to the refraction and re- 
flection of incoherently scattered waves on transition from a 
material medium into vacuum. 

It should be pointed out that the nature of the anoma- 
lous reflection is an analog of the formation of the Kikuchi 
patterns formed as a result of diffraction of inelastically scat- 
tered electrons in thick crystalsI0 or of the Kossel lines 
formed as a result of diffraction of y photons and neutrom2' 

It follows from the above analysis that the anomalous 
reflection effect is associated with the refraction and reflec- 
tion of scattered waves at the interface between media and it 
occurs quite commonly. Clearly, this effect can be observed 
for radiations of any type (for example photons, neutrons, 
and charged particles) in the case of grazing incidence on a 
surface separating "transparent" and scattering media. 

CONCLUSIONS 

We found the solution of the transport equation for 
multiple scattering in a disordered substance allowing for 
the reflection and refraction of waves at the boundary of a 
substance. In the isotropic scattering case we calculated the 
dependence of the total reflection coefficient on the angle of 
incidence of radiation on the surface of a substance and the 
angular spectrum of particles emitted by the substance. The 
solution obtained demonstrates the possibility of anomalous 
reflection of radiations of any type, for example, photons or 
neutrons. In particular, we can expect the angular resolution 
of the existing neutron  spectrometer^^^,^^ to be sufficient for 
the observation of this effect. 

APPENDIX 

We shall analyze in detail Eq. (43). We consider first 
the simplest case when f2 = 0. The relationship (43) then 
becomes 

where 

From the physical point of view the limit f ,  -0 corre- 
sponds to ignoring the processes of scattering during the pas- 
sage of waves or particles across the medium-vacuum inter- 
face. 

The quantities 

in Eq. (A. 1 ) represent the transmission coefficients of a sur- 
face for incident and backscattered waves. The quantity 

is the density of the particle flux incident on a surface from 
the interior of a scattering medium, but before refraction at 

the boundary. An allowance is made in Eq. (A.2) for the fact 
that not all the incident particles penetrate the medium and 
some are reflected coherently. 

At grazing angles of incidence and ~ca t te r ingp~,  Ip I 1 
the Chandrasekhar functions in Eq. (A.2) for Sin can be 
assumed to be approximately Then, 

Gel (pa2-PC') 
 sin(^) =- 4n0,,~ (l~02-pc2) 'I1+ ( ~ ' - P C ' )  'I' ' 

If lpo - pc I <pc the particle density flux Sin governed 
by Eq. (A.3) has a sharp maximum at Ip 1 = pc . The appear- 
ance of a second maximum is due to a large number of parti- 
cles which travel practically parallel to the surface before 
they cross the boundary between the investigated medium 
and vacuum. 

The existence of a maximum of the reflection function 
J ( p )  of Eq. (A. 1 ) is due to competition between two factors: 
a fall of the quantity Sin (p) and an increase in the transmis- 
sion coefficient Dl  (p) on increase in (p2 - pc 2, ' I 2  [Dl (p) 
is a square-root singularity and Ipl = pc :  
D, (p) z (p2 - pc 2 ,  I f 2 ] .  It is then found that J(p) has a 
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maximum only if Ibo -pC I 4pC [ I ~ I m a x  

= p0 + 1 /4 (pg  - pf ) 'I2 1. For example, if po = 1 .03pc, 
then Ip l m a X  z 1 .055pc. 

Inclusion in Eq. ( 4 3 )  of the imaginary part of the scat- 
tering amplitude does not alter the physical meaning of the 
factors occurring in Eq. ( 4 3 ) .  In particular, the factor 
Dl = 4k ,Re(x , /po ) / l  k, + x, l 2  represents the transmission 
coefficient of scattered waves crossing the boundary of the 
investigated medium. In contrast to the above case, when f2 
#O the transmission coefficient D, does not vanish abruptly 
at lpl = pc and the square-root singularity disappears [Dl 
( p ,  ) #O] . Consequently, the behavior of the reflection func- 
tion is governed mainly by the behavior of the function Sin at 
1p1 -p,. Consequently, the anomalous reflection peak is 
sharper than for f, = 0. As f2 is increased, the peak broad- 
ens and it disappears for f2 2 If, I .  

It should be pointed out that if f2 $0, the reflection 
function J ( p  ) does not vanish also it Ip 1 ,  po 5pc. With de- 
crease of po ( p o  <pc ) , the value of Ip I ,,, tends top,.  

The nonzero value of the reflection function in the f2 
= 0 case for IpI, po 5pc is associated with the contribution 

to J ( p )  made by barrier processes of crossing the boundary 
of a medium by particles which have been scattered at dis- 
tances of the order of II /pc from the surface. 

"For H ( p ,  W )  in a square defined by O(p(1, O(w(1 we find that the 
following approximate formula24 is accurate to within 1 %: 
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