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The feasibility of using the Thomas-Fermi statistical model to describe x-ray or Auger spectra of 
atoms with multiple vacancies is investigated. It is proposed to determine the potential of a 
multivacancy atom by self-consistent system of equations in which a solution of the one-electron 
Schrodinger equations is needed only for shells containing vacancies. I t  is shown that the presence 
of vacancies can be taken into account in the statistical Thomas-Fermi model by introducing an 
external equivalent positive potential. Expressions are obtained for the total energy of a 
multivacancy atom. Specific calculations for the atoms Ne, Ar, Cu, and Mo with vacancies in the 
1s and 2p shells agree well with the available Hartree-Fock and experimental spectroscopic data. 

1. INTRODUCTION 

Atoms and ions with multiple vacancies in the inner 
shells are usually obtained in ion-atom collisions with ener- 
gies exceeding 1 MeV/amu (see, e.g., Ref. 1 ). An interesting 
method of obtaining multivacancy atoms was recently dem- 
onstrated in Ref. 2, where the surface of a metal was bom- 
barded by multiply charged Ar"+ ions that recombined 
with the electrons of the metal. Multivacancy atoms are 
manifested for the most part by their x rays that usually 
undergo a short-wave shift, or by the spectra of the electrons 
produced when the vacancies are filled by Auger processes. 

A theoretical description of the shift of x-rays and of 
Auger electrons in the presence of multiple vacancies in the 
atoms calls for complicated Hartree-Fock calculations. So 
far, only a limited number of calculations of this type (see, 
e.g., Refs. 3 and 6 )  exist for several elements. A t  the same 
time, as will be shown in the present paper, simplified calcu- 
lations can be performed by using the statistical Thomas- 
Fermi ( T F )  method. Numerical solutions of the Schro- 
dinger equation for various nl shells using T F  or the T F D  
(Thomas-Fermi-Dirac) potentials usually (see, e.g., Refs. 
7-1 1 ) fair approximations of the wave functions and binding 
energies of the electrons, and are frequently used as the ze- 
roth approximation for Hartree-Fock equations, or for a 
simplified treatment of certain scattering problems. This ap- 
proach has, however, a number of shortcomings. First, the 
density of the quantum electron is already contained in the 
total density of the statistical electrons, i.e., the "self-action" 
of the electron is taken in practice into account. According- 
ly, the total T F  potential used in the Schrodinger equation 
does not have the Coulomb asymptotic form at infinity, and 
the use of various matchings to the Coulomb potential (see, 
e.g., Refs. 7 and 8 )  is not sufficiently well founded. Second, 
this approach does not permit in principle to introduce va- 
cancies in the shells and calculate the corresponding shifts of 
the x-ray and Auger spectra. Third, additional inaccuracies 
in the calculation of the term energies can result from the 
presence, near the nucleus, of an electron-density divergence 
determined with the aid of the T F  method. 

remains relatively simple compared with the Hartree-Fock 
method. On the other hand, it is self-consistent and free of 
the indicated shortcomings inherent in the direct use of the 
T F  atom potential for quantum calculations. We note that 
attempts at a self-consistent treatment of quantum electrons 
and T F  electrons were made earlier only in problems of a 
different kind, ''-I4 involving the investigation of the screen- 
ing of atomic quantum electrons by free plasma electrons. In ,  
the present paper we likewise consider in fact the problem of 
screening of quantum electrons, but a statistical rather than 
free gas of bound T F  electrons. This leads to equations of 
another type and, furthermore, semiclassical introduction of 
the vacancies raises the question of the correct choice of the 
boundary E, between the quasicontinuous and discrete ener- 
gy spectra. This problem does not arise for a gas of free elec- 
trons, and the boundary is the electron energy at  an infinite 
distance from the considered atom (E, = 0 ) .  To  determine 
the boundary energy E,, for an atom it is necessary to write a 
supplementary equation that stems from the self-consisten- 
cy conditions on the complete system of equations. Limiting 
the spectrum from below eliminates also the errors due to the 
presence of a divergence of the electron density of a T F  gas in 
the region of the nucleus. 

Two methods of introducing vacancies into the T F  
equation are considered. I t  is shown that the self-consistent 
system of equations turns out to be simpler when the vacan- 
cies are introduced by the quantum approach, but the semi- 
classical method ensures a more correct behavior of the sta- 
tistical T F  electrons in the region of the nucleus, and 
accordingly a higher accuracy of the calculated terms. 

The actual calculations were carried out for the atoms 
Ne, Ar, Cu, and Mo (i.e., at Z = 10, 18, 29,42) with intro- 
duction of vacancies in the 1s and 2p shell. The results accord 
well with the available Hartree-Fock calculations" for A r  
( Z  = 18) and permit the experimental2 shifts and widths of 
the k ,  and kD lines of Ar  to be qualitatively explained as 
being due to multiple vacancies. 

2. BASIC EQUATIONS 

We propose here a method for a self-consistent solution A simplified description of a multivacancy atom can be 
of the Schrodinger equations for electrons of certain nl obtained by dividing all the atomic electrons into quantum 
shells, in a quantum approach, and of the statistical T F  equa- electrons and semiclassical ones describable in the statistical 
tion for the remaining electrons, with allowance for the de- T F  model. The total electron density p x  can be represented 
crease of their density by the onset of vacancies. This method in this case as a sum of statisticalp, ( r )  and quantum 
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of the electrons, where <,, is the number of electrons in a 
given shell (n and I are the principal and orbital quantum 
numbers), and $,, is the wave function of the nl-shell elec- 
trons. For the total potential p of the atom we can write the 
usual electrostatic equation: 

which takes into account the interaction of the electrons 
with one another and their interaction with the nucleus (via 
the boundary condition as r- 0) .  The summation in ( 1 ) is 
over all the shells that are described in the quantum ap- 
proach. For most applications it can be assumed that the 
vacancies are concentrated predominantly in the inner shells 
n <no, while the higher levels n>no contains no vacancies. It 
is accordingly advantageous to assume that the statistical 
electrons occupy the energy region from Eo to EF 
(Eo < EF < 0), where there are no vacancies, with the Fermi 
energy EF = 0 for the case of neutral atoms, while Eo, the 
lower energy limit of the continuum electrons, will be deter- 
mined below from the self-consistency condition on Eq. ( 1 ) 
and the Schrodinger equations for the shells n<no (in the 
usual TF model of a vacancy-free atom one assumes 
E o =  - m ) .  

In the TF model with a bounded energy spectrum of the 
electrons ~ = - - q , + ~ ~ / 2  in the range 
- lEol < E <  - IEFl, the connection between the electron 

density and the potential follows from the usual relations of 
quantum statistics: 

E# 

Here B(x) = 1 for x>O and B(x) = 0 for x < 0. Introducing 
the screening function ,y = r ( p  + EF) /Z  and substituting 
(2)  in (1)  weobtain 

where Z is the charge of the ion nucleus. Equation (3)  must 
be supplemented by the Schrodinger equations for the quan- 
tum electrons that occupy the energy space E < E,: 

-'/,V",+U (r) $i=Ei$i, 

U (r) =-(P-V:, Vje= - 

Here U(r) is the potential for the quantum electron of the 
shell i = nl, and is determined by the total potential p from 
which the quantum-electron potential V :  is subtracted to 
prevent self-action. Exchange effects are neglected in this 
case. The subscript i in (4)  runs through all the quantum 
shells nl, but matters are simplified by the fact that the equa- 
tion for the ith $function does not contain the jth 11 function 
at i f j ,  i.e., these equations can be solved independently, and 
the interaction between the different electrons is taken into 
account via the total potential p. 

Note that a more correct allowance for the electron's 
own potential Vf in the Schrodinger equation (4 )  (com- 
pared with Refs. 7 and 8) ensures a Coulomb asymptotic 
behavior of the potential U(r) = - l /r  as r- m, since 
p ( r )  -0 and the quantum-electron potential has the Cou- 
lomb asymptote, i.e., V4 = - l/r. The ensuing transforma- 
tion of (4)  into an integro-differential equation does not 
complicate the calculations significantly, since introduction 
of the potential V f  perturbs the solution little (if Z $ l ) ,  and 
successive approximations yield rapid convergence after two 
or three iterations. 

The set of equations (3)  and (4)  is self-consistent if it is 
assumed that in the given potential p the phase space of all 
the quantum electrons and vacancies in the energy range 
from - co to Eo is exactly equal to 

no 

where N, is the total number of electrons and vacancies fqr 
the quantum shells n = 1 to no, where n, is the maximum 
value of the principal quantum number of quantum elec- 
trons (thus, for n, = 2 we have N, = 10, fl, = 8 0 2 ) .  This 
condition leads to an integral equation for the end-point en- 
ergy E,: 

As a check on (5) ,  we show, for example, that it yields 
the correct values of the energy for an excited hydrogen 
atom ( E  = - 1/2ni ) for a number No of vacancies up to a 
specified level n,, i.e., 

(at n $1 ) . Substituting in (5)  for p = l / r  a Coulomb poten- 
tial in which the excited electron moves, we get 

i.e., lE,,l = (3.2 '12~,)  -2'! Substituting the value 
N, = 2ni/3, we obtain the asymptotic region n 9 1 the cor- 
rect energy values \En / = 1/2ni. 

We note next that the total potential of the atom will be 
regarded as spherically symmetric, and we use accordingly 
in ( 1 ) and (3)  the quantum-electron densities averaged over 
the component of the orbital momentum m: 

1 

Enc fi*c2(r) z 
= zx7 7, 1 

I Ylrn (0, cp) I ' 
,,,=-I 

(7)  
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The average potential of the quantum electron is corre- 
spondingly 

I 

where R,, ( r )  are the radial wave functions of the quantum 
electron, normalized by the condition 

We rewrite thus finally the set (3)-(5) in the form 

It must be emphasized that the presence of vacancies in 
the energy region E < Eo is described in the set (9 )  semiclas- 
sically, as against the quantum treatment of the density at 
E < Eo. In another possible method, the decrease of the elec- 
tron density on account of the vacancies is treated by quan- 
tum theory, and all the electrons of the atom are considered 
in a statistical model. This yields a self-consistent set of equa- 
tions similar to (9)  but simpler. In the quantum description 
of the vacancies (which can occupy arbitrary i = nl shells, 
i = 1, ..., k), the electron density is given by 

where pi = 2 (21 + 1 ) - g,, is the number of vacancies in 
the i = nl shell. The summation over nlm in ( 10) is over all 
the atom shells. In the semiclassical approximation, replac- 
ing the sums over n and 1 in ( 10) by integrals and averaging 
over the oscillations of the semiclassical radial functions, we 
obtain the usual TF-approximation expression (see Ref. 15 
for details) : 

The charge-equilibrium equation takes in this case the form 

The averaging in ( 12) is over the magnetic numbers m of the 
vacancies, and the summation is over all nl shells in which 
vacancies are present. Introducing the screening function x 
and adding the Schrodinger equations to Eq. ( 12) we obtain 
for the radial quantum functions R,, the set of equations 

This set is particularly simple in the most prevalent case 
when vacancies are present in one nolo shell, for in this case 
Eq. (13a) need be solved simultaneously with only one 
Schrodinger equation for the nolo shell. The energies En, of 
the remaining shells can subsequently be found from Eq. 
( 13b) with an already specified self-consistent potential q. 
In the quantum treatment of the vacancies no difficulties are 
encountered in determining the end-point energy Eo, since 
all the electrons are described in the statistical model and 
occupy the energy spectrum from - co to EF, i.e., 
Eo = - co . Note that Eq. ( 13a) reduces the multivacancy- 
atom problem to the TF problem for an atom without vacan- 
cies, but with allowance for a certain external potential V, 
that results from the vacancies and satisfies the relation 

In other words, the presence of vacancies can be taken 
into account by introducing into the T F  equation an equiva- 
lent positive-charge distribution 

The description of the multivacancy atom with the aid 
of the system ( 13) turns out to be simpler, but has also some 
shortcomings compared with the system (9) .  It is easy to 
show that Eq. ( 13) just as in the usual T F  model, leads to 
divergence of the electron density p, ( r )  a r-312 as r-+0. It is 
known that this can lead to some errors in the determination 
of the total energy and of the electronic terms. One can easily 
find, for the system (9)  with a restricted statistical-electron 
spectrum ( E o < E < E F ) ,  thatp, ccr-'I2 as r+O [see (2) ] ,  
and that the errors due to this divergence become practically 
inessential (for details see Ref. 16 and also the results in Sec. 
3) .  

Equations (9a) and ( 13a) should be solved subject to 
the usual boundary conditions 

~ ( 0 ) = 1 ,  i.e., cp(r)=Z/r  for r+O, 

x ( w ) = O  for E ~ = o ,  (14) 

x 1 ( r F ) = E F / Z ,  x ( r F )  =O for EF<O, 

where r = r, is the ion radius. The total number of the elec- 
trons is N = N, + N, , where N, is the number of quantum 
electrons and N,  the number of statistical electrons: 

is easily determined by integrating Eq. ( 1 ) over the ion vol- 
ume: 

where Z ,  is the total charge of the ion of given energy E,. 
Since in the considered case of quantum electrons their or- 
bits are smaller than the ion radius r,, the boundary condi- 
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tions for the Schrodinger equations (9b) and (13b) can be 
specified in the form R,, (0)  = 0, R,, (r,) = 0. 

The system (9)  or ( 13), with allowance for the bound- 
ary conditions, can be solved by an iteration method. A con- 
venient zeroth approximation can be hydrogenlike functions 
with energies Ei determined by perturbation theory (see 
Appendix A). The total potential e, obtained by solving (9a) 
is used further to calculate new functions R,,, values 
No(Eo), and energies En/ and Eo. The potentials V :  are de- 
termined by using the wave functions calculated in the pre- 
ceding step. By varying Eo and En, in the required directions 
with the aid of usual iteration methods (such as Newton's) 
we solve (9a) again, and so on. Three iterations usually suf- 
fice for convergence to obtain energy values that differ little 
from those of the preceding iteration. 

In the case of an ion without vacancies, when all elec- 
trons are described by the T F  mehtod,the following relations 
hold for the total atom energy E = T, see Refs. 7 and 17 ( Tis 
the electron kinetic energy and U the potential energy): 

where 

Similar relations can be obtained also when the quan- 
tum and statistical electrons are segregated, i.e., for the sys- 
tem (9)  (see Appendix B for the derivation): 

It is seen that at CnI = 0 Eqs. ( 16) and ( 17) are identical. 
Equations (17) permit calculation of the total energy of a 
multivacancy atom. In the quantum treatment of the vacan- 
cies [system ( 13) ] the expressions for the potential and ki- 
netic energies agree with Eqs. ( 16) (see Appendix B), i.e., 
the presence of vacancies changes the energy because the 
values of p, J, and r, are changed. In view of the virial 
theorem 2T = I U I, we can exclude Jand write the total ener- 
g y E =  T +  Uintheform 

Note that the second term Z 2/2 is the Schwinger quantum 
correction1* that eliminates the total-atom-energy overesti- 
mate due to the divergence of the statistical-electron density 
as r-0. This correction can be used also in the description of 
a multivacancy atom, inasmuch as in the model (13) the 
statistical electrons also occupy the entire spectrum ( - W, 
EF 1. 

3. CALCULATION RESULTS AND DISCUSSION 

We analyze, by way of example, first the solution of the 
system (9)  in the simplest case of two quantum Is2 electrons 
and a statistical description of the electrons of shells n>2. 
Figure la  shows the calculated energy of the 1s shell for the 
case Z = 29 (copper) vs the value of Eo, i.e., vs the phase 
volume no = ( ~ T ) ~ N ,  contained in the T F  potential e, in the 
energy interval ( - W ,  Eo). The values of Eo shown in Fig. 
l a  were determined by iteration from Eq. (9a). It can be seen 
that the calculated E ,, agrees with good accuracy (0.2%) " 
with the experimental Is-shell energy (dashed in Fig. la: 
E ,, = 329 a.u. ) precisely at No(Eo) = 2. This is as expected, 
for in this case the phase volume 0, = 16r3 not filled with 
statistical electrons is occupied by two quantum ls2 elec- 
trons, and the system (9)  describes in a self-consistent man- 
ner the vacancy-free atom. It can also be seen that neglect of 
the phase volume occupied by the quantum electrons [this 
corresponds to No( Eo) = 0 and Eo + - w ] leads to sub- 
stantially lower 1s-shell energy, E ,, = 300 a.u. The 1s-level 
energy is most sensitive to the value of Eo (see Fig. 1 ) , there- 
fore the use of Eq. (9c) to determine the lower limit Eo of the 
spectrum of the statistical electrons is essential for the self- 
consistency of the system (9)  and for a best fit to the experi- 
mental data. 

Note that the calculated values of the energy of the 1s 
electrons obtained at values No > 2, for example at No = 4 
and 10, shows that the binding energy E ,, increases when 
vacancies appear in then = 2 shell (two and eight vacancies, 
respectively). The energy E l ,  = 358 a.u. at No = 10 corre- 
sponds here to the binding energy of the 1s shell when the 
n = 2 shell is entirely empty, while the energy E, = 19.7 a.u. 
at No = 10 shows the lower limit for statistical electrons of 
the n = 3 shell. Accordingly, at No = 2 the value Eo = 109 
a.u. corresponds approximately to the lower limit of the TF 
electrons of the n = 2 shell. Note that the experimental val- 
ues of the quantum energies of the shells L , and L ,,,,,, (40 
and 35 a.u., respectively) turn out to be much higher than 

950 - a 

FIG. 1. Dependence of the 1s shell energy for copper 
atoms ( a ) ,  Z = 29, and for argon atoms (b),  Z = 18, on 
the number No of states contained in the potential q below 
the energy limit E,, of the statistical electrons. Dashed- 
experimental Is-state energies. 
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FIG. 2. (a)  Wave functions of 2s states of the hydrogen- 
like ion Ne9+ (curve 1 )  and of the Ne atom (curve 2 ) .  b) 
Screening functions x = ?p /Z  (curve 1 )  and 
X ,  =,rU(r)/Z (curve 2)  for the potential U(r) in the 
Schrodinger equation of the 1s state of the Ne atom 
( Z =  10).  

the boundaries of the spectra of the same shells when consid- 
ered in the statistical model. 

Analogous results are shown for Z = 18 (Ar) in Fig. 
lb. Here, too, the best agreement between calculated energy 
of the 1s shell with the experimental value E ,, = 118.5 a.u. is 
observed for a phase volume a, = 16123, i.e., at No = 2. Note 
that the energy E ,, = 127 a.u. obtained in the present calcu- 
lation for No = 5, i.e., for three vacancies in the n = 2 shell, 
is approximate, for in this case a uniform vacancy-density 
distribution is assumed in the phase space dpdr in a certain 
energy interval, i.e., averaged over the orbital momenta. 
More accurate calculations, in which the vacancies are as- 
sumed to be concentrated in the 2p shell, are presented below 
in the quantum description of electrons at n = 2. 

By way of example, Figure 2a shows the variation of the 
1s-state wave function for the hydrogenlike ion Ne9+ (curve 
1 ) and for neutral neon Ne( ls22s22p6) (curve 2), obtained 
by statistical treatment of electrons with n = 2 (i.e., 
No = 2). Figure 2b shows the values, obtained in the same 
calculation, of the screening function (curve 1 ) for the total 
potential ,y = rq, /Z, and also the function x,, = rU(r) /Z 
(curve 2) that characterizes the potential for a quantum 
electron of the 1s shell. The asymptotic  value^,, ( ) = 0.1 
(see Fig. 2b) leads to a Coulomb asymptotic relation for the 
potential U(r) = ZX,, ( co ) / r z  l /r  at Z = 10. The calcula- 
tions presented show also that introduction of a vacancy in 

t he .2~  shell of Ne( 1 ~ 2 ~ ~ 2 ~ ~ )  increases considerably the ls- 
electron binding energy, by AE ,, = 106.9 eV, in view of the 
decrease of the screening of the nuclear field, while the rela- 
tive charge of the 1s electron energy [i.e., the quantity 
2AE ,, / Z  2, AE = E ,, ( 1s 2...) - E ,, ( 1s ... ) > 0] decreases 
with increase of the charge Z, since the effective potential 
U(r) for the 1s electron approaches the Coulomb potential 
( Z  /r) at distances of the order of the orbit size. The corre- 
sponding calculations with allowance for vacancies in the 1s 
shell were made for Z = 10, 18,29, and 42 (a  statistical trial 
was used for n>2 electrons) and yielded the following ap- 
proximation of the dependence of 2AE ,,/Z on the nuclear 
charge Z: 

Figure 3 shows comparisons of the following: a )  the 
total energies of the atoms Ne, Ar and Cu calculated from 
Eqs. ( 17) with quantum description of ls2 electrons, b) the 
results of the usual T F  model [i.e., Eqs. ( 16) 1, c)  Hartree- 
Fock  calculation^.^^ It can be seen that the quantum descrip- 
tion of the ls2 electrons makes it possible to obtain a substan- 
tially more accurate agreement with the Hartree-Fock data. 
As already discussed above, this is due to the more correct 
behavior of the density of the statistical electrons in the re- 
gion of the nucleus when lower limits are imposed on the 
spectra of these electrons (i.e., E >  E,,). Note that, for the 
same reason, calculation of the 1s-state energy in the Ar 

&, a.u. atom turns out to be more accurate ( ~ 0 . 4 %  ) upon a semi- 
3 
2 classical introduction of the vacancies, i.e., when the system 
1 (9)  is used. However, calculations using the simpler system 

( 13) also provide a sufficiently accurate ( z 1-2% ) descrip- 
tion of the shell energies. For more complicated situations, 
when the vacancies are concentrated in shells n > 1, it is 
therefore more convenient to use Eqs. ( 13 ) for the calcula- 
tions. We have used these equations in calculation for multi- 
vacancy atoms Ar ( ls22s22pm 3 . ~ ~ 3 ~ ~ )  with vacancies 
v = 6 - m, concentrated in the 2p shell. Together with the 
statistical T F  equation ( 13a) we solved here only one quan- 
tum equation for the 2p shell, and the energies of the 2s and 
3p states were calculated with the aid of ( l3b) already after 

20 the self-consistent potential q, was determined. 
In the absence of vacancies, the calculations yield for 

FIG. 3. Total energies of the atoms for different values of the nuclear the transitions K, (2p- Is) and Kp (3p+ Is) the respective 
charge Z. 1 ) Hartree-Fock calculation data," 2 )  calculated with Eqs. ( 7 )  
of the quantum-statistical model, 3 )  calculation with Eqs. ( 16) of the TF energies 3007 and 3230 eV, in satisfactory agreement with 
model ) . the experimental data (2957.01 and 3190.5 eV). Calculation 
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shows that the energies of the K, and Kp radiation increase 
approximately linearly with increase of the number of va- 
cancies in the 2p shell ( v  = 0-5), while the energy incre- 
ments AEKa and AE,- of the corresponding lines can be ap- 
proximated by the formulas 

It is seen that the appearance of multiple vacancies in the 
n = 2 shell shifts the energies of the Ka and kp transitions by 
amounts AE on the order of 100-200 eV. This agrees well 
with the opinion that the experimentally obtained2 shifts and 
widths of the Ka and KO lines are due to the presence of 
several vacancies in the n = 2 shell and to a random scatter 
of their number for different ArI7+ ions recombining on the 
solid surface. The results for the shifts of the Ka and KO lines 
in the multivacancy atom Ar (Z = 18) agree with detailed 
Hartree-Fock calculations6 (the calculation accuracy de- 
creases somewhat with increase of v, so that the deviation 
from Ref. 6 does not exceed 2-3% for the Ka line and 5- 
10% for K p  ). 

Note that application of the calculations performed 
here in the framework of a quantum-statistical model to the 
case of larger values of Z entails no significant complica- 
tions, since it does not add to the total number of equations, 
and only changes the parameters. For the Hartree-Fock 
method, however,the calculations at higher values ofZ leads 
to a substantial increase of the computational difficulties. 
Therefore the use of the model proposed here can be useful 
for the description of x-ray or Auger spectra of multivacancy 
atoms. 

APPENDIX A 

The energies of the internal, Is, 2p, and 2s electrons in 
the absence of vacancies in an atom (Z$1) can be estimated 
by perturbation theory. We choose as the zeroth approxima- 
tion Coulomb wave functions in an unscreened field of the 
nucleus, and as the perturbation the difference between the 
TF and Coulomb potentials, i.e., V ( r )  = Z ( l  - x ) / r ;  for 
the screening function we use the Teitz approximation17 

( x )  = ( l + u x )  - 2 1  (A1 

where 

The shift of term nl can be calculated by perturbation 
theory with the aid of the equation 

00 

Ah',,, = 2 5 R ~ ~ ~ [ I - - ~ ( + Z ' I * ) ]  dr.  
0 

Substituting in (A2) the unperturbed hydrogenlike wave 
functions of the Is, 2s, and 2p states for an ion of charge Z 
(see, e.g., Ref. 21) and calculating the corresponding inte- 
grals, we get 

AEi,=Z~1+p,Z-~,2ePiEi(~i) ( I f  P i ) ] ,  

A ~ z , = l / s % ~  [PZZ+6Pz3+ 7fJ22+2-PZZai(P.') 

~ e " ( P 2 ~ + 7 B ~ ~ + 1 2 P 2 + 4 ) ] ,  (A3) 

Since the use of perturbation theory is justified only for 
large Z and accordingly P-Z 'I3 P 1, it is convenient to use 
asymptotic expansions of Eqs. (A3) in reciprocal powers 
p- Z 'I3. The corresponding algebra yields 

where the expansions (A4) that include terms -2 -'can be 
used for 1s states at Z >  5-7, and for 2s and 2p levels at 
Z> 35-40. Note that a perturbation-theory calculation for 
the 1s states was carried out earlier in Ref. 17. The calcula- 
tions presented here for 2s and 2p states can also be useful for 
estimates of shell energies in the zeroth approximation of the 
considered iteration problem (9) or ( 13 ), and also to deduce 
the analytic dependences of the transition energies on the 
nuclear charge Z. 

APPENDIX B 

We calculate the total energy of a multivacancy atom. It 
is convenient to rewrite the expression for the kinetic energy 
of the statistical electrons in the form 

,'- 

Taking into account the following relations 

we calculate the integral in (B l )  
I11 VF 

SIPe dr = .! ~ Y J  ( rp . )"  d r  = j rcp (rrp) " dr- j rcp (rk',)" dr .  
0 0 0 

Integrating by parts and using the boundaryn conditions 
( 14), we get 

Til 

rcp (rcp) " dr-rcp (rrp') 1 q - 1 (Zx'-E,)'  dl, 

where 
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P=-x' (0) , I = X I '  dr. 

We obtain the kinetic energy of the quantum electrons by 
using the quasiclassical approximation: 

rr 7 -  

For the total kinetic energy we obtain ultimately 

where Nu = No - N, is the number of vacancies. 
The potential energy of the statistical electrons is deter- 

mined by their interaction with the nucleus, with the quan- 
tum electrons, and with one another: 

1 Z I 
= - - j  perpdr - - j k d r  - - !vqp. dr. (Bs) 2 2 2 2 

For the potential energy of the quantum electrons, we take 
into account the interaction with the nucleus and with one 
another, subtracting the "self-action" of the quantum elec- 
trons: 

We reduce the total potential energy, after some transforma- 
tions, to the expression 

Using Eq. (B2)  for the integral 

0 

and calculating the integral 
I F  

1: dr = 1 (rep)" d r = ~ , , + ~ , ,  
0 

we obtain ultimately 
r= 

The total energy is calculated in similar fashion also for 
the system ( 13), when all the electrons are described in the 
statistical T F  model and the vacancies lead to the appear- 
ance of an external potential V, , with 

For the kinetic energy we obtain in this case 

3 
(rg+E,) p. ( r )  C = - E,N + r y  ( r q )  " dr 

5 0 

Here px = p, - p, and N = N, - Nu.  Calculation of the 
potential energy of a multivacancy atom also leads to an 
equation identical with those of the usual T F  model [see 
( 16) 1. The presence of vacancies is taken into account here 
by changing the values ofp, J, and r,, which depend on the 
behavior of the screening function X. 

The author thanks Yu. V. Martynenko, 0. B. Firsov, 
and M. I. Chibisov for a discussion of the results. 

"So good an agreement with theexperimental datais due in this case to the 
fact that for the Is-shell energy the principal role is played by the Cou- 
lomb interaction of the electrons with the charge of the nucleus. There- 
fore, for example, the energies calculated below for the K ,  and Kg lines 
of argon turn out to be less accurate, since they require calculation of the 
energies of the 2p and 3p states, for which the electron-electron interac- 
tion is more significant. These results can be refined by introducing ex- 
change and quantum corrections into the T F  equation (see, e.g., Ref. 
19). 
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