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An analysis is made of the influence of a strong electromagnetic field on autoionization 
resonances in an atom with Nclosely spaced discrete levels below the first ionization threshold, 
which is in a multiphoton resonance with the ground state, and with Mautoionizing levels above 
this threshold. The multilevel structure of a discrete state can be in the form of many closely 
spaced levels of highly excited states of an atom or it may form a multiplet. A study is made of the 
possibility of narrowing resonances as a function of the intensity and frequency of an external 
field, and generation of the third harmonic is considered. 

INTRODUCTION 

The influence of a strong electromagnetic field on au- 
toionizing states of an atom is currently attracting much at- 
tention.'-'' The nature and the origin of the autoionizing 
states are as follows: if two or more electrons are excited in 
an atom, there may be coupled states whose energies exceed 
the energy needed to detach one electron. Such a system is 
highly unstable and it is subject to autoionization (preioni- 
zation), i.e., one electron may be transferred to the contin- 
uum. Autoionization occurs, for example, due to the interac- 
tion of electrons as a result of which one of the excited 
electrons is transferred to a bound state and the other be- 
comes free. The probability of autoionization is many times 
greater than the probability of spontaneous emission of radi- 
ation by an excited atom. If the characteristic lifetime of an 
excited state is lo- '  sec, autoionization can reduce it to 
10-14-10-15 sec and it is then autoionization that deter- 
mines the total width of an autoionizing state. 

The influence of external electromagnetic radiation on 
autoionizing states of atoms is not only of theoretical but 
also of practical interest. For example, autoionizing states of 
atoms and transitions to the continuum have become par- 
ticularly important in the processes of laser isotope separa- 
tion and generation of coherent radiation in the vacuum ul- 
traviolet range. 1 2 , '  

An autoionizing state in an external electromagnetic 
radiation field was investigated in Ref. 6 and it was shown 
there that narrowing of the photoelectron spectrum occurs 
near a Fano m i n i m ~ m . ' ~ . ' ~  Photoionization from an au- 
toionizing state and degeneracy of the continuum are al- 
lowed for in Refs. 2 and 3. Inclusion of these transitions, 
which always occur, has the effect that complete narrowing 
of resonances is impossible and the minimum width in- 
creases on increase in the external field intensity. A theory 
describing radiative decay of an autoionizing state of an 
atom in an external electromagnetic field is developed in 
Refs. 9 and 10. This theory allows systematically for radia- 
tive decay of the unperturbed continuum. A detailed analy- 
sis is made of the effects of radiative decay on the Fano pro- 
files and photoelectron spectra. An analysis is also made of 
the fluorescence originating from an autoionizing state in an 
external field. 

An external electromagnetic field may give rise to auto- 
ionization-like resonances in the continuous spectrum of a 

one-electron atom. A study of these resonances is desirable 
because the width, energy, etc., of these autoionization-like 
resonances depend on the intensity and frequency of the ex- 
ternal field. A theoretical analysis of such resonances can be 
found in many papers, for example, in Refs. 16 and 17. 

We shall consider the influence of an external electro- 
magnetic field on autoionization resonances and consider 
the possibility of narrowing these resonances in the case of N 
closely spaced levels below the first ionization threshold of 
an atom, which are in a multiphoton resonance with the 
ground state, and M autoionizing levels above this thresh- 
old. The multilevel structure of a discrete state can be in the 
form of a large number of closely spaced excited levels or it 
may form a multiplet. In  real atoms one frequently en- 
counters a situation when the frequency of laser radiation is 
close to a resonance with a group of closely spaced autoioniz- 
ing levels. Such a situation occurs, for example, in the Sr 
atom where the closely spaced discrete levels can be the 
highly excited states 5 ~ 1 0 s ( ~ S ) ,  Sslls( 'S), 5s7s("), etc. 
and the closely spaced autoionizing levels can be multiplets 
of the 4d ~ P ( ~ P )  state. We shall consider also multichannel 
decay of autoionizing and discrete states under the influence 
of a laser-field. As first shown in Refs. 2 and 3, noninterfering 
channels have a considerable influence on the final results. A 
discussion of the influence of these channels can be found in 
$4. In calculations we shall ignore spontaneous transitions 
in an atom and assume that the laser field is monochromatic. 
Spontaneous transitions and the finite duration of applica- 
tion of the laser field may result in partial narrowing (down 
to the larger of the widths of radiation and laser pulses). 

$1. GENERAL ANALYSIS 

For the sake of simplicity we shall assume that the con- 
tinuum is nondegenerate and that noninterfering transi- 
tions, such as photoionization from autoionizing states or a 
transition to a second continuum (when an ion is in an excit- 
ed state), are absent. The influence of these transitions will 
be discussed in $4. 

We shall consider a many-electron atom in the field of 
strong electromagnetic radiation. The first field couples the 
ground state to discrete levels v and the second field couples 
intermediate levels v to autoionizing statesp and to the con- 
tinuum (Fig. 1).  

The basis wave functions for the discrete spectrum of an 
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FIG. 1. 

atom in a field are assumed to be quasienergy wave functions 
derived in the approximation of a multiphoton resonance in 
the case when the following periodic perturbation is applied 
adiabatically: 

These functions are described by 

x (i, k=O, . . . , N ;  y=N+l,. . . , N + M ) ,  ( 2 )  

where A,  ( Y  = 0,1, ..., N )  are the quasienergies of an atom in 
an electromagnetic radiation field, which are described by 
an equation of degree N + 1. When the interaction is 
switched off, i.e., when V , ( t )  -0, the quasienergy A,  re- 
duces to the energy of levels of a free atom, and the wave 
functions are reduced to functions of a free atom: 

cD,(t)--*Ve-'w~'t (v=O, . . . ,1V). (3  

Discrete states $, ( k  = 0, ..., N )  have energies below the first 
ionization threshold and states $@ (p  = N + 1 ,  ..., N + M )  
have energies above this threshold. 

The Schrodinger equation for this problem is as follows: 
dY 

ih-=(H,+V,(t)+V,(t)+U) Y ( t ) ,  
at 

( 4 )  

where H,, is the free Hamiltonian, V, is the interaction with 
an ionizing electromagnetic field, and U is the "configura- 
tional" Fano interaction.I4 The complete solution of the 
Schrodinger equation allowing for the continuum will be 
represented as follows: 

r ( t ) =  z a . ( t ) c ~ , ( t ) +  J d h a x ( t ) ~ h ( t ) ,  ( 5  
k 

where p, ( t )  = p,exp( - i A t / f i )  is the unperturbed wave 
function for a continuous spectrum of an atom of energy A. 

Substituting Eq. (5 )  into Eq. (4) ,  we obtain a system of 
differential equations for the coefficients a , ( t )  
( k  = 0, ..., N  + M )  and a,  ( t ) ,  which is converted by the 
Fourier transformation 

where 

to a system of algebraic equations for their Fourier trans- 
forms. The solution of these algebraic equations can be 
found in Ref. 18. Using the results of Ref. 18, we shall de- 
scribe the complete system of orthonormalized quasienergy 
wave functions by 

where 

The system of equations for the determination of the ele- 
ments of a unitary matrix A and of Em is as follows: 

k 
where 

and P denotes the principal value. The matrix elements a,, 
and a,, are described by the following expressions: 

0. if n < N .  k < N ,  

C;V~;' in the remaining cases. ( 1 5 )  

where 
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The general solution of the Schrodinger equation can be 
represented in the form of an expansion in functions YE ( t ) .  
We shall assume that the exciting resonance field is applied 
adiabatically, whereas the ionizing field is applied at a mo- 
ment t = 0. Then, at the time of application of the ionizing 
field an atom is in a quasienergy state a, .  The solution of the 
Schrodinger equation subject to this initial condition is 

m 

Using Eqs. (2 and ( 8 ), we find that the wave function is 
described by 

m 

xexp [t ~ . t  I@, ( t )  +I dh erp [+ ht ] 
P 6imhzrn* [-r, - 4-6 (E-A) ] r p ~ ( t ) }  . 

E-A E-Em 
(17) 

We shall assume that all the matrix elements, including 
F,, (E) ,  depend weakly on the energy Eand that they can be 
regarded as constants. As pointed out in Ref. 19, the depen- 
dences of these functions on the energy E is indeed weak, 
since the characteristic interval for the variation of the func- 
tions ( -Ry = 13.26 eV) is large compared with the values 
of the functions. 

Projecting the wave function Y(t)  on @,(t)  
( n  = 0 ,..., N + M) and on p, ( t ) ,  we find that a, ( t )  and 
a, ( t )  are described by the following expressions: 

m 

where 

an ( E )  = C AnrnGm [I1 (E-E*)] .  
m k 

The quantities s, in Eq. (21 ) (where m = 0, ..., N + M )  are 
roots of a complex equation of degree N + M + 1: 

which in turn is a characteristic equation of the matrix 

It is shown in Ref. 18 that the roots of Eq. (23), which is of 
degree N + M + 1, lie in the lower complex half-plane of E. 
Integration with respect to E in Eqs. ( 18) and ( 19) yields 
the following expressions for a,  ( t )  ( n  = 0, ..., N + M) and 
a, ( t ) :  

a,' (s,) a ,  (s,) i 
a, ( t )  = - 2 n i E  ~ X P [  - II (sm-En) t ] 

,, f' ( ~ m ) f ' ( ~ m )  

ao ' (sm)  I -exp[- i (s , , -~) /h]  
a-s, (26) 

We shall consider the case when all the roots of Eq. (23) are 
different; the case when there are some multiple roots will 
require a separate investigation. 

In the limit t-+ ~4 we find that the amplitude of the dis- 
tribution of photoelectrons is described by 

which shows that this amplitude has N + M + 1 different 
maxima located at points /2 = Res, and with widths 
2 Ims,. 

The total probability of ionization at a moment t is de- 
scribed by the following expression: 

0 2  

- m 

Substituting here a, ( t ) ,  we find that the total probability of 
ionization as a function of time t is described by 

$2. EFFECTS OF NARROWING OF AUTOIONIZATION 
RESONANCES IN A STRONG ELECTROMAGNETIC FIELD 

As pointed out in $1, the amplitude of the distribution 
of photoelectron energies has N + M + 1 maxima at points 
/1 = Re s, with widths 2 Im s, . In the present section we 
shall show that the positions and widths of these maxima 
(resonances) may depend not only on their atomic charac- 
teristics, but also on the intensity of an external laser field. 
For simplicity, we shall ignore noninterfering channels such 
as spontaneous photoionization from autoionizing 

photodecay to a different continuum," etc. We 
shall also assume that the laser field is mono chroma ti^.^ 
Photoionization from autoionizing state degeneracy of the 
continuum, and inelastic transitions will be discussed in 54. 

In the present section we shall show that complete nar- 
rowing of resonances is possible under the assumptions 
made above. 

We shall only consider the case when the eigenvalues of 
the matrix 1 1  En S,, + F,, )I are different. Narrowing occurs 
if Eq. (23) has at least one real root E. Substituting this real 
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root E into Eq. (23)  and separating the real and imaginary 
parts of the equation, we obtain 

N+M 

It follows from the first equation in the system (29)  that - 
E = E, ( k  = 0, ..., N + M )  and then, substituting this into 
the second equation of the system (29 ) ,  we obtain 

Since we are assuming that all the values B, are different, it 
follows that 

whereas Eqs. ( 10) and ( 1 1  ) give 

The londition (32)  can be interpreted as follows. The sec- 
ond field mixes discrete levels causing "splitting" of each 
level ( Autler-Townes effect). Each new "dressed" state 
contains "old" discrete states with amplitudes A. A transi- 
tion to the continuum from each old state occurs proportion- 
ally to 9. Hence, we find that the effective matrix element 
which links a dressed state with the continuum is propor- 
tional to the sum 8,  9, A,, ; if this matrix element vanishes 
because of interference, it follows that narrowing of a 
dressed resonance takes place. 

Moreover, we can show that the condition (32)  is a 
generalization of the condition derived by Rzazewski and 
E b e r l ~ . ~  They stated that narrowing occurs if zero of the 
ionization amplitude coincides with the energy of a dressed 
state. In fact, if A = B, is substituted into Eq. (27) ,  we ob- 
tain 

n 

(n+k) 

According to our hypothesis on the multiplicity of B,, we 
obtain 8, = 0  or 8,  9, A,, = 0. 

Substituting the eigenvalues E,  into Eq. ( 12), we shall 
represent the condition (32)  in a more convenient form. If 
all the roots g, of the characteristic equation 

are different, then-as is known-the coefficients A,, are 
proportional to the cofactors of the determinant (33 ) ,  where 

is replaced by the corresponding value of E n .  We shall 
denote these cofactors by A,, [ p  is selected so that one of the 
cofactors A,, ( k  = 0, ..., N + M )  differs from zero; the exis- 
tence of such an index follows from the assumption about the 
multiplicity of E l .  It follows from this assumption that the 
matrix [ [En  S,, + F,,,,, 11  is of rank N + M. This allows us to 
write down 

where C, are deduced from the condition of unitarity of the 
matrix A. Substituting Eq. (34 )  into Eq. (32 ) ,  we obtain 

We can find the narrowing condition if we solve simulta- 
neously Eqs. (35)  and (33 )  or, in other words, Eqs. (35 )  
and (33 )  should have at least one root in common. We can 
show that Eq. (35)  applies irrespective of the indexp. If we 
represent the left-hand sides of Eqs. (35 )  and (33 )  in the 
form of polynomials, we can readily formulate the condition 
of simultaneous narrowing of k  resonances. This is true 
when and only when the matrix (2n - k )  x ( 2 ( n  - k )  + 1 )  
( n  = N + M  + 1 ), composed of coefficients of the polyno- 
mials (35)  and (33 ) ,  is of rank smaller than 2(n  - k )  + 1 
(Ref. 20). It follows from this formalism that, in general, 
one can expect simultaneous narrowing of N + M  reson- 
ances. It should be pointed out that if the matrix D of Eq. 
(24)  is normal, i.e., if DD + = D +D, then k  = N + M. 

We shall illustrate this method by considering the case 
when N + M  = 1 and N + M  = 2. The case when 
N + M  = 1 ,  i.e., when there is one discrete level below the 
first ionization threshold of an atom and one level above this 
threshold, has been considered by many  author^."^ This 
case is illustrated schematically in Fig. 2. 

In this case the matrix D of Eq. (24)  is normal subject to 
the following condition which is both necessary and suffi- 
cient: 

Fot 
Ei-Eo=-(1.6.i12-1.6.012). 

.6., .6.1 
(36)  

It follows from Eq. (36)  that there are always such frequen- 
cies of the laser field that narrowing cannot be achieved sim- 
ply by altering the radiation intensity. Consequently, it 
would be of interest to investigate the narrowing of reson- 
ances by varying the radiation frequency. 

If N + M  = 2, we can distinguish three different cases 
illustrated in Fig. 3. The cases labeled a and b are obtained if 
the first perturbing field is weak; then, a transition from the 
ground state of an atom can be allowed for by using pertur- 
bation theory in respect of the interaction V,. In the case of 
narrowing effects we need to consider only the "upper part" 
of the ionization process shown in Figs. 3a and 3b. The case 
when the interaction V, mixes strongly the states 0  and 1 is 
illustrated in Fig. 3c. 

It is particularly interesting to derive the condition en- 
suring that the amplitude of the distribution of photoelec- 
trons obtained in the case of ionization exhibits simulta- 
neous narrowing of two resonances. The necessary and 
sufficient condition is that the matrix D of Eq. (24)  is nor- 
mal. Hence, we obtain 

Y 
FIG. 2. 
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We can readily show that the condition (37) of simulta- 
neous narrowing of two resonances is not satisfied in the case 2 

illustrated in Fig. 3c. In fact, it follows from Eqs. ( 14), ( 15) 
and (7 )  that 

E,-~,=h,-Ao-2ft~l=O. 

Substituting A ,  and A, of Ref. 21,into Eq. (39),  we obtain ;hwr,y 
er2+41 fo1(2=0, 

where&' is two-photon detuning andf;,, is an effective matrix 0 

element which couples atomic states $, and $, . Sincef;,, #O, FIG, 4, 
it follows that the condition (40) cannot be satisfied. This is 
due to the fact that the state $,, is not coupled directly to the 
continuum. We can similarly consider the cases when 
N + M = 3,4, ... . Coo+l, Col+O, C,'-.l, CIO-+O, Lo-a,', hi+oI'. (42) 

53. GENERATION OF THE THIRD HARMONIC 

We shall coasider nonlinear mixing of frequencies of 
thew, = 201, + w, type for the scheme of transitions shown 
in Fig. 4. The interaction V, is in resonance with the two- 
photon transition 0- 1. For the sake of simplicity, we shall 
allow for V, using perturbation theory and include the inter- 
action V, ,  which couples the states 1 and 2, in a resonance 
approximation. In the present section we shall show that 
when the condition (36) is satisfied, the signal at the fre- 
quency 2w, + w2 increases. This is due to the fact that the 
ionization losses decrease7 if the condition (36) is satisfied. 

A complex nonlinear polarization P,, ( t )  at the fre- 
quency w, = 2w, + w, is given by 

i 
~ . , ( t )  = {ao ( t )  coo erp[ - That] 

If we retain in Eqs. (25) and (26) only the terms of the first 
order in V, and assume that the interaction time satisfies the 
conditions 

ftll rm s 1 . ? ~ ~ t ~ t i ~ ~ e o 1 2 ,  (43) 

where 8, = CYS,, we find that simple transformations yield 
ao(t) = 1, 

f 0 i  a, ( t )  = - 
i 

f' (Eo) 
( ~ ~ , - i n e , e , * )  exp [- h ( ~ o - ~ 2 )  t I ,  

- info,  =-- i 
f' (Eo) 

[a ,  (Eo-E,) +B,F.,l exp 

where 
+ a, ( t ) ~ :  exp [- $ (h t - z f i a* ) t ] ]  f' (Eo)= ( E o - S I )  (Eo-SZ)?  

whereas f,, is an effective two-photon matrix element cou- 
{a; (t)erP [+E, '~]  poz+.J dhe ip  [i h t ] a ~ ( t )  Po,). pling the states 0 and 1 (Ref. 21 ). Substituting Eq. (44) into 

(41 
Eq. (41 ), we find that Po, ( t )  is described by 

~ ~ , ( t )  =exp[i(2ai+a2) t ]  JO i Here the coefficients a, ( t )  ( n  = 0,1,2,R) are found from the (Eo-si') (Eo-s2') 
relationships (25) and (26); p02 is a matrix element of the x { p o 2  (F1,+in6,'6~) + i n ~ o ~ [ 6 1 ' ( E ~ - E ~ )  +6z'F211). 
dipole moment between the ground and autoionizing levels; (45) . , 

p, is a matrix element of the dipole moment of a transition 
from the ground state to the continuum. When the first reso- The expression (45) and the narrowing condition (36) 
nance interaction is weak, i.e., in the limit V, -0, it follows were obtained in Ref. 7. However, the condition (36) was 
from Eq. ( 2 )  that deduced in Ref. 7 on the assumption that the interaction 

FIG. 3. 
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between the levels 1 and 2 is many times greater than the 
Fano configurational interaction.I4 It is clear from the re- 
sults of the preceding section that the condition (36) is inde- 
pendent of this assumption. 

If the two-photon interaction Vl is weak, it follows-as 
pointed out already-that only the "upper part" of the ioni- 
zation process (Fig. 4) is important in the narrowing and the 
field frequency is then to be found from the expression 

If the condition (46) is satisfied, the polarization of an atom 
reaches its maximum when 

It follows from Eqs. (46) and (47) that the frequency of the 
output radiation is 

If a two-photon resonance transition is strong or the 
conditions of Eq. (43) are not obeyed, an analysis of the final 
results becomes very difficult and further calculations for 
these cases must be carried out numerically on a computer. 

$4. INFLUENCE OF NONINTERFERING DECAY CHANNELS 
ON THE RESONANCE NARROWING EFFECTS 

As pointed out in Refs. 2 and 3, the noninterfering 
channels of decay of autoionizing states can alter significant- 
ly the results obtained in §2. If a transition from autoionizing 
states to the second continuum (when an ion is in an excited 
state) occurs only at a specific frequency of a laser field, the 
photoionization with a transition to this continuum and the 
degeneracy of the continuum always occur. However, the 
photoionization from autoionizing states [such as transition 
(2)  in Fig. 21, which is due to a two-electron dipole transi- 
tion, is forbidden in the one-configuration approximation 
because autoionizing states belong to a shifted term of an 
atom (when two or more electrons are excited simultaneous- 
ly ). Little study has been made of such transitions and they 
can be resolved only if we allow for the configurational inter- 
action. The matrix elements for such transitions consist of 
two parts. The first (factorized) part describes transitions 
following the absorption of an additional photon in the con- 
tinuous spectrum [such as transition (3)  in Fig. 21 after 
autoionization. Such a transition can occur and experimen- 
tal investigations of the above-threshold ionization22 dem- 
onstrate that a free-free transition VEE, is really observed. It 
reduces by a factor [ 1 + $1 V,,. 1 2 ]  'I2 the matrix elements 
of t r an~ i t i ons~~  from discrete and autoionizing states to the 
first (lower) continuum23 and gives rise to an additional 
peak, proportional to I VEE, 12, in the photoelectron distribu- 
tion. The second part of the matrix element which corre- 
sponds to a two-electron transition is due to an integral rep- 
resenting the principal value in the composite matrix 
element and is clearly small. Usually the oscillator strengths 
of two-electron transitions are 10-3-10-4 (Refs. 11 and 
15). 

In the present section we shall consider the influence of 
these channels on the narrowing condition. We shall do this 
by investigating the behavior of the eigenvalues of the matrix 
D of Eq. (24) : 

where 9 :) is a matrix element which couples a discrete or 
autoionizing state ( n )  to the continuum (i). 

It is shown in Ref. 18 that the imaginary parts of the 
eigenvalues of the matrix D of Eq. (49) lie within the interval 
from min{/Zc) to max{/Z,), where A, are the eigenvalues of 
the matrix C which is of the following form: 

Since each - ~11.9 :"'if 2'11 matrix is of rank 1, the rank of 
the matrix Cis rc K, where K is the number of continuums. 
Hence, it follows that the matrix C has N + M + 1 - Kzero 
eigenvalues. Consequently, in narrowing of resonances it is 
essential that the number K of the continuum should be less 
than the number of discrete levels in the continuum. How- 
ever, it is difficult to achieve such a situation unless such 
"selection rules" as those suggested by Bethel5 reduce the 
number of continuums. 

For the sake of simplicity we shall consider a scheme 
(Fig. 3b) allowing for photoionization from an autoionizing 
state or for photodecay from this state. Simple calculations 
give the following narrowing conditions: 

E=Eo, Fzo=Fzl (l?o/I'I) Ih .  (51) 

The second condition of Eq. (5 1 ) can be satisfied at random, 
since it is independent of an external magnetic field. The 
condition ( 5 1 ) can be derived on the basis of the following 
considerations. An external field mixes discrete states with 
amplitudes A. One of the states becomes narrower ifA. = 0 
(Fig. 3b) if naturally the matrix element of the photoioniza- 
tion does not vanish, and moreover if Ail = - A,$dS,. 
The condition (51) is obtained by substituting these ele- 
ments into Eq. ( 12). 

We shall now consider the case when there is one au- 
toionizing level and one discrete level, and photoionization 
takes place [transition (2)  in Fig. 2) ] 's3 or the transition ( 1 ) 
to the second continuum takes place from an autoionizing 
state." In this case the matrix D becomes 

where ri is the photoionization width of an autoionizing 
state. In this case the matrix C of Eq. (50) becomes 

whereas the eigenvalues are 

The narrowing condition can be obtained if we assume that 
the matrix (52) is normal, which gives 

This condition is identical with the conditions in Refs. 2 
and 3. Since the matrix ( - C) is positive definite, it follows 
that an increase in the intensity increases the eigenvalues, 
i.e., the minimum width increases the intensity of the exter- 
nal field. 
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CONCLUSIONS 

We investigated narrowing of the photoelectron spec- 
trum and the influence of such narrowing on generation of 
the third harmonic. Ignoring spontaneous transitions and 
using the approximation of a monochromatic wave, we 
found the copditions for narrowing of the photoelectron 
spectrum in respect of the detuning and intensity of the ex- 
ternal field. However, as first shown in Refs. 2 and 3, in the 
presence of noninterfering channels such as a two-electron 
transition to the first continuum and a one-electron transi- 
tion to a higher second continuum accompanied by the ab- 
sorption of a photon, or in the case of degeneracy of the 
continuums we found that the minimum width obtained due 
to interference of the channels rises monotonically with in- 
tensity of the external field, i.e., there is no narrowing of the 
intensity in the photoelectron spectrum. 

The authors are grateful to M.L. Ter-Mikaelyan and 
participants of a theoretical seminar at the Institute of Phys- 
ics Research of the Armenian Academy of Sciences for dis- 
cussing the results. 
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