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It is shown that in passage of a particle through nuclear matter, two types of collective motion 
arise: a shock wave (the Mach cone) and a jet which is formed in a narrow region directly behind 
the traveling particle. The medium behind the Mach cone remains cold, while the temperature in 
the region of the jet reaches values of the order 70 MeV. 

1. INTRODUCTION 

In nuclear physics in recent years a continuously in- 
creasing role has been played by processes with large trans- 
fer of energy and momentum to a nucleus. Such processes 
arise, for example, in the collision of heavy ions of high ener- 
gy. Here a large number of degrees of freedom are excited 
and the statistical and macroscopic properties of the nuclear 
systems become of primary importance. One of the manifes- 
tations of the macroscopic properties of nuclear systems is 
the possibility of the appearance in nuclear matter of collec- 
tive motions of a hydrodynamical type, in particular shock 
waves' and jet flows.' As a result the nuclear matter may 
turn out to be at high densities and high temperatures, which 
will permit study of the equation of state of nuclear matter 
under these conditions and investigation of the possibility of 
phase transitions in it. 

The present work is devoted to a discussion of the pas- 
sage of a nuclear particle through matter and to investiga- 
tion of the collective motions of a hydrodynamical type 
which arise in it. This problem apparently was investigated 
for the first time by Glassgold et al.,' who used an acoustic 
approach to demonstrate the possibility of occurrence of 
shock waves in nuclear matter. In Ref. 1 it was assumed that 
the hydrodynamical flow arising is isentropic. 

Khangulyan3 obtained a system of hydrodynamical 
equations which describes the behavior of nuclear matter on 
passage through it of a particle and which avoids the as- 
sumption that the hydrodynamical flow which arises is isen- 
tropic. It has the form 

d p  - + div pV=O, 
a t  

wherep, V , p ,  and u, are respectively the density, mass veloc- 
ity, hydrodynamical pressure of the nuclear medium, and 
velocity of the incident particle, E and w are the internal 
energy and thermal function of a unit mass, and T and a are 
certain parameters, generally speaking phenomenological, 
which describe the transfer of energy and momentum from 
the incident particle to the medium. In obtaining the system 
of equations ( 1 ) the author of Ref. 1 neglected the loss of 
energy and momentum by the incident particle. 

The hydrodynamical system of equations ( 1 ) differs 
from the hydrodynamical models4 widely used in descrip- 

tion of heavy-ion collisions by the presence in it of sources in 
the Euler equation and in the energy equation (terms pro- 
portional to S (x  - u,t). They are proportional to the differ- 
ence V - u,, for if the incident particle is moving with the 
hydrodynamical velocity, i.e., if u, = V, then it will not 
transfer either energy or momentum to the medium. The 
phenomenological parameter r is the characteristic time of 
transfer of momentum from the incident particle to the me- 
dium; the S function expresses the law of motion of the inci- 
dent particle. There are two sources in the energy equation. 
One of them, namely m (a /?)  ( V  - u,)*S(x - u,t),  is scalar 
relative to both rotations and Galilean transformations. The 
presence of the other term, (m/27) (V2 - U: )S(X - u,t), 
which changes under Galilean transformations, is due to the 
source in the Euler equation. Indeed, it can be shown3 that 
introduction of a source into the Euler equation automati- 
cally requires introduction of a source into the energy trans- 
port equation, so that the covariance of the system of hydro- 
dynamical equations relative to Galilean transformations is 
preserved. If we assume that nuclear matter is a simple clas- 
sical nucleon gas, then a = 0. When inelastic processes such 
as pion production, excitation of nucleon resonances, and so 
forth are taken into account, we have the coefficient a #O. In 
what follows for estimates we shall everywhere set a = 0. 

All derivations given in the present work refer to ha- 
dron-nucleus collisions. For application of the results to a 
nucleus-nucleus interaction it is necessary to perform aver- 
aging over the momentum distribution of the nucleons in the 
incident 'nucleus, assuming in the simplest case that each 
nucleon of the incident nucleus interacts independently. 

In the present work the, system of hydrodynamical 
equations ( 1 ) will be discussed in the acoustical approxima- 
tion and stationary collective motions of hydrodynamical 
type of the nuclear matter will be studied. In  Sec. 2 we have 
obtained by the Fourier transformation method a solution of 
the linearized system of hydrodynamical equations ( 1)  and 
have shown that on passage of a nuclear particle through 
nuclear matter there arise in it two forms of collective mo- 
tion of hydrodynamical type. First, we have a jet collective 
motion, the investigation of which is carried out in Sec. 3. 
Second, collective motions of the shock-wave type arise, 
which are discussed in Sec. 4. Section 5 is devoted to calcula- 
tion of the temperature of the medium. 

2. THE ACOUSTIC APPROXIMATION 

We shall consider the system of hydrodynamical equa- 
tions ( l ) and shall write it in a coordinate system attached to 
the incident particle, i.e., we shall carry out a Galilean trans- 
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formation: x -. x' - u,t, t -. t ' = t. Then the system ( 1 ) will 
take the form 

dP - + div pV=O, 
at 

We note that in a coordinate system connected with the inci- 
dent particle (the direction of the velocity ofwhich coincides 
with the x axis), the system of equation (2 )  must be supple- 
mented by boundary conditions at infinity, namely that the 
medium at x-. + w has a constant velocity u = - u,. 

In what follows we shall discuss stationary solutions of 
the hydrodynamical system (2) ,  i.e., we shall assume that 
the hydrodynamical characteristics do not depend on t. This 
means that the solution of the system ( 1)  will depend on 
time in the form of the combination x - u,t. 

It is necessary to add to the system of equations (2)  an 
equation of state which closes the system. In writing down 
the equation of state of nuclear matter we shall proceed from 
the assumption of an ideal Fermi gas of nucleons moving in 
some averaged potential.' Here we shall assume that the ef- 
fective mass of the nucleons does not depend on the density 
of particles: m* = m* ( p )  = m (m is the mass of a free nu- 
cleon). The equation of state for T = 0 can be written in the 
form E = E, ( p) . Then 

where p, = mn, is the equilibrium density of nuclei and n, 
= 0.17 F-! The velocity of sound in nuclear matter,6 which 
is determined by its compressibility K(sZ = K/9m for 
K = 210 + 30 MeV, s = 0.15c), is related to the second de- 
rivative of the internal energy with respect to density: 

wherep,(p) = ~ ~ ( d ~ , / d p )  andp,(p,)  = 0 fo rp  =p,. 
For T # O  the entropy per nucleon is nonzero. In what 

follows, as a model for calculation of the thermal motion we 
shall take 

where E, ( p , ~ )  is the internal energy of an ideal Fermi gas as 
a function of the density and entropy and E, ( p )  is the ener- 
gy of an ideal Fermi gas at T = 0. Since the effective mass of 
the nucleons does not depend on the density, we have ( p2 

d ~ , ~ / d p ) ~  = (2/3)p~, ,  and then it is possible to calculate 
the pressure 

therefore E (  p,p)-the internal energy as a function ofp  and 
p-in this model has the form 

Then the thermal function of a unit mass is written as 

Since in what follows we shall be interested in the acoustic 

approximation of the hydrodynamics equations, we shall 
write out the change of the internal energy and the thermal 
function for small changes of p' = p - p, and p' = p - p, 
near the pointp = p,andp, = 0. From Eqs. (5 )  and (6) ,  the 
condition (3) ,  and the definition of the velocity of sound in 
nuclear matter (4), it follows" that 

3 p' 3 sz 
E (p, p) =E (po, p0=O) + -- - -- p', 

2 pa 2 po 

Now, using Eq. (8) ,  we can linearize the system of hy- 
drodynamical equations (2) ,  assuming that the perturba- 
tion of the medium which arises is small. Let p = p, + p', 
p = p, + p', V = u + v', where p,, u, and p, are the unper- 
turbed values of the quantities. Thenp', p', and v' satisfy the 
following system of equations: 

po div V'+U grad p'=O, 

m u 2  
=-- (1+2a) 6 (x). 

2t 

To obtain the system of equations (9)  it is necessary to use 
the well known procedure9 of expanding in small quantities 
p', p', v' to terms of fourth order. In the expansion of the 
source terms, which are proportional to S functions, it is 
necessary to take into account that they are quantities of the 
first order of smallness. 

For solution of the linear system of equations (9) we 
shall use the method of Fourier transformation, i.e., we shall 
representp', p', v' in the form of Fourier integrals: 

Then the system of equations ( 9 )  is converted into an alge- 
braic system of equations for the Fourier transforms a,, b,, 
and c, , the solution of which has the form 

m 1 k mu 
c k = i  - [ sz +- (1-2a) u2] (ku) 2-kzS1 +i- TpIYk 

"Po 3 

From the expressions ( 1 1 ) one obtains the relation between 
the coefficients a, and b, of the following form: 

which will be used more than once in what follows. 
To obtain a solution of the system of equations (9 )  it is 

necessary to perform an inverse Fourier transformation. We 
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shall discuss this procedure in the case ofp'. For this purpose 
we shall use cylindrical coordinates: 

where k is the component of the vector k along u, and k, is 
the component of k perpendicular to u. Then we can write 

where a 2  = s2/(u2 - s2) .  In writing down the expression 
(12) we have taken into account that ku = - k l l  lul. The 
integrand has two poles at the points f ak,. In view of cau- 
sality these poles must be displaced from the real axis k l /  to 
the lower half plane. Indeed, since the velocity of the inci- 
dent particle u,, and correspondingly also the velocity of the 
incident flux in the coordinate system connected with the 
particle, are greater than the velocity of sound s(lu,l >s) ,  
then the perturbation which arises from the incident particle 
can be manifested in the flow only downstream, and it is this 
which determines the displacement of the poles from the axis 
of integration. We note that in writing out the equations of 
hydrodynamics with viscosity (see Sec. 3) the poles + ak, 
automatically turn out to be in the lower complex half plane 
of k,, . As a result we have 

where 8( - x )  is a step function and 
m 

I.= J dk,k, cas (xk,a) lo (k,r,) . (13') 
0 

In obtaining Eq. ( 13) we made use of the integral represen- 
tation of the Bessel function for J ,  ( x ) ,  in order to carry out 
the integration over the polar angle in the k, plane . 

For calculation of the integral I ,  it is necessary to use 
the integral representation of the Bessel function and, 
changing the order ofintegration, it is easily possible to carry 
out the integration with respect to dk,. In the remaining 
integral, which contains an integration over the angle 
p(O<p<2.n), we go over to integration over z = elp, in 
which case the integration contour is a circle of unit radius. 
For a lxl> r, one of the poles will lie inside the integration 
contour, and the other outside it. For alxi = r, they lie on 
the integration contour and compress it, and therefore at this 
point I, has a singularity. As a result of integration of ( 13') 
we have 

From the expressions ( 13) it follows that the perturba- 
tion from the incident particle is propagated in the Mach 
cone,' the angle of which is 2p, where 

sin p=s/u. (14) 

For determination of the pressurep' on the Mach cone (for 
alxl = r, ) it is necessary in the hydrodynamics equations to 
take into account dissipative processes, in particular the vis- 
cosity. 

Using the expression for a,,  we obtain 

i uZ dk,, d zk ,  
+-- 6n (1-2,)  - 5 - exp ( ik l , x )  5 -  orp ( ik , r , ) }  

s- ..% Iulk,,  

(15) 
As the result of integration of ( 15 ) we have 

P' 1 I u I  m 
p = - ( l a )  -- 6"' (r , )  0 (-z) , 

s2 'C 
(16) 

where S2(r, ) is a two-dimensional S function. From the ex- 
pressions ( 13) and ( 16) it follows that in addition to the well 
known collective motion of the hydrodynamical type- 
shock waves (the Mach cone),' an additional collective exci- 
tation of nuclear matter occurs in passage through it of a 
particle. This excitation is described by the second term in 
the expression ( 16) and is a hydrodynamical motion of the 
jet type. In order to show this, let us obtain an expression for 
v l ( x ) .  

Using the expression ( 1 1 ) for c,, we can see that 

(17) 
where 

For calculation of the integral I we shall make use of the fact 
that the problem has cylindrical symmetry around the x 
axis. Then it is possible to decompose the integral I into unit 
vectorsn, andn, (wheren, = u/lul, n, = r , / / r ,  1, and r, is 
the vector in the plane perpendicular to u) :  

We than have 

where I, is determined by Eq. ( 13'). Correspondingly, car- 
rying out the integration, we can see that B is given by the 
equality 

where 
m 

The calculation of the integral I, is similar to that of the 
integral I,,: 

As in the case of the integral I,,, the integral I, has a singular- 
ity at alxl = r,. Collecting together the expressions (17)- 
(20), we finally have 

( U z - S z )  '12 m 
4- n u 2  r  } 0 x . (23) 

S 
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Equations ( 13), (16), and (23) give the solution of the 
posed problem of determining the hydrodynamical behavior 
of nuclear matter on passage of a particle through it. Here, as 
we have already mentioned, in the medium there is a charac- 
teristic Mach cone associated with the shock wave. In addi- 
tion to the Mach cone there is an additional characteristic 
feature: presence of the S-function terms p' and v'. These 
terms describe the phenomenon of separation of the jet (or of 
a separated ~ t reaml ine ) ,~  i.e., the flow is characterized by a 
tangential break along the stream line, which extends from 
x = 0 to x = - CU. Along this stream line the condition of 
potentiality of the flow is violated. In fact, using the expres- 
sion for c, ( 1 1 ), we can easily calculate 

m 
- xu] --- a"'(.) 

TP.[ {xu+x, u ,  

+ 2'u' , ~ ( - ~ ) ~ ' ( l r ~ ) ,  (24) 
(xu) "'-x U 

i.e., rot v' is nonzero along the separated streamline. 
The description of the behavior of nuclear matter under 

the influence of a passing particle, obtained in this section in 
the acoustic approximation, is discontinuous. There is a dis- 
continuity at the Mach cone and a discontinuity associated 
with the phenomenon ofjet separation. This is due to the fact 
that our treatment is based on the equations of ideal hydro- 
dynamics. Taking into account dissipative processes of vis- 
cosity and heat conduction will lead to smearing of these 
discontinuites and to formation of regions of finite size in 
which the condition of potentiality will be violated. As a 
result there will be formed a jet flow-a collective motion of 
nuclear matter. 

A similar investigation of the behavior of nuclear mat- 
ter was carried out previously (see for example Ref. 1). 
However, in writing down and solving the corresponding 
system of equations, it was assumed that the flow was poten- 
tial over the entire region. This is equivalent to the assump- 
tion that the equation for the energy contained a source with 
a = 0.5. For all remaining values of a, as was shown in Sec. 
3, the potentiality of the flow is violated. 

3. INVESTIGATION OF JET FLOW 

For investigation of the behavior of the discontinuous 
solutions near the singularities, we shall go over from ideal 
hydrodynamics to viscous hydrodynamics. We shall intro- 
duce into the equation of hydrodynamics a shear viscosity, 
neglecting heat conduction. This transition is accomplished 
by a well known m e t h ~ d . ~  For this purpose in the momen- 
tum conservation law it is necessary instead of the momen- 
tum flux density tensor of an ideal liquid IIik 
=pa, ,  + p V, Vk to write II ik  - u,fk (where aik determines 

the irreversible viscous transport of momentum9), and in the 
energy equation it is necessary to add to the heat flow, which 
is due to simple transport of mass, Q, = p V, (w + V2/2), a 
term which takes into account friction: Qi - V k u 6 .  Then 
the system of hydrodynamical equations will take the form 

where 

and 7 is the coefficient of shear viscosity. As previously, we 
shall supplement this system by an equation of state (7 )  and 
( 8 ) .  Rewriting the resulting system of equations in the coor- 
dinate system connected with the incident particle, and lin- 
earizing it as was done for the system ( 1 ), we obtain a system 
of equations in the acoustic approximation with inclusion of 
viscosity: 

po div vf+u grad pl=O, 

mu2 
(1+2a) 6 (x) . 

We shall again seek a solution of the linear system (26) 
by the method of Fourier transformation (10).  For the 
Fourier transform we have an algebraic systems of equa- 
tions, the solution of which has the form 

p,s2uk+1/3 (I-2a)p,u2(uk) -'ld(I-2a) rlk2u2 
t- 

sZ [ p0 (uk) L-p,k2s2-'/,iqkZk~l 

-4/8i (1-201) qk2u2] [pO ( ~ k ) ~ - p ~ k ~ ~ ~ - ~ / ~ i q k ~ k ~ ] - ~ ,  
nzu 1 

c r = i  - + i- mk s2+'/, (1-2a) u2 
T pouk-iqkz 'c p0 ( ~ k ) ~ ~ ~ s ~ - ~ / ~ i ~ ~ k ' k ~  
mk 

fi-  iq [k2s2+ '1, (ku) 2 ]  
'c [pouk-iqk2] [po (uk)z-pos2k'-'//,i.rlk2k~] ' 

From the expressions (27) it can be seen that on taking 
into account viscosity the relation ( 1 1' ) between the coeffi- 
cients a, and b, is preserved, and therefore the coupling 
between p' and p' is given by Eq. ( 16).  Therefore viscosity 
does not smear the singularity in the density distribution. 

The coefficient c, in (27) consists of three terms: the 
first term describes the jet collective flow; the second term, 
which has characteristic sound poles, is a Mach shock cone; 
and the last term represents the influence of the jet on the 
flow in general. For determination of the motion inside the 
jet it is necessary to carry out inverse transformations in the 
first term in the expression for c,. Introducing variables of 
integration k, ,  and k,, we can represent the expression for 
vLt in the form 
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v! - mu d2k, 
Jet - - - j - eap (ik,r,) 

q (2nI2  

The integrand has poles at the points 

Here, taking into account that k ,  20,  we find that one pole 
lies in the uppper half plane (with the plus sign), and the 
second lies in the lower half plane, and both of them are on 
the imaginary axis, so that, closing the integration contour 
either in the upper half plane (for x > 0 )  or in the lower half 
plane (for x < 0 )  , we find that 

In Eq. (29) the integration over the polar angle in the k ,  
plane is carried out by means of the Bessel integral represen- 
tation for the Bessel functions. We finally obtain 

where rZ = r: + x2. 
The expression (30) gives the velocity distribution in 

the jet. From the mathematical point of view we have ob- 
tained a sequence of functions which gives a representation 
of the product of the functions S"'(r, ) 19( - X )  : 

Actually, Jvk,d 'r, for x < 0 coincides with the case of 
ideal hydrodynamics in which the velocity of the jet is given 
by a two-dimensional S function (23),  and for x > 0 it dies 
out exponentially in a mean free path. 

Therefore taking velocity into account leads to a finite 
size of the jet in the expression for the velocity. Let us esti- 
mate the transverse dimension of the jet for a fixed value ofx. 
From (30) we have 

from which 

By making use of the phenomenological theory of transport 
coefficients, according to which 7 = p A V 2  (where A  is the 
mean free path and F is the average velocity of motion of the 
particles, and taking into account that 7-s), it is possible to 
show that around the incident particle a layer with charac- 
teristic dimensions A  arises, and behind the particle a jet is 
formed, the transverse dimensions of which are macroscop- 
ic: 

for IxlBA andx<O.  

4. INVESTIGATION OF THE FLOW IN THE MACH CONE 

We shall turn now to discussion of the behavior of nu- 
clear matter near the Mach cone. For this purpose we shall 
return again to the expressions (27) and shall discuss how 
the pressurep' behaves in the case when there is viscosity in 
nuclear matter. According to ( 10) and (27),  we can write 

where we have introduced the dimensionless quantity 

In  addition, in writing out Eq. (35) we have gone over from 
the variable k I I  to 6, which is given by the equality kl l  = {k,. 
On the assumption that/?a2 4 1, the poles of the integrand as 
a function of k, can be found by the method of successive 
approximations. As a result we have 

Two poles lie in the lower half plane, and one in the upper 
half plane. Therefore in integration over6 forx < 0, when the 
integration contour must be closed in the lower half plane, 
two poles are effective: 

m 

m 
p' = --I u 1 a2 J kldkr [ A  cos (kr.x) +PB sin (k,ax) ] 

2nr 

X Ju(klrL)esp(--yk,2), (38) 
where we have introduced the notation 

A=l+ 'Is ( I -2a)u2/sZ ,  1/2xa2(a2+1) pk,=-ykLz, 

B='/,Aa(3aZ+1) t'l, (1-2a) (a2+1), 

and for x < 0 we have y > 0. In the case x > 0 when the inte- 
gration contour must be closed in the upper half plane, one 
pole contributes to the integral: 

Since the poles (37) were obtained in the first order in 
/?a2, the integration over 6 in these expressions was carried 
out with accuracy to /la 2. The structure of the singularities 
of the integrand of (38) in a finite part of the complex k ,  
plane is the same as in the case of ideal hydrodynamics; see 
Eq. ( 13'). Inclusion of viscosity leads only to an additional 
exponential damping ( a  factor exp( - y k :  ). Therefore in 
what follows in investigation of the behavior of the hydro- 
dynamical characteristics of the medium near the Mach 
cone for x < 0 we shall make two assumptions. First, taking 
into account that p< 1 (since /?a2 < 1, u -s) ,  we shall dis- 
card in the square brackets the term /?Bsin ( k,  ax) .  Second, 
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we shall assume that the additional exponential damping has 
the form exp( - yk, ), and not exp( - yk : ). This is appar- 
ently permissible since this substitution does not change the 
structure of the singularities of the integrand in a finite part 
of the complex plane and, one can hope, will not qualitative- 
ly change the behavior ofp'. It can be said that instead of a 
shear viscosity we are introducing some mathematical vis- 
cosity which in Fourier space leads to such an exponential 
damping. Therefore for x < 0 p' will take the form 

where 
m 

zOT=J k r d k L ~ ,  (krrr)  9 s  (k ,ax)  exp ( - yk , )  . (41 
0 

The further calculation of this integral can be carried out by 
standard methods. As a result we obtain 

In the expression (42), the radical function is defined in 
such a way that the cut is directed along the negative se- 
miaxis, and therefore it is possible to obtain finally an expres- 
sion for the pressurep' in the following form: 

X {a I x 1 [ 1 z0 I - (r12-aZx2+y2) ] 'I2 [ 1 z0 1 +2 ( r L Z - a 2 ~ 2 + y Z )  ] 
- Y  [ ( G 1 + (r ,z-a2xZ+y2) 1". [ 1 z0 1-2 ( r r z - a 2 ~ Z + y 2 )  I ) ,  

(43) 
where 

A distinctive feature of this expression is the existence of two 
shock waves following each other in the medium, in accor- 
dance with the general postulates of the theory in the case of 
nonplanar Indeed, the behavior ofp' has the same 
form as the dot-dash curve in the figure: it can be seen that in 
the transition from the unperturbed region to the perturbed 
region at fixed x (x  < 0)  first there is a region of crowding-a 
region where p' > 0, beyond which there is a region of rar- 
efaction (p' < 0 )  and there is a point at which the rarefaction 
is maximal. As a result of the effect of gradual distortion of 
the profile, this point will lag those located behind it, and 
therefore an ambiguity results. This feature of the behavior 
of the hydrodynamical characteristics of the medium is 
manifested, in the transition to ideal hydrodynamics, in the 
appearance of a singularity at the point r, = a 1x1. As 77-0 
we have I,Y --Io, where 

P O  1 z 1 (a2,r.?-,.L2) -55 . r ~ . < a l x l .  
r ,=a lx l .  F-+O, (44) 
r ,>a lx l .  

After everything that has been said, it is easy to write 
down also an expression for the density p'. Using the expres- 
sion for the Fourier transform ofp' (27), we can easily show 
that 

where&, has the same form as in the case of an ideal liquid 
( 16), whereas 

Let us turn now to discussion of v'. Using the expression 
for the Fourier transform of v' ( 27 ) ,  v' can be written in the 
form of the sum of two terms: v' = v;, + 7. The expression 
for v;,, was obtained in the preceding section; see Eq. (30). 
To obtain f, we shall use all of the same approximations 
which were used in calculation of the pressurep'. As a result 
we have (for x < 0 )  

where I,Y is given by Eq. (41) and IT has the form 

I:= J k ,  d k ,  e x p ( - y k , ) J ,  ( k , r , ) s in (k ,ax ) .  (48) 
0 

Calculation of I : is similar to that of 1;: 

IiT='/~ir~{[r,Z-(a~x~+iy)2]-"+[rL2-(a~x~-i~)2]-~~~). 

(49) 
As y -0 we obtain I T +I, ,  where 

In Fig. 1 we have shown the dependence on r, for fixed 
x (x  < 0)  of the x component of the hydrodynamical velocity 
v'. It is measured in units of the velocity of sound s, and 
distances are measured in characteristic units of length 
1. = ~ / p $ .  In the figure we have shown three curves: the 
dot-dash curve describes the behavior of the x component of 
the velocity f', the dashed curve describes the jet velocity 

FIG. 1. Dependence of the x components of the velocities v' (dot-dash), 
v;,, (dashed), and their sum (solid curve) on r ,  for fixed x. 
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vie,, and finally, the solid curve is the sum of these curves. It 
should be mentioned that in addition to the change of sign of 
the x component of the velocity in the region of the Mach 
cone (at  r, = a Ix I ) the x component of the velocity changes 
sign at r, -- 3. This last change of sign is due to the presence of 
the jet. 

In concluding this section it is necessary to mention that 
Eqs. (43)-(47) solve the problem of the behavior of the 
hydrodynamical characteristics of nuclear matter in the 
Mach cone. From the discussion of this and the preceding 
section it follows that taking into account dissipative pro- 
cesses removes all uncertainties of the hydrodynamical char- 
acteristics which exist in the case of ideal hydrodynamics. 

5. CALCULATION OF THE TEMPERATURE OFTHE NUCLEAR 
MEDIUM 

The hydrodynamical characteristics obtained for the 
medium can be used to determine the change of temperature 
of nuclear matter produced by a particle passing through it. 
On the one hand, the change of the internal energy of the 
nuclear matter is expressed in terms of the change of the 
hydrodynamical characteristics of the matter by Eq. (7) .  On 
the other hand, the change of the internal energy of the nu- 
clear matter can be represented in the form 

where A&, is the change of the internal energy as the result of 
compression at T = 0. From the condition ( 3 )  it follows that 
in the acoustic approximation A&, = 0. 

The quantity A&,. is the change of the internal energy of 
a unit mass as the result of heating. According to the equa- 
tion of state, this quantity is the same for nuclear matter and 
for an ideal Fermi gass: 

where E~ is the Fermi limiting energy and K is the compress- 
ibility of an ideal Fermi gas at T = 0. Introducing the nota- 
tion E" = ( 3 / 5 ) ~ ~  and combining the expressions (51) and 
(52), we obtain2' 

Using the expression for the coupling betweenp' andp'  
( 16) we obtain for the temperature the following expression: 

where 6 = 1.14-1.15. Thus we see that the temperature of 
the medium changes only as the result of the presence of a S 
function in the expression for the density, i.e., in the region of 
the jet, while in the Mach cone it remains unchanged. In 
order to estimate the temperature of the jet-the hot region 
of space inside the Mach cone, it is necessary somehow to 
introduce instead of S'*'(r, ) the dimensions of the jet. From 
the preceding discussion it is evident that taking into ac- 
count dissipative processes leads to a smearing of the 8-func- 
tion term. However, inclusion of viscosity leads to a smear- 
ing of this term only in the velocity. For smearing of the 
8-function term in the density it is necessary to take into 
account thermal conduction. Since thermal conduction and 
viscosity are determined by the same microscopic mecha- 
nism, we have v-,y ( Y  a n d x  are respectively the kinematic 

viscosity and the thermal conductivity of the medium), and 
the characteristic dimensions of the jet should be the same in 
order of magnitude with inclusion of viscosity and with in- 
clusion of thermal conductivity, and therefore the character- 
istic size of the jet S given by (34) can be used to determine 
the temperature of the jet. Then, making use of the fact that 
S'2'(rl ) = 8(r,  )/n-rlr we can rewrite the expression (53) in 
the form 

which is an equation for determination of the jet tempera- 
ture, since the shear viscosity coefficient is a function of the 
temperature. In the region T = 30-150 MeV this function 
has the form" 

cq,=a,T'" exp (B ,T) .  

where a, = 7.8.1OP2 GeV.F and/? ,  = 11.8 GeV-'. Us- 
ing this approximation for the shear viscosity coefficient and 
solving Eq. (54) by the method of successive approxima- 
tions, for the condition that 

we obtain an expression for the jet temperature. 
A T=& .-- 

a l+' /sp~oA 0 (6-1) 

where 

K = P2c2, and yo is the velocity of the incident particle in 
units of c. Then the temperature of the jet with variation of 
the incident-particle energy from 100 MeV up to 1 GeV is 

with r, = 1 F and 1x1 = 1-10 F.  

6. CONCLUSIONS 

Studies of the collective motion of nuclear matter, car- 
ried out in this work and based on linear hydrodynamical 
equations, have shown that two forms of collective motion of 
the hydrodynamical type arise. 

First, there is a collective motion of the shock-wave 
type which is manifested in the presence of the Mach cone in 
the hydrodynamical characteristics of the medium. Here it is 
necessary to mention especially that behind the Mach cone 
the temperature of the medium is not increased, and the nu- 
clear matter remains cold. Second, there is a jet collective 
motion which is located inside the Mach cone and the trans- 
verse dimensions of which are much smaller than those of 
the Mach cone. In the jet the temperature is increased and 
reaches about 70 MeV, i.e., a strongly heated region of the 
medium arises. Phenomena of this type can occur in the in- 
teraction of energetic protons with nuclei. In particular, ef- 
fects of this type apparently can be explained by the "explo- 
sion" of nuclei in their interaction with protons.'* 
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the other two authors. 
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"In Ref. 2 the equation of state of an ideal Fermi gas E = 3p/2p was used 
as the equation of state. For an internal energy E and a thermal function 
w for small changes of pressure and density p' and p', in this case the 
same relations (7) and (8)  exist but with the compressibility of Ref. 7 in 
an_ ideal Fermi gas at T =  0, sZ = g2 
(K = (apddp), =,,, = 5p,( p,,)/3p,,, wherep, ( p )  is the pressureofan 
ideal Fermi gas at T = 0 (Ref. 8)  ) and with a coefficient 9/10 in front of 
the last term in the expression (7).  

"In Ref. 2 this expression was obtained in the case in which the equation 
of state of an ideal-Fermi gas was used as the equation of state. In this 
case AE, = ( 3/5 ) K 2p'/p,). 
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