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A quantum-mechanical system with an ohmic dissipation and a periodic potential is analyzed. 
The frequency dependence of the mobility is studied. Over a wide neighborhood (2/3 < a < 3/2, 
where a is the dimensionless viscosity) of the localization phase transition, which occurs at 
a = 1, the frequency dependence is found to be quite different from that predicted by the self- 
consistent approximation. The temperature dependence of the static mobility at low 
temperatures has the same form in the cases of strong and weak potentials [in particular, for a > 1 
it is proportional to T2'a- 1. 

1. INTRODUCTION 

Schmid' and Bulgadaev2 showed that a quantum-me- 
chanical system with an ohmic dissipation and a periodic 
potential described by an effective Euclidean action 

may be in either a localized state or a delocalized state when 
the temperature T- l /p  is zero, depending on the value of 
the viscosity 7. For either a strong or weak potential, the 
transition from localization to delocalization occurs at the 
value a ~ 2 n - 7  = 1 of the dimensionless viscosity.2 In (1) 
and everywhere below, we are using fi, k ,  = 1. In the Four- 
ier representation, the propagator corresponding to the qua- 
dratic part of ( 1 ) is of the form 

The integration in ( 1 ) is carried out over the imaginary time 
t, which we will call simply the "time." 

At a nonzero temperature the localization does not oc- 
cur, but it is nevertheless manifested in a power-law decay of 
the static mobility as the temperature is lowered.2s3 

Despite the large number of papers'-'0 which have been 
published on the model ( 1 ), we are far from an exhaustive 
understanding of its properties. In the present paper several 
new results are derived pertaining to the frequency depend- 
ence and temperature dependence of the mobility. We will be 
comparing our results with those of other investigators as we 
go along. 

A Josephson junction shunted by a normal resistance is 
usually considered as a particular case of a real physical sys- 
tem describable by an effective action similar to ( 1 ) (Refs. 1 
and 2). In junction terms, q would be the phase difference, m 
would be proportional to the capacitance of the junction, V 
would be the critical current, and 17 would be the shunting 
conductance. The mobility corresponds to the slope of the 
I- V characteristic. The nonlocal term, which was found in 
the effective reaction of the junction in Refs. 11 and 12 by 
using the tunneling Hamiltonian, differs from the last term 
in ( 1 ) in being periodic in q( t )  - q( t  '). This circumstance 

has an extremely important effect on the nature of the local- 
ization.I3 On the other hand, according to Ref. 14 a junction 
with a direct conductance is described by an effective action 
like ( 1 ). As an additional Gaussian heat reservoir one might 
use a infinite superconducting wire one end of which is con- 
nected to one side of the junction. Such a wire would serve as 
the infinite string in the mechanical analog of a system with a 
Gaussian dissipation. l 5  

An effective action like ( 1) also arises in a study of the 
motion of a delocalized line defect in a quantum crystalI6 or 
in the equivalent problem of quantum-mechanical tunneling 
in an infinite chain of dissipationless Josephson junctions.I6 

2. WEAK POTENTIAL 

a. Frequency dependence of the mobility in the deloca- 
lizedphase. The partition function of model ( 1 ), 

reduces to within a nonsingular factor to the partition func- 
tion of a one-dimensional logarithmic gas": 

with changes yi = + 1 and an interaction 
m 

Go ( t )  = TZ Go (on) exp(-iw.t), a..=2nTn, 
n=-m 

which becomes the correlation function (q(t)q(O)) in the 
absence of a potential. This agreement of the interaction 
function of test charges and the two-point correlation func- 
tion for the variable q ( t )  occurs not only for their seed values 
but also for their exact values. 

The representation (4) is particularly convenient in the 
case of a weak potential. It allows one to assign a more gra- 
phic meaning to both the normalization-group transforma- 
tions and the particle summation of perturbation-theory se- 
ries. 
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The model ( 1) can be subjected to a Wilson renormal- small that the recursion can be ignored in the following 
ization, as first used for models with a sinusoidal potential by steps. In this case we can assume that q1 in ( 6 )  includes 
wiegmann18 (see also Ohta and Kawasaki19). We partition harmonics with arbitrarily low frequencies, i.e., we can set 
q( t )  into slowly and rapidly varying parts: 
q( t )  = qO(t) + q1 ( t ) .  Incorporating a periodic potential by <qt ( t )q i (O) )=Go( t )  

(second-order) perturbation theory in the partition func- 
tion (3),  and integrating over ql( t ) ,  causes the following and, correspondingly, 

changes in the original action ( 1 ) (Ref. 18) : 
~ ~ ( ~ ) = - - i - J ~ ( ~ - c o s o t ~ e x p ~ - ~ o ~ t = ~ ~ + ~ o ~ t ~ ~ .  V z  (7)  

G,- ' (w)+Go- ' (o )+Z, (o ) ,  

where 

and the average over q, should be carried out with the help of 
the unperturbed action 

In this section of the paper we are considering only the 
zero-temperature case, but the renormalization-group 
transformations found in Subsec. 2c also apply at nonzero 
temperatures (as long as the instantaneous cutoff frequency 
is much higher than T ) .  

In general we would need to apply the recursion trans- 
,formation (5)  many times in succession, giving rise to a 
transition to progressively lower frequencies. A situation is 
possible, however, in which the correction to Go-'(a) is so 

In a study of the analytic behavior of expression (7),  it 
is convenient to replace (2)  by 

after making the high-frequency cutoff exponential. Doing 
so changes neither the behavior of the correlation function at 
long times nor the order of magnitude of the results. For 
Go(a)  as in (8) we have 

d o  
Go (t-0) - Go ( t )  - j - (I-MS o t )  Go ( o )  

2 n  

1 
a (9 )  

where Y = l / a  - 1/2, and K ,  (z) is the modified Bessel 
function. For high frequencies, the correction given by ( 10) 
tends toward a constant, while at low frequencies we have 
the asymptotic behavior 

where y z  1.781 is the reciprocal of Euler's constant. It fol- 
lows from ( 10) that, aside from numerical factors of order 
unity, we have 

max [ Z i ( w )  /Go-' ( o )  ] - (mV)Z lq ' ,  

for a < 1 ( Y  > 1/2), and for m correction (7)  is in- 
deed small in comparison with Go-'(@), and our approach 
is justified. 

Nevertheless, for 2/3 < a < 1 this correction is of funda- 
mental importance, since it alters the frequency dependence 
of the mobility. The basic frequency dependence of the mo- 
bility in this case does not stem from the mass term, and 
takes a different form: 

where we have transformed to real time. This functional de- 
pendence can also be expected to prevail at nonzero tem- 
peratures. 

In analyzing the frequency dependence of the mobility, 
B ~ l g a d a e v ~ . ~  was concerned not with the analytic properties 
of the correlation functions at T = 0 but with the tempera- 
ture dependence of the coefficients in an expression of the 
form 

used to approximate the correlation function. For this rea- 
son, the nontrivial frequency-dependent correction which 
we have found here escaped his attention. 

6 .  Neglect of higher-order corrections. Expression (7)  
could also be derived by perturbation theory. Amit et ~ 1 . ~ '  
have described in detail a diagram technique which makes it 
possible to write in the expression for G ( w )  all the terms of 
the perturbation-theory series in the amplitude of the sinu- 
soidal potential V: 

The first term of the series ( 2 ,  ), of order V 2 ,  is the same as 
(7 ) .  The next nonvanishing correction is of fourth order in V 
and is given by the integral 

v 
Z2  ( a )  = (?) J 5 d t ,  dt2 dtr (l-e-i'f*+e-imf*-e-imf3 ) 

.exp [ -2Go (t=O) + Go ( t , )  + Go (tn-t,X] {exp[Go ( t , )  - Go ( t , )  

-Go ( t f - t z )  + Go(ti-t,) 1-  1). (14) 

If the correction Z, can be interpreted as the result of 
the presence of bound pairs of charges, the correction 2, 
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describes the effect of the binary part of the interaction of 
these pairs with each other. When the average distance be- 
tween pairs is much larger than their size (a ( 1 ), this and all 
the following corrections are obviously negligible in com- 
parison with 2,. 

At low frequencies the function ( 14) has the asympto- 
tic behavior 

since the dominant correction at low frequencies is 2, (a) 
over the entire range of nontrivial behavior Z,(w) (2/ 
3 < a  < 1) of interest here, while Z,(w) and all the succeed- 
ing corrections contain the frequency raised to a higher pow- 
er. At this point we are talking exclusively about the case 
a <  1, since (13) divergesfora> 1. 

The series ( 13) can be rewritten as a series for the self- 
energy, 

2 (o) =G-I (o )  -GO-'(o) 

where the term of fourth order in Vconsists of two terms, the 
first of which contains the frequency raised to the same pow- 
er as, or higher than, that in the second. 

c. Renormalization-group transformations. Applied to a 
logarithmic gas, the recursion procedure (5)  corresponds to 
the incorporation of the effect of bound pairs of charges of 
small size on the interaction of well-separated charges. If we 
do not assume at the outset that the total effect of this renor- 
malization is negligible then we should initially restrict the 
discussion to the effect of pairs of charges smaller than some 
prespecified size r,. The integration in (7)  should then be 
restricted to the interval ( - t , , ~ , ) ,  and Z, (w) turns out to 
be an analytic function of w: 

To find M, it is sufficient to replace 1 - cos wt by (ot)'/2 in 
the integral. As a result we find 

(for a < 2/3, the correction to the mass M remains finite 
even as r1 -+ cc ). If we are interested in the correction to 
Go-' (61) at the frequency w, we should take the frequency w 
itself as the lower cutoff frequency for q , ( r ,  = 2a/w). AC- 
cording to ( 1 1 ) we would then have 

How far down the frequency scale does this approach 
remain valid? After eliminating harmonics with frequencies 
above 2a/r,, we can assume that we have transformed to a 
system with a propagator 

G ~ - ~  (o) =q(ol+m,02, m R = ~ m ,  E = t l / . t o  (15a) 

and a potential 

VR=V exp [-1/2(qi2>]=~-1iaV. (1%) 

If the condition 

holds, then we need not be concerned with any additional 
renormalization of the propagator. For m ~ 4 ~ ~ ~ ~ ,  condition 
(16) holds automatically for arbitrary T, under the condi- 
tion a < 1, while in the case a > 1 it holds only for 

This nevertheless leaves a broad range in which this condi- 
tion can be used. 

The form of the transformation (15b) assumes that 
only the linear term is retained in the renormalization-group 
equation for V (Ref. 17). Generally speaking, this circum- 
stance may lead to the appearance of additional restrictions 
on 7,. We will return to the applicability of the transforma- 
tions (15) in Sec. 4, after we have dealt with the strong- 
potential case. 

We wish to stress that the renormalized mass m, which 
appears in ( 15a) is somewhat indefinite-it is essentially 
only a notation for the cutoff frequency. For the original 
system and also for the system obtained after this renormal- 
ization, parts of the macroscopic characteristics will be the 
same. Specifically, these parts are those for which m, is im- 
portant only as a parameter which specifies the high-fre- 
quency cutoff (the free energy and so forth), while the fre- 
quency dependence of the correlation functions will be 
slightly different. In Sec. 4 we will use transformations ( 15) 
to study the temperature dependence of the static mobility. 

3. STRONG POTENTIAL; SEMICLASSICAL APPROXIMATION 

In the Gaussian approximation, the mean square ampli- 
tude of the fluctuations near the potential minimum is given 
by the integral 

and if at least one of the conditions 

holds then this amplitude is much smaller than the period of 
the potential, so that we can use a semiclassical approxima- 
tion. 

In this case instantons-extremal trajectories connect- 
ing neighboring potential minima-play the major role in 
the partition function ( 3 )  (Ref. 1 ). Depending on the tun- 
neling direction (to the right or to the left), we can associate 
a charge E = ~fl 1 with each instanton. 

For an isolated instanton, the effect diverges logarith- 
mically and is finite only for a pair of instantons of opposite 
sign. The instantons form a logarithmic gas with an interac- 
tion (at long range) 

and an activity y. For m V& 7' we have' 

oo=(V/m)"J, y=4(V3/n2m)"4 exp [-8(mV)"2] . (18) 

while for m V g V 2  we have 

874 Sov. Phys. JETP 66 (4), October 1987 S. E. Korshunov 874 



The possibility of a description of this sort suggests a duality 
between the cases of strong and weak potentials, which holds 
under the substitutions' 

and which makes it possible to use the results derived pre- 
viously. The duality persists at nonzero temperatures.4-6 

In the semiclassical approximation, the correlation 
function (q(t)q(O)) breaks up into two terms, the first asso- 
ciated with small oscillations near the potential minimum 
and the second associated with instantons: 

Here Q(t),  the trajectory which corresponds to an isolated 
instanton, is displaced in such a way that its center coincides 
with the point t = 0 [Q(t) = - Q( - t ) ] ,  and 

is the correlation function for the instanton charges e. 
The exact form of the instanton trajectory for an arbi- 

trary viscosity can be found only in the case of a piecewise- 
parabolic potential 

where n is an integer. In this case we have 

For a sinusoidal potential, the exact form of the trajectory 
can be found only for m = 0 (Ref. 10): 

Comparison of (23) and (24) indicates the universality of 
the first two terms in the expansion of Q(w) in powers of Iwl, 
which determine the behavior of Q(t)  at long times. 

If only the binary interaction of instantons is taken into 
consideration, the correlation function (22) can be ex- 
pressed exactly in terms of the bare function [G,(w)] and 
the exact [i.e., renormalized, G(w)] instanton interaction 
function: 

[see, for example, Ref. 21 or 22, where relation (25) was 
derived for a two-dimensional logarithmic gas]. The pertur- 
bation-theory series discussed in Subsec. 2b, ( 13), is specifi- 
cally an expansion for F(w) in which one need consider only 
the first term in brackets in the case of strong coupling of 
lnstantons. 

Approximating the bare instanton interaction function, 
(171, by 

4n2q 
Go(.a) = 

o exp (o/wo) 
and making use of the duality relations (20) and the results 
of Sec. 2, we find the following asymptotic behavior for F(o) 
at low frequencies: 

Substituting (23) and (26) into (21), we immediately see 
that in the limit w -0 we have 

for a>3/2, while for 1 < a  < 3/2 we have 

So far, both the self-consistent approximation of the 
Debye-Hiickel type (Ref. 6, for example) and the renormal- 
ization-group analysis4s5 have led to functional dependences 
(lq(w) 1') having the property (27) over the entire region 
a > 1. The self-consistent approximation is valid only for 
a $ l .  Furthermore, it is like the renormalization-group 
analysis carried out by Bulgadaev4.' in that its very structure 
does not allow the possible appearance of a functional de- 
pendence of the form (28). 

Since a is (rigorously) renormalizable in the regions of 
both weak and strong it can be assumed that the 
functional dependence (28) will hold over the entire region 
1 < a  < 3/2, even outside the range of applicability of the 
semiclassical approximation. It follows from duality consid- 
erations that this applicability is equivalent to retaining the 
form of the leading frequency-dependent correction to the 
mobility for 2/3 < a  < 1 in the region of strong fields. 

In summary, we have studied the frequency dependence 
of the mobility in various parts of the phase diagram. We 
have shown that in a substantial neighborhood (2/ 
3 < a  < 3/21 of the localization transition line this frequency 
dependence is of a form quite different from that far from the 
transition. We turn now to a study of the temperature de- 
pendence of the mobility. 

4. TEMPERATURE DEPENDENCE OFTHE STATIC MOBILITY 

In the range of applicability of the semiclassical approx- 
imation, the localization which occurs for a > 1, T = 0, may 
be interpreted as the vanishing of the probability W for tun- 
neling to a neighboring potential minimum. At a finite tem- 
perature, W becomes n ~ n z e r o . ~ . ~ ~ . ~ ~  We wish to emphasize 
that we are talking specifically about a totally incoherent 
tunneling,24 which can be described by means of a probabili- 
ty (rather than an amplitude), so that it becomes a trivial 
matter to express the static mobility p in terms of W (Ref. 
3) :  

The tunneling probability can be calculated through an ana- 
lytic continuation of the instanton interaction function at a 
nonzero temperaturez4: 

im 

w=yZ j at exp [ -G, (t=o) + G. ( t )  J .  
- i m  (30) 

From this expression, after we substitute into (29) and as- 
sume m V& v2 > (27~) -', we find 

83~'~r (a) (A)' ( n$)zu-2 ' = r (a+'/,) o, 
(Ref. 3).  Here A is the tunneling amplitude in the absence of 
dissipation. For 
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where the integration in ( 3 0 )  can be carried out by the meth- 
od of steepest descent, we find1' 

. , 

The temperature deiendence of p is equivalent in the two 
cases. 

When the product m Vbecomes so small that the second 
of inequalities ( 3  1 ) is violated, the semiclassical approxima- 
tion must be abandoned. In this case we cannot treat the 
motion of the system as sequential hops between neighbor- 
ing minima of a periodic potential. Nevertheless, the tem- 
perature dependence of the mobility can still be found. 

For this purpose we use the renormalization-group 
transformations ( 1 5 ) ,  which make it possible to transform 
from a system with arbitrarily small m V to a renormalized 
system with m, V, satisfying conditions ( 3  1  ). We then use 
( 3 2 ) .  Since the combination mZ VZa which appears in ( 3 2 )  is 
invariant under the transformations ( 1 5 ) ,  

the final result for the static mobility turns out to be indepen- 
dent of where we terminate the renormalization specifically 
in region ( 3 1  ); the final result is again given by ( 3 2 ) .  

A universality of this sort stems from the circumstance 
that the transformations ( 1 5 ) ,  which we derived in the 
weak-field approximation, remain valid under the condi- 
tions of the semiclassical approximation over the entire re- 
gion ( 3  1 ). That this is the case can be seen by using expres- 
sion ( 1 9 )  for the parameters of the instanton gas and the 
duality relations ( 2 0 ) ,  which make it possible to go from 
region ( 3  1  ) to the region 

where there is no doubt regarding the applicability of ( 15 1. 
Expression ( 3 2 )  thus gives a correct description of the 

temperature dependence of the static mobility not only in 
region ( 3  1 ) , where the semiclassical approximation holds, 
but also at arbitrarily small values of the product mV (at 
least in the case a )  1 ). Its range of applicability is limited by 
temperatures which become progressively lower as m V de- 
creases. 

It follows from the results derived here and from the 
duality relations that in a delocalized phase ( a  < 1  ) the tem- 
perature dependence of the mobility can be described at low 
temperatures by 

p (T )  = l / q - ~ T ~ ( I - ~ ) / a  . 
not only for a weak potentia15.6 but also for a strong poten- 
tial. 

Bulgadaev has made a previous attempt5 to determine 
the temperature dependence of the mobility for a > 1  in the 
case of a weak potential. He approximated the dynamic cor- 
relation function by an expression like ( 1 2 ) ,  in which he 
inserted wl = 2 n T  in place of the frequency. As a'result he 
found ,u cc T 2 .  It seems to us that the method used in the 
present paper has a stronger physical foundation. 

I wish to thank S. A. Bulgadaev for a useful discussion. 
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