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Van Hove singularities in the electron spectrum can substantially raise the superconducting 
transition temperature. In cases in which the singularities lie near high-symmetry points at the 
boundary of the zone, transitions can occur to states which are coherent combinations of 
superconductivity, antiferromagnetism, and a charge density wave. 

1. EXACT EQUATIONS 

The high superconducting transition temperatures of 
multicomponent compounds based on La2Cu04 (or ver- 
sions with other rare earths) have provoked a stream of pa- 
pers regarding the mechanism for this increase in the tem- 
perature. In addition to the natural suggestions regarding 
strong coupling, studies by Jorgensen et al.' and Mattheiss2 
have attracted interest. Their papers link the increase in the 
transition temperature with the nature of the electron spec- 
trum of La,CuO,, in particular, with Van Hove singulari- 
ties. The results of my theoretical analysis of this possibility 
were reported in two letters.435 The present paper furnishes 
the details which were omitted from Refs. 4 and 5. 

Hirsch and Scalapino3 pointed out that Van Hove sin- 
gularities near the Fermi surface would alter the dependence 
of the superconducting transition temperature on a bare (in 
principle, weak) interaction. A Van Hove singularity, i.e., a 
point on a constant-energy surface where the electron veloc- 
ity vanishes, 

is generally a weak singularity, and in an essentially three- 
dimensional crystal it would not alter the superconducting 
transition temperature. The Cooper loop is proportional to 

where the integral - the state density N(E) - is over the 
entire Fermi surface (2  is the cutoff energy), and points cor- 
responding to ( 1 ) could contribute only singlularities in the 
derivative of Tc with respect to the pressure. In layered crys- 
tals -a class which apparently  include^',^ La,CuO, - how- 
ever, Van Hove singularities in the spectrum also generate 
singularities in the state density. Near a two-dimensional 
hyperbolic Van Hove point, the state density itself becomes 
logarithmic, N(E) -In (VE) ,  and the magintude of the Coo- 
per loop increases correspondingly: 

comes into play in the zero-sound channel, where the loop is 
given by 

This situation involves a transition to a state with a spin 
density wave or a charge density wave, at the temperature 
given by the standard BCS formula. 

An alternative mechanism for the superconducting 
transition in La,Cu04- the so-called biexciton mecha- 
nism- also involves a two-dimensional Van Hove singular- 
ity. If we start from an insulating state, as in Ref. 6,  we have 
an energy minimum lying near the bottom of the conduction 
band: an elliptical Van Hove point. For the Cooper loop we 
now have, instead of (2).  

The BCS formula for Tc which follows from (2b) is of 
course the same as the well-known formula for the energy of 
a bound state of two weakly interacting particles in the two- 
dimensional case.' 

Hirch and Scalapino3 also discussed how the transition 
temperature (3)  depends on the proximity of the Van Hove 
singularity to the Fermi surface or, equivalently, on the 
chemical potential (or concentration). If we put the origin 
of the chemical-potential scale at the point at which the sin- 
gularity lies on the Fermi surface, we find that the logarithm 
of the temperature in (2)  would have to be replaced by the 
quantity 

1 
= -In (drnax (T, y) ) . 

2 ( 5 )  

In the doubly logarithmic approximation, (2a), (3),  we 
havegc - 1, which gives us a trivial quadratic state diagram 
(Fig. 1)  with Tc = Ipc I. Finally, the three-dimensional ef- 
fects associated with hops between layers will not be impor- 
tant as long as the corresponding energy satisfies 

& h O p < T c r  1 1lc] .  

The result is the desired increase in the transition tempera- 
ture: 

Tc-e exp (-const. (gJ  - I h ) .  I I 
In other words, we get the BCS formula with lg1 ' I 2  in place 

-P c 0 of lgl. In the case of a repulsion, g > 0, the superconducting PC P 
transition does not occur, but the Van Hove singularity FIG. 1. 
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A crucial point is that a Van Hove point is not a hyper- 
bolic singularity of general position, according to Ref. 1. The 
asymptotes of the hyperbolas intersect at a right angle in it, 
and the point itself lies at the center of a face of a zone. This 
circumstance means that the electron spectrum of pure 
La,Cu04 can apparently be described very accurately in the 
nearest-neighbor approximation. 

In the case of such an exclusively Van Hove singularity, 
both loops - the Cooper loop C(2) and the zero-sound loop 
Z(4)  - became doubly logarithmic3: 

A measure of the accuracy of this assertion is the deviation of 
the angle between the asymptotes, a, from a right angle: 

At this point the problem becomes rather complicated. We 
need to sum all the diagrams of the same order of magnitude 
in the doubly logarithmic approximation, gc - 1. As was 
pointed out in Refs. 4 and 5, all such diagrams form a so- 
called parquet, which consists of all possible insertions of 
Cooper and zero-sound loops into each other (Fig. 2). The 
parquet summation problem, fortunately, is well-under- 
stood. In solid state physics, this problem was studied in- 
tensely in the theory of quasi-one-dimensional 
Since our case has the complication of the doubly logarith- 
mic nature of the diagrams, however, we are forced to go 
through the calculations in some detail. 

As a l w a y ~ , ~ . ~  we take the transition temperature T, to 
be the region where a two-particle function - a vertex - has 
a pole in Tor, equivalently in 6 from (5) .  To find the vertices 
y we need to sum the parquets (Fig. 2).  As was pointed out 
previ~usly,~ doubly logarithmic contributions to Cooper 
and zero-sound diagrams come exclusively from the vicinity 
of the centers of the faces of the zone: points ABCD in Fig. l a  
in Ref. 4. On the other hand, we cannot ignore the fact that 
ACand BD are periods of the reciprocal lattice, so we require 
the corresponding periodicity of the vertices: y(ACCA) 
= y(AAAA ), y(BDDB) = y(BBBB), y(ABCD) 
= y(ABAB), y(ACBD) = y(AABB), etc. It is also clear 

that the only a symmetric solution, y(BBBB), would be of 
interest. The periodicity of the vertices y makes it possible to 
glue point A to C and B to D in Fig. la in Ref. 4 and to use 
Fig. lb of Ref. 4. 

We write the spectrum near points A and B in terms of 
dimensionless momentum projections, x,, x,: 

The Cooper loop CAA and the zero-sound loop ZAB are given 
by 

where x , ,  are the projections of the external momentum in 
the diagram, and A is a dimensionless cutoff. If the external 
momentum x,,, is zero, we would replace g,,, in (6) by 6 
from (5 )  with 2 = vp,A2. The most effective method for 
solving the equations of an ordinary single-logarithm par- 
quet is the Sudakov method. In this method (Refs. 8 and 9, 
for example) one begins with a calculation of the simplest 
vertex, all of whose momenta are of the same order. For this 
case there is a simple differential equation. The other ver- 
tices - vertices with unequal external momenta - and the 
responses can be calculated quite easily on the basis of the 
simplest vertex (cf. Ref. 9). In our doubly logarithmic case, 
as can be seen even from (6) ,  we can take the Sudakov ap- 
proach only for one of the momentum projections, say x,. 
The equations which result are integrodifferential equations: 
differential in (, and integral in x,. There is no particular 
difficulty in writing the equations; it is sufficient to repeat 
the derivation of the equations for a so-called fast parquet, as 
carried out previously in the theory of the magnetism ofmet- 
alsl' and of quasi-one-dimensional metals. " 

We begin with an accurate determination of the spin 
structure of the quantities which appear in the equations. 
The parquet is specified by the diagrams in Fig. 2 or Ref. 4. 
There are three vertices here: y(AAAA), y(AABB), and 
y(ABBA ). If all the momenta are comparable in magnitude, 
as in Ref. 4, there are four independent functions. In the case 
of vertices with different momenta, which appear in the par- 
quet equations, however, the number of independent func- 
tions is a maximum, equal to six: 

Y (AAAA)  = ~ i 6 a ~ 6 ~ - ~ - i S a * S ~ ~ ,  
Y (AABB) =*yz6sT6aa-~-26~a6~~, ( 7 )  

Y (ABBA) 

Here we have retained the notation of Ref. 4 to the extent 
possible. For the case of equal momenta we have 
y,,, = y - ,, - , . However, we are left with four bare charges: 
g - ,, - , = g,,, . The vertices and the charges will be ex- 
pressed below in units of 27?v/p,. 

By assumption, the vertices y, depend on the momen- 
tum projections x, only through 6,. The dependence on the 
projections x, must be specified by three equivalent sets of 
variables (Fig. 3), depending on the particular channel 
along which the parquet diagram is sliced: 1 ) a Cooper sum 
c = I, + 1, and 1,1,; 2)  a zero-sound difference z = I, - I, 
and Z,,Z,; 3) another zero-sound difference 2 = I, - I, and 
1,,12. Correspondingly, logarithmic variables are introduced: 

The equations of a fast parquet are conveniently written 
separately for the parts which are sliced along Cooper ( Z ,  ) 

FIG. 2. 
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and zero-sound lines (2, along z and 2, along here 
k = _+ 1, 2, 3,4) .  The complete vertices in this case are 

The equations corresponding to the diagrams in Fig. 2 of 
Ref. 4 are 

2. MOVING AND NONMOVING POLES 

Equations (9)  can be used to derive the results regard- 
ing the poles which were reported in Ref. 4. For this purpose 
it is sufficient to find the solutions with a pole in {, with (in 
principle) different projections x, and then transform from 
{, to { using (51, setting x,  and some (or all) of the momenta 
x, equal to zero. There are two types of pole solutions of Eqs. 
(9 ) :  moving poles and nonmoving poles in {, (cf. Refs. 10 

and 1 1 ) . In the latter, the pole position So does not depend on 
the momenta x,, while in the former it does. 

We begin with the moving poles. There are three types, 
in accordance with the number of sections of the parquet 
diagrams: along c, along z, and along Z. The first type is 
formed primarily as a result of the particle-particle interac- 
tion, and its position (trajectory depends only on c - l0 (c ) .  
In the two other types, the poles are due to a particle-hole 
interaction, and their trajectories depend on z - {,(z) or 
5 - {,,(F), respectively. In terms of their physical meaning, 
the poles in C0(c) are present only in the equations for y,, 
and C,, in (9 ); the poles in {o(z) only in the equations for 
Z,,y,, and y4; and the poles in l 0 ( Z )  only in the equations 
for Z., , y3, and y4. 

The doubly logarithmic nature of our problem makes it 
possible to find trajectories for the moving poles. For this 
purpose it is sufficient to consider the vertices in the asym- 
metric regions of the projections x,. For the pole {,(x) this is 
a region in which we have (for example) I, - I, - c < A, and 
the momenta I, -I4-A are large. In it we have 

= 7, = C2(c) and n3 = 7, = 0. On the other hand, it is 
clear from the structure of the perturbation-theory series 
that the vertex depends only on C112(c) in this region. The 
trajectory thus has the behavior l o ( c )  -const/{,(c), and 
the pole part of y is written in the form 

where lo2 is a constant which depends on the bare charges 
and which will be determined shortly. 

Similarly, setting 1, -I3-z, 1,-I,-A or 1, -I4-Z, 
I, - 1, -A, we find the following results for the poles in the Z 
channels: 

To calculate the constants we need to solve Eqs. (9) 
numerically. We will restrict the discussion here to an eva- 
luation in the ladder approximation. 

The Cooper ladder with 7, = 7, = 0 is 

o~l=og1-~~2gl(yl+y-I)-~~2g2(y*+y-2), 

(12) 

Withg - , = g,, the equations for y _ , and y _ , are the same 
as (12), so we have y-, = y,,y-, = y,. Here we have used 
w = l/{,{,(c). The solution is trivial: 

The pole ( 13 ) clearly describes singlet superconductivity. In 
the Z channel with 7, = 7, = 0 we have w = l/{,f,(z) 

They have solutions of two types: spin density waves, 

y4*~-2=(g~~gz)/[I-(g1*g2)EiE2(z)l, E~-~=g&fgz, 

and charge density waves, 
(14) 
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The division of the moving poles into pure singlet super- 
conductivity, spin density waves, and charge density waves 
is in a sense retained beyond the ladder approximation. The 
exact Eqs. (9) can be rewritten in diagonalized form: 

There is a shorthand notation for the integrals on the 
right sides: 

recalling the old  result^,'^^" we immediately see that a pole 
solution in (16) corresponds to a pole in the temperature in 
the response x,, , the solution in ( 17) corresponds to a pole 
in the response x,,, , and solution ( 18 ) corresponds to a 
pole in the response x,,, . 

However, we must not forget another possibility: In 
writing Eqs. ( 10) and ( 1 1 ) we tacitly assumed that the resi- 
dues y at poles of the type 6, -const/g, are nonzero in the 
corresponding asymmetric regions, e.g., 7, = 77, = 0. If the 
residues are instead zero here, it becomes impossible to make 
assertions of any sort regarding the trajectories of the poles. 
Both the trajectories and the residues must be found by inte- 
grating (9)  numerically. The responses of course remain 
simple poles in the temperature, by virtue of ( 16)-( 18). 

It is not such a simple matter to resolve the question 
regarding the nonmoving poles. It is necessary to carry out a 
complete numerical study of Eqs. (9).  In the present paper 
we will simply show that Eqs. (9)  actually have a singular 
solution which has all the properties of the nonlinear solu- 
tion found by an approximate method in Ref. 4. 

We now assume that not only the momenta x,  but also 
x, have comparable magnitude (6,). We then - obviously 
have Y - I , ,  = Yl,,, C-I, ,  = CI.2, Z-I, ,  =z-1,2 =z1,2 

= Z, , ,  . Furthermore, it can be seen by direct substitution 
into (9) that in the case of equal momenta there is a solution 
of the form 

with constants r, which satisfy the relations 

These equations have the solutions (T,T,T,T,) 

which are the same as the corresponding set in Ref. 4. An 
approximate estimate of lo in the Hubbard model 
( g , = g , = g , = g )  yieldsto=2.5g, -2.13g. 

It remains to calculate the responses. As in writing the 
parquet equations (9), we use the Sudakov method. We 
again assume that all the projections x, are of the same order 
of magnitude, el. The singlet-superconductivity response 
then depends on c, and <,(c), while the responses of the 
charge and spin density waves depend on e, and c2 (z). Re- 
peating the arguments from an old paper of Larkin and the 
present author9 word by word, we find the following results 
for the responses, by analogy with (9): 

The functions A, a, and n, which are analogous to the ver- 
tices in (9),  satisfy integrodifferential equations (we recall 
that we now have y - ,,, = y,,, ): 

Now substituting the quantities yk in the form of S- 
functions into (2 1 ), we see that the dependence of A, a, and 
n on the momentum 77 is arbitrary and that we have 

A- ( ~ 0 2 - ~ l ~ 2 ) - r ~ - ~ r a ~ ,  
0- ( E o 2 - ~ l E 2 ) r ~ - l r ~ l ,  (22) 
n- (go2-~lg2) -zn+n-lnl. 

We then find from (20) 

with < from (5).  The first points in ( 19) give, respectively, 
the independent singlet superconductivity, charge density 
waves, and spin density waves. It can be seen that the ( 100- 
1 ) solution corresponds to retention of a metallic state. Fin- 
ally, the last nontrivial point gives us the expression present-, 
ed in Ref. 4: 

3. MAXIMUM INCREASE IN THE TRANSITION TEMPERATURE 

I recently examined the still hypothetical case of a 
body-centered cubic crystal in which the increase in T, 
reaches the maximum possible value in the weak-coupling 
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region.' Below, as in Secs. 1 and 2, we present the details 
omitted from Ref. 5. The arguments are nearly a literal repe- 
tition of those in Secs. 1 and 2, so we will write only the key 
equations, keeping the words to a minimum. 

Reference 5 deals with the theoretical electron spec- 
trum of a BCC metal which incorporates only the abbreviat- 
ed jump from a vertex of the cube to its center: 

npi np2 31 ~3 
E (p) =Eo COS - COS -- COS ---- . 

2 2 2 

If there is precisely one electron per cell, the Fermi surface is 
a cube with corners A-1 1 1, B-777, C - 7 1 1 ,. . .. The per- 
oids of the reciprocal FCC lattice are the vectors [220, . . ., 
and [400] ,. . .. The Cooper loop C and zero-charge loops Z 
are now proportional to the cubes of logarithms, which re- 
ceive contributions only from the neighborhoods of corners 
A,  B, C, . . .. Considering the periodicity of the vertices expli- 
citly, as in Sec. 1, we can glue the points 11 1, 771, 117, and - - 
11 1 into a single point A, and we can glue the four other --- - 
points, 11 1, 11 1, 111, and 117, into another point, B. We are 
accordingly again dealing with a Fermi surface which con- 
sists of two points, A and B, this time in three-dimensional 
space. Near the Fermi surface we have, in constrast with Sec. 
1, 

The parquet equations of the problem are shown in Fig. 1 in 
Ref. 5. There are only a single Cooper loop and a single zero- 
sound loop: 

The parquet equations include two vertices: y(ABBA) and 
the interchange y(AABB). Their spin structure in the case of 
different momenta is more complicated than in Ref. 5 [cf. 
(7 )  1: 

7 (ABBA) =yi6a~6~*-y26a66~~? 

Y (AABB) =ys6aT6pa-y-36a66~,. 

In the case of equal momenta we would naturally have y _ , 
= y,, while the bare charges would always be g - , = g,. 

Both the vertices and the charges are expressed below in 
units of d v / p O 2 .  

We again take the Sudakov approach, assuming that all 
the projections x, are equal (g, ), while the projections x, 
and x,  are different. The entire text preceding Eq. (9)  can be 
repeated here intact. The only difference is that the quanti- 
ties I, and, correspondingly, 7 and f become two-dimension- 
al vectors in the spacex,, x,. Instead of Eqs. (9)  we now find 

E * . J ( ~ )  

823 1 
(25) 

-=- j d2c {- ( 2 ~ 3  (ql, c) -Y-3 (91, GI) ~1 (G? q2) a t ,  2 0 

What are the moving poles now? Instead of (10) we 
have 

in the Cooper channel, and instead of ( 1 1 ) we have 

in the zero-charge channels (there are corresponding ex- 
pressions for 2). 

The constants 6: are again estimated from ladders. The 
Cooper ladder ( w  = 1/{,{2c3) 

oyl=ogl-(giy2+g2yl)/2, 
oy2=og2-(glyl+g2yz)/2 

has two solutions. The solution 

corresponds to singlet pairing, while 

corresponds to triplet pairing. 
The zero-sound ladder 

oyl=glo+(-g1+'/2g2) yl+11~gl~z-112g3(~~-~-3)r 
oy2=og2+'l2g2~2+~/2g3~-3, 

oy3=~g3-~/2g3y1+~/2g3y2+( -g1+l/zg2) Y S + ~ / Z ~ ~ ~ - - S I  
oy-s=wgs+ 11zgsy2+'12g2Y-3 

also has two solutions. The solution 

corresponds to a spin density wave, while 
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corresponds to a charge density wave. 
The responses for the moving poles are calculated by 

the same procedure as in the corresponding place in Sec. 2. 
In particular, ( 16)-( 18) are replaced by 

for singlet and triplet superconductivity, 

for a spin density wave, and, finally 

for a charge density wave. 
For nonmoving poles, we again consider the case of 

equal momenta and singular solutions of the type 

The equations for r, now take the form 

and their solutions (r1r2r3) are 

The calculation of the responses is similar to (23) (cf. 
also Ref. 9)  : 

Xss- (Eo-E)-ri-rz+i 

xsDw- (EO-E)Pz-lP31+1 
7 

XCDWN ( ~ 0 - ~ ) - 2 r l + r z - ~ r 3 ~ + i  

The set of points (34) and the corresponding responses 

xs,-xcDw- (EO-E)-lhr (1 ' 1 2  O ) ,  
(35) 

are the same as those given in Ref. 5. 

CONCLUSlON 

The theory developed here is not yet capable of describ- 
ing the vicinity of the phase transition or of supporting mi- 
croscopic calculations on physical effects at low tempera- 
tures. Correcting these deficiencies will require abandoning 
the parquent approximation. We will accordingly restrict 
the discussion to a very simple phenomenological symmetry 
analysis of the situation. 

Phenomenologically, a state can be described by three 
gaps: a superconducting gap A,, , a spin-density-wave gap 
A,,, , and a charge-density-wave gap A,,, . The latter two 
gaps depend on the coordinates, 

rt + n 
AsDw, A ~ D W  - ( cOs Qr)  Q = - ,  

sin Qr ' a 

and change sign as a result of a displacement equal to the 
period of the original crystal, a. 

A mixture of singlet superconductivity and a charge 
density wave has no macroscopic manifestations. An insu- 

lating state of a spin density wave plus a charge density wave 
is the richest. If a transition conserves spatial inversion, i.e., 
if A,,, and A,,, have identical upper indices, 
A&, ,A&, (A,, ,A&, , the substance unavoidably ac- 
quires a spontaneous magnetic moment: 

This ferromagnetism is evidently weak near the transition 
point. The physical picture is not disrupted as long as the 
Fermi surfaces do not shift by more than T,. If the spatial 
inversion is disrupted (i.e., if the signs of A,,, and A,,, 
are opposite), we could in principle replace (36) by an 
expression for the electric current: 

Since the left and right sides of (2 )  have the same spatial and 
temporal parity, phenomena of this sort also fall in the cate- 
gory of so-called magnetokinetic phenomena; they were 
classified in detail from the symmetry standpoint some time 
ago.'' In insulators, of course, an electric current could be 
only dissipative, so that a symmetry which allows relations 
like (37) in the case with dissipation'' would make the sub- 
stance a ferroelectric in which the magnitude of the sponta- 
neous polarization P is inversely proportional to the electron 
lifetime re : 

Depending on the scattering mechanism, l / r e  would be pro- 
portional to either the number of phonons, N,, - T3, or the 
impurity concentration N,,, (i.e., it would be finite even at a 
vanishing temperature), but it would not depend on the 
number of conduction electrons. The following simple argu- 
ment leads to (38) : The current j is proportional to the num- 
ber of conduction electrons, 

while on the other hand we have j a Ne re P .  
Relation (37) also implies that there is an effect in the 

substance which is weaker than that in (38) : a magnetoelec- 
tric effect. To see this, we note that (37) can always be put in 
the form 

In contrast with the ferroelectricity (38), the magnetoelec- 
tric effect in (39) is not dissipative. 

If consinusoidal and sinusoidal waves are mixed in both 
the spin and charge channels, the substance will of course 
become a ferromagnetic ferroelectric. 

The coexistence of singlet superconductivity, spin den- 
sity waves, and a charge density waves leads to two effects in 
the surface impedance. The first is anisotropy of the penetra- 
tion depth. 

Whether the anisotropy can be observed depends on the 
relation between the magnitude of the penetration depth, S, 
and the magnetic-anisotropy energy a [expressed in terms of 
the effective domain-wall thickness 6, - ( T,/a) ' I 2 ] .  If 
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S ( S d ,  the gap As,, at the surface will always adjust itself to 
the direction of the magnetic field in such a way that S  is 
maximized. The orientation of the spins in the interior of the 
sample, in constrast, will go to the easy-magnetization axis 
at distances on the order of 6,. If the relation is reversed, 
S ) S d ,  the orientation of the spins As,, at the surface is set 
by the anisotropy of the crystal. 

The second effect is more interesting: an anomalous 
Hall effect in the impedance, 

which results in a rotation of the polarization plane upon 
reflection. Unfortunately, in our parquent approximation 
we are unable to calculate the frequency or momentum de- 
pendence of the coefficients in (40) and (41 ) . These equa- 
tions are therefore symbolic in nature, reflecting only the 
crude consequences of the symmetry. 

There is nothing to prevent a superconductor in a state 
with singlet superconductivity plus a spin density wave plus 
a charge density wave from being a ferromagnet as in ( 3 6 )  
[or a ferroelectric as in ( 3 8 )  1. 

"A magnetoelectric effect of dissipative origin in metals was recently 
studied by Levitov et al." 
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