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The multichannel scattering of quasiparticles by the coherent surface of an ideal crystal is studied. 
A simple expression is derived for the scattering matrix. This expression reflects the basic features 
of multichannel reflection from a surface. Analytic anomalies (resonant and threshold in nature) 
of the scattering matrix are discussed. The conditions for the quantization of the quasiparticle 
spectrum in parallel-plane crystalline plates and the transmission of quasiparticles across 
twinning boundaries are examined. 

1. INTRODUCTION 

Major progress has now been achieved in producing 
pure, ideal crystals with a long mean free path for quasiparti- 
cles. This circumstance and also the considerable interest in 
the properties of two-dimensional and quasi-two-dimen- 
sional systems make it necessary to carry out a systematic 
study of the interaction of quasiparticles with crystal sur- 
faces. 

The interaction of quasiparticles with crystal surfaces is 
described phenomenologically by a scattering matrix which 
characterizes how nonspecular the scattering is. This ap- 
proach makes no distinction between the processes which 
are caused by surface irregularities (surface defects) and the 
nonspecular scattering processes which result from the com- 
plex nature of the interaction of quasiparticles with an ideal 
surface. 

If we wish to take a systematic approach, we must pre- 
face a study of the effect of the various irregularities with a 
solution of the problem of the scattering of quasiparticles by 
the ideal surface of a crystal. The interactions of quasiparti- 
cles with crystal surfaces have been under study for a fairly 
long time now (see, for example, Refs. 1-13 and the litera- 
ture cited there). The scattering of a quasiparticle with a 
given quasimomentum projection onto the ideal surface is a 
multichannel process, accompanied by excursions in terms 
of the surface quasimomentum and differing substantially 
from specular reflection. The number of channels (when 
surface states are taken into consideration) depends on the 
energy spectrum in the interior of the crystal and on the 
surface structure. 

Descriptions of the interactions of quasiparticles with 
surfaces usually involve the construction and use of a semi- 
classical boundary condition in some form or ~ t h e r . ~ , ' ~  This 
approach is convenient for crystals with a quadratic quasi- 
particle dispersion law and also for approximations of the 
nearly-free-electron type. In several problems, however, it is 
better to base the description on a purely lattice Hamilto- 
nian, characterized by discrete variables. For phonons, mag- 
nons, and bound electrons, for example, it is useful to formu- 
late the boundary condition in terms of the parameters of a 
lattice Hamiltonian (tunneling frequencies, strength con- 
stants, exchange integrals, and so forth), which have values 
near the surface that differ from the corresponding values in 
the interior of the crystal. 

In general, the boundary condition depends on the 
properties of the surface and the nature of the quasiparticles. 

There is accordingly no universal method for describing the 
interactions of quasiparticles with crystal surfaces. It is nev- 
ertheless interesting to attempt to distinguish the general 
properties of multichannel scattering from the features of 
specific boundary conditions. This is our purpose in the pres- 
ent paper. 

In Sec. 2 we propose a simple expression, ( lo),  for the 
multichannel scattering matrix, derived on the basis of a lat- 
tice Hamiltonian without consideration of the distortion of 
the parameters of this Hamiltonian near the surface. This 
expression contains all the features of the multichannel scat- 
tering for which the different regions of the energy spectrum 
of the quasiparticles are formally equivalent. The method 
proposed here makes it possible in several cases to relate the 
scattering matrix to the parameters of the Hamiltonian, pro- 
vided that the latter are distorted only in a narrow surface 
layer. 

When surface distortions are taken into account, the 
corresponding formal expression casts light on certain gen- 
eral threshold and resonant properties of the scattering ma- 
trix describing the scattering of quasiparticles by an ideal 
surface. These properties are analogous to the anomalies in 
bulk scattering by impurities near the threshold for a reac- 
tion or near a topological transition for constant-energy sur- 
faces. 

In the following sections of the paper we examine the 
quantization conditions for plates and the interaction of 
quasiparticles with a twinning surface. 

2. MULTICHANNEL SCATTERING MATRIX 

We consider a triclinic lattice with translation vectors 
a,, a,, a,. We number the lattice sites by the vector n, with 
integer -components (r  = n,al + n2a2 + n,a,). The motion 
of a single-band quasiparticle is described by the tunneling 
Hamiltonian 

For simplicity we assume that the tunneling frequencies t,, 
are real; the generalization to the case of complex t, is ob- 
vious. The corresponding energy spectrum in the interior of 
the crystal is . (p) =z t.einp, 

where the vector p is determined by the projections onto the 
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vectors al,a2, a,. In real crystals, information on the Fourier 
expansion of energy spectrum (2)  makes it possible to auto- 
matically reconstruct the Hamiltonian ( 1 ). 

We assume that the surface of the crystal is defined by 
the equation Nun = 0, where N,,N,, and N, are the indices of 
the surface. To begin the study, we adopt as a boundary 
condition the condition that the amplitudes c, vanish out- 
side the crystal, where we have Nun < 0, and we assume that 
the parameters t, of Hamiltonian ( 1 ) are not distorted any- 
where up to the surface. We replace n, by the new integer 
coordinate k = n, - (n2N2 + n,N,). We assume Nl = 1, 
eliminating from consideration the possibility of a surface 
reconstruction. Inside the crystal we have 
- a, < n,,n, < + a, ,k>0. We take Fourier transforms 
along the coordinates n, and n,: 

This step is equivalent to introducing a conserved two-di- 
mensional quasimomentum q ( 1q2,3 1 <T), which is directed 
parallel to the surface. The Schrodinger equation for the 
Hamiltonian ( 1 ) is 

It describes a one-dimensional motion of a quasiparticle 
with a surface quasimomentum q and an energy E. Since the 
integral of motion for a semi-infinite crystal is the vector q, 
not p, we should express the two components of the vector p 
in the spectrum (2) in terms of q: p = p,,q, = p, - plN,, 
93 =P3 - ~ 1 ~ 3 '  

The spectrum (2) is conveniently represented in the 
form 

"fl 

This expression is a definition of t ,  (q) .  Here we have 
JV = N-M, and the vector M characterizes all the coordina- 
tion spheres which are taken into consideration in ( 1 ), (2), 
and (4): Ini /<Mi .  In terms of the notation in (5),  Eq. (4)  
becomes 

@ii' 

l= -~r  
Inside the crystal, at fixed E and q, the permissible val- 

ues ofp are determined by the dispersion relation 

which is a polynomial of degree W in x = e - jP. Corre- 
spondingly, (6) has W rootsp, =pi ( ~ , q ) ;  thepi are either 
real or pairs of complex conjugates. The real pj correspond 
to quasiparticles which are moving in the interior of the crys- 
tal, while the complexpi correspond either to surface waves 
(Impj < 0) or solutions which grow exponentially with dis- 
tance into the interior of the crystal (Imp, > 0).  All the W 
solutions pj can be classified as Jlr waves p, + which are 
arriving at the surface and Jlr outgoing waves pj -. For real 
pj, the classification in terms ofp, + andp, - is carried out on 

the basis of the sign of vj = JE ( q,p ) /dp I,, =pi, while for com- 
plex pi we have Im pi + > 0. 

A general solutibn of Eq. (4)  is the sum of waves and 
"nr dv 

the multichannel scattering matrix S, which relates the am- 
plitudes of the reflected waves (Aj - ) with those of the inci- 
dent waves (Aj + ), 

( A *  ={Al*, . . . , A N *  I) ,  is determined from the 
boundary condition Dk = 0 for k < 0. Equating ( 7 )  to zero 
at the nonequivalent points k = - 1, - 2, . . . , - Jlr, we 
find 

X-A-=-x+A+, ( X*)  ik= (xi*) (9)  

If f o l l o~s  f ~ m  (9) that the scattering matrix (8),  
h 

S = - X -  - ' x ~ ,  consists of elements Sik = - Dik /D, 
where D = det X - ,  D, is the determinant of the same ma- 
trix, except that the powers xk + replace xi - in column i; and 
D and Dik are Vandermond determinants, which converge 
to the product of all possible differences x, - x,. Terms 
which do not contain xi - and xk +, drop out of the ratio 
Dik /D, and as a result we find 

How are the wave-conversion amplitudes related to the 
reflection coefficients? To answer this question, we need to 
find an expression for the flux Jk which appears in the con- 
tinuity equation 

The time derivative is calculated with the help of the Schro- 
dinger equation (4'). We find 

dv 1 1 1  

For a wave Dk = A,, - ikpJ the flux 

is proportional to the quasiparticle velocity v, = d ~ ( q , p ~  ) /  

d ~ j .  
Inside the crystal, for a wave with real pi, we have 

Jk = IA, I2vj, while for complex p, the flux is J, 
= IA, 1 'vjexp{2k Imp, 1. For internal waves the ratio of the 

particle flux in the reflected wave to the flux in the incident 
wave is 

V i -  ( 0 ) ~  pji' = - I Si, I 
~ h +  
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The products in ( 12) formally contain all the roots x, * of 
the dispersion relation (6). For complex p,, however, by 
virtue of the relation x, * * = l/x, * (for real p,, we have 
x, * * = l/x, * ), the corresponding terms in the products 
(12) cancel each other out, so that the only factors which 
actually figure in ( 12) are those which correspond to purely 
internal waves. 

The probabilities for transitions between channels, 
R ,  = IS, 12, enter the boundary condition on the kinetic 
equation (Ref. 12, for example). In contrast with (12), we 
should incorporate in R ,  all channels, including those 
which correspond to complex p, . It can be seen from ( 10) 
that surface waves with large IImp, I make an exponentially 
small contribution. The convergence of the products ( 10) 
and ( 12) with increasingM is equivalent to the convergence 
of the Fourier series for the spectrum (2).  If we ignore the 
distortions of the crystal in the surface layer, we find that the 
multichannel scattering matrix is expressed exclusively in 
terms of the roots of the dispersion relation (6) in the interi- 
or of the crystal. 

For surface scattering, we can distinguish between two 
sources of multichannel behavior. The first is associated 
with the fact that the symmetry of the surface is lower than 
that of the interior of the crystal. The second is the complex 
nature of the interior energy spectrum, (2),  for which even 
for the surface of highest symmetry ( loo), the dispersion 
relation (6) has many roots. The number of these roots is 
determined by the number of coordination spheres consid- 
ered in the Fourier expansion (2).  It can be shown that in- 
corporating one more coordination sphere in (2)  introduces 
additional real rootsp, only if the corresponding coefficient 
t ,  is not small. If, on the other hand, all the t ,  beyond a 
certain point decrease rapidly, the incorporation of more 
remote coordination spheres simply adds complex p, with a 
large imaginary part. Such components make an exponen- 
tially small contribution to ( lo), and they drop out entirely 
from the product ( 12). The existing realp, shift negligibly in 
the process. 

A solution which has been found can formally be gener- 
alized to incorporate distortions of the Hamiltonian near the 
surface. If the distortions span the first k, - ~4'" layers, the 
effective boundary condition can be written in the form 

I = O  
h 

The matrix T is expressed in terms of the constants of the 
Hamiltonian in the obvious way, with the help of the first ko 
lattice equations. It is an analytic function of q and E. Substi- 
tuting (7) into ( 13), we find the expression 

where 

and the matrix B, is found from B in ( 15) by replacing xi - 
by x, + in column i. Certain analytic  ropert ties of S, in 
( 14) can be seen for an arbitrary matrix T. The determinants 
in ( 14) vanish whenever two roots of the dispersion relation 

coalesce, since the two corresponding columns are identical 
in such a case. We thus have 

where S i k ( O '  is given by ( lo) ,  andL., is the ratio of two poly- 
nomials of degree JV in x, -, which are symmetric with re- 
spect to all x, -. The numerator differs from the denomina- 
tor only in that xi - is replaced by xk +. Correspondingly, we 
have 

where P $" is given by ( 12). 
Expressions ( 16) and ( 17) can be used to follow the 

threshold and resonant features of multichannel scattering. 
At fixed values of the energy E and quasimomentum q of a 
quasiparticle, the dispersion relation (6) has 2.N solutions, 
of which 2L, L (N ,  are real and correspond to waves propa- 
gating in the interior of the crystal. As q or E changes, the 
number L changes and can take on all values from 0 t o M .  In 
terms of quantum scattering theory,14 complex p, corre- 
spond to virtual levels, and a unit change in L corresponds to 
the appearance or disappearance of one more reaction chan- 
nel. The number of real roots is determined by the number of 
crossings of a constant-energy surface &(p1,p2,p,) = E by 
lines p, = q, + Ng, ,  p, = q, + N g ,  (when jumps in q in 
the first zone are taken into account, these equations deter- 
mine not one line but an entire family of parallel straight 
lines). The number of real roots, L, may change either with- 
out a change in the topology of the constant-energy surface 
or as a result of a topological transition. In the former case, 
the secant is nearly tangent to the constant-energy surface, 
and a slight change can eliminate two crossing points. Near a 
topological transition,I5 on the other hand, slight changes in 
E result in the appearance or disappearance of isolated re- 
gions of the constant-energy surface, with the result that the 
number of realp, may also change. In such cases, the scatter- 
ing matrix has some specific anomalies near the threshold. 
Let us assume that E = E, corresponds to a threshold 
x, + = x, -, i.e., v, = 0. Near the threshold we have 
E - E, = (p -pa )'/2m,, and Sik and Pi, are expanded in 
powers of p -pa = [2ma ( E  - E, ) 1 'I2. Far from the 
threshold, they are expanded in powers of E (Ref. 12). Fur- 
thermore, at the threshold the ratio Pi,('' given by ( 12) has a 
discontinuity in its derivative with respect to (E - E, ) 
(below the threshold, Pi,"' is completely independent of 
complex PI ) . This discontinuity must persist in Pi, in ( 17), 
since there no basis for its cancellation by virtue ofL, for 
any matrix T. 

The resonant properties of Sik and Pi, become obvious 
if we rewrite the factors in ( 10) in the form 

Since the partial amplitudesL, are continuous at the points 
- - 

xi = x, and xi = x, +,S, has some structural features 
near these points which are described by ( 18). In the specu- 
k r  chpnel, we have L., - 1 as xi - +x, +, since we have 
Bik - B in ( 14) in this case. The corresponding expressions 
for S, and P, are analogs of the Breit-Wigner formulas for 
multichannel scattering by a coherent surface. 
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The lattice model discussed above contains the basic 
properties of multichannel surface scattering, but it does not 
fully incorporate the specific features of the particular quasi- 
particles. We now discuss the range of applicability of ( 10) 
and (12) without the factors f;., in (16) for the various 
quasiparticles. 

For electrons in metals, distortions of the spectra near 
the surface can be ignored if the characteristic value of the 
pseudopotential V is small in comparison with the Fermi 
energy E, (Ref. 16). The boundary condition Dk = 0 can be 
used outside the crystal if the work function satisfies U)E,. 
If the various bands are far apart, interband transitions are of 
minor importance. For narrow-band electrons, the surface 
distortions turn out not to be small in comparison with the 
width of the band, and a quasiparticle may reflect in layers 
far from the surface. For metals, f;, in ( 16 ) differs from 
unity by quantities of order E ~ / U (  1 and V / E ,  ( 1. Incor- 
porating the complex roots with large imaginary parts 
JIm pj I 2 U/E,, eF/V in products ( 10) and ( 12) is thus 
attempting to go beyond the accuracy of the treatment. 

For phonons, there are two circumstances to be taken 
into consideration. First, the lattice Hamiltonian of phonons 
is written not for the scalar quantity c, in ( 1 ) but for the 
displacement vector u, . In general, therefore, we would be 
dealing with a three-band situation, and surface scattering 
would be accompanied by interband transitions. Purely sin- 
gle-band transitions refer to the case in which the polariza- 
tion vector is parallel to the surface and perpendicualr to q. 

Second, for a free crystal the uniform shift of the crystal 
as a whole, u, +u, + Su, does not alter the state of the 
phonon system. In Eqs. (4') we accordingly have 

N 

The boundary condition which we have used, Dk = 0 at 
k < 0, corresponds to a reflection of phonons from a crystal 
boundary which is rigidly fixed. The absence of distortions 
of the strength constants in the surface layer with a fixed 
crystal boundary is equivalent in practice to the nearest- 
neighbor approximation. Interband transitions are also in- 
consequential. 

For a crystal with a free surface, Eqs. (4') with 
O<k <N differ from the equations far from the surface, 
even if we ignore the distortions of the strength constants. 
The absence of jumps across the surface for phonons means 
that in the layer O<k < N t h e  value ofein (4') depends on k: 

8 

The first N equations. 

A 

determine the matrix Tgiven by ( 13) when distortions of the 
strength constants are ignored. In the long-wave limit in this 
case, an antinode forms at the free end of the crystal, while a 
node forms at the pinned end. 

For delocalized vacancies ( vacancyons ) in solid 4He, 
Eqs. ( 10) and ( 12) are applicable because of the small value 
of the change in the density at the liquid-crystal interface 
(this small value means that the distortion of the character- 

istics of the spectrum of vacancyons near the surface is 
slight) and because inelastic processes are strongly sup- 
pressed at the boundary at low temperatures. At low tem- 
peratures, however, the wavelength of the vacancyons satis- 
fies A)a (a  is the distance between atoms), and we can 
expect significant effects of the multichannel nature of the 
situation at large v~lues N:Aa. 

The matrices S ' O '  and P'O' can also serve as a basis for 
constructing a perturbation theory1, in the inhomogeneity 
of the surface. 

3. QUANTIZATION OFTHE SPECTRUM OF PLATES 

We consider a crystal plate bounded by surfaces with 
indices N = (l,N,,N,) and consisting of Z layers. We as- 
sume Z / 2 >  k, [used to generate the scattering matrix 
( 14) I .  In principle, the scattering matrices for tke scattering 
at the different surfaces of the plate, 5'"' and S"', may be 
different. A wave which is incident with respect to the first 
surface is a reflected wave for the second. This matching 
condition, which determines the spectrum of eigenstates of 
quasiparticles in the plate, takes the form 

The dispersion relation (21 ) differs from the one ordin- 
arily used1' in that it incorporates not only real but also com- 
plex statesp, . Because of the factors (x, - / x j  + )=, the order 
of the matrix (21) can be reduced significantly, since shal- 
low surface levels make a real contribution. A semiclassical 
quantizationI5 incorporates only adiabatic invariants corre- 
sponding to real p, . Equation (2  1 ) also makes it possible to 
incorporate shallow surface states, by perturbation theory, 
for example. 

The quantization conditionlo En = e(q,p, = nn/Z) 
which is frequently used, incorporates neither complex roots 
nor surface distortions of the crystal. If distortions/\near the 
surface are ignored, we should replace Sin (2 1 ) by S 'O' from 
( 10). In this case, (21 ) incorporates not only internal waves 
but also surface waves. 

The determinant (2 1 ) vanishes at xi = xj . This result 
means that the energies E corresponding to extrema of the 
function ~ ( q ,  p )  are exact eigenvalues for the energy of the 
quasiparticles in the plate and bound the series. Minima of 
the spectrum can be identified with ground states for quasi- 
particles, and maxima with ground states for quasiholes. 

The exact (not semiclassical) quantization procedure 
proposed here is important for experiments with thin films, 
which exhibit oscillatory effects associated with the discrete 
nature of the energy spectrum.I8 

4. INTERACTION OF QUASIPARTICLES WITH A TWINNING 
PLANE 

Let us examine the transmission of quasiparticles 
through a twinning plane with indices ( 110). The motion 
along the a, axis separates out, and we are not interested in it. 
For the wave function Dk in (3),  we assume that the k = 0 
plane is a twinning plane. We restrict the analysis to the 
nearest-neighbor approximation.Above and below the k = 0 
plane, the spectrum is E,,, ( q g )  = 2t ,,, cos p 
+ 2t ,,, cos(q - p )  . The presence of a twinning plane in the 
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crystal gives rise to slight distortions of the parameters of the 
Hamiltonian near the boundary. We assume that distortions 
occur only in the first layer. Above the twinning plane, there 
are one incident wave and one reflected wave, while below 
the twinning plane there is only a single transmitted wave. 
These waves are related by the equations 

(~-t~)D~=(t~+t,e~~)D,+(t,+t,e-~q) D-,, 

~ D , , = e * ' q ~ ~ ( t ~ e ~ ' q ~ ~ + t ~ e * ' q ~ ~ )  D,, 
+ e ~ i ~ / ~ ( t 4 e * i ~ l ~ + t J e ~ i 4 1 2 ) D o ,  

where to, t,, and t4 characterize surface distortions. When a 
wave of unit amplitude is incident on the boundary, the am- 
plitude of the transmitted wave is 

and that of the reflected wave is R = T -  1 .  Here 
A 2 =  t: + t $  +2tlt2cosq, a n d B 2 =  t i  +t i  +2t3t,cosq. 
The transmission coefficient 9 = T  1' is given by 

and the reflection coefficient is .9? E I 1 - T  l 2  = 1 - 9. 
If deformations of the crystal near the twinning bound- 

ary are ignored (to = 0, t, = t4, t, = t,, the reflection coeffi- 
cient vanishes, and the transmission coefficient is unity. In 
this case, the reflection of quasiparticles from the twinning 
plane is caused exclusively by distortions of the crystal lat- 
tice. Furthermore, we have 9 = 0 for those values of q for 
which we have B '/A ' = 1 - to/&. In the long-wave limit, 
E~ - 4A ', the electron transmission coefficient vanishes, 
while the reflection coefficient becomes unity, even if the 
surface distortions are very weak. The existence of a mirror 
symmetry for a twin leads to a situation19 which is quite 
different from the general case of b i ~ r ~ s t a l s . ~ ~ - ~ ~ .  

If we do not use the nearest-neighbor approximation, 
we would always need to introduce some additional tunnel- 
ing constants in the Hamiltonian in order to incorporate the 
tunneling of quasiparticles across the twinning boundary. 
The reason is that for lattice sites near the boundary all the 
coordination spheres other than the first are quite different 
from those for sites in the interior of the crystal. 

A local level for electrons, determined by the vanishing 
of the denominator in (23), is E, = 4A + tZo in the simplest 
case, A ' = B '. A level of this type may be manifested in 
anomalies of superconductivity in crystals with twins.', 

For phonons, the applicability of (22) and (23), with 
( 19), reduces to to = 0, t, + t2 = t ,  + t4, 
E = - W' + 2(tl  + t 2 ) .  In the long-wave limit, expression 
(22) becomes 

which is analogous to the result of Ref. 24 and makes it possi- 
ble to relate the distortions of the constants of the Hamilto- 
nian to the surface tension in the twinning plane. 

We are indebted to A. F. Andreev, Ya. B. Zel'dovich, 
M. I. Kaganov, V. G. Peschanskii, L. P. PitaeviskiT, M. S .  
Khaikin, I. N. Khlyustikov, and V. S .  Edel'man for useful 
discussions. 
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