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The density-density correlation function of an infinite cluster (IC) in percolation theory is 
calculated. The probability of finding two particles of an IC at a distance x that is small in 
comparison with the correlation length is of orderx -c, wherel= ( d  - 2 + 77)/2, d being the 
dimensionality of space (2<d<6). It is shown that the density fluctuations of an IC are described 
by the longitudinal spin fluctuations in the Potts model with number of states q- 1, whereas the 
density fluctuations of clusters of finite size are described by the transverse spin fluctuations. 

1 INTRODUCTION 

Percolation theory is used widely for the description of 
polymer systems,' order-disorder transitions,' and other 
macroscopically disordered systems. Below the percolation- 
transition point in such systems there are only finite con- 
nected clusters, with a size of the order of the correlation 
length 6. At the transition point 6 becomes infinite and an 
infinite cluster (IC) appears. 

The topological structure of an IC was described in Ref. 
3. The aim of the present article is to study the spatial char- 
acteristics of an IC over scales that are small in comparison 
with 6 and describable by correlation functions of the IC. 
Over larger scales the fluctuations are small; the correlation - 
functions for this case were calculated in Ref. 4. Over dis- 
tances x 5 { the critical fluctuations of the particle density 
become strong. It is this region which is of fundamental in- 
terest in the study of the spatial characteristics of an IC. For 
example, the two-point correlation function GI, (x)  - x  - c  
for x 4 6  determines important characteristics of the IC like 
the probability of finding two of its particles at a given dis- 
tance x from each other. The higher correlation functions 
have an analogous meaning. In the self-consistent field ap- 
proximation the critical index satisfies 5 = d - 4 for d > 4 
and 6 = 0 for d < 4, where d is the dimensionality of space.4 
In this article we shall show that in the fluctuation region the 
index is not independent but is expressed in terms of other 
critical indices of percolation theory. 

To calculate the correlation functions of an IC we shall 
make use of the correspondence between the percolation 
problem and the Potts model with q states for q- 1. In the 
ordered phase the symmetry P, of this model is spontan- 
eously broken and the order parameter is nonzero. In Sec. 2 
we shall show that the transverse correlation function of the 
order parameter coincides with the density correlation func- 
tion G, of finite (F) clusters, while the longitudinal correla- 
tion function coincides with the density correlation function 
GI, of an infinite cluster. The calculation of the function GI, 
performed in Sec. 3 of the article uses the self-consistent field 
approximation and the skeleton diagram technique in the 
framework of a field representation of the Potts model. In 
the Conclusion we discuss the region of applicability of the 
results obtained. 

2. QUASI-AVERAGES IN PERCOLATION THEORY 

We shall consider the problem of random percolation 
on a d-dimensional lattice. We shall denote by x the coordi- 
nates of the sites of such a lattice, and by p  the probability of 

formation of a bond between two neighboring sites in the 
lattice. Such a bond is absent with probability 1 - p .  The 
microscopic density of sites of a connected (C) percolation 
cluster is equal to 

P c ( x ) = Z  6(x,x1), 
where S is the Kronecker symbol and the summation is per- 
formed over the coordinates x' of all the sites of the connect- 
ed cluster. We define the two-point correlation function by 
the expression 

G (XIXZ) = Z (PC (xi) PC (x2) ) 
C 

= (PIC (X,))(PIC ( ~ 2 ) )  + GIc (~1x2) + G F ( x ~ x ~ ) ,  

where the averaging is performed over all possible configu- 
rations of bonds and the function G, is called the connected- 
ness function of the finite clusters. To calculate the correla- 
tion function GI, of interest, i.e., the correlation function of 
the density of sites of the IC, we make use of the correspon- 
dence between the percolation problem and the Potts model 
with q  state^,^ the Hamiltonian of which in the spin formula- 
tion has the form 

where the first sum is taken over nearest neighbors and the 
spin S ( x )  at site x is equal to one of the q vectors e'"' directed 
from the center to the vertices of a (q - 1 )-dimensional tet- 
rahedron: 

a- i a-i 

The percolation problem corresponds to the limit q- 1 of the 
Potts model (2), and in this limit p  = 1 - exp( - k /T), 
where T is the temperature. 

For h = 0 the Kamiltonian (2)  is symmetric under a 
discrete group of rotations of the spin S. For p  > p , ,  which 
corresponds to the low-temperature ( T <  T,) phase of the 
spin model (2) ,  this symmetry is spontaneously broken and 
the ground state is q-fold degenerate. To describe a system 
with degeneracy of the ground state we make use of the 
method of quasi-averages.6 It can be shown that the quasi- 
average of the spin S for q -+ 1 determines the density of sites 
of the IC: 

< S, (x) > (") = lim <S,(x) ),(Q) = (p,, (x))eLu). 
h-0, h>0 (4) 
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The two-point correlation function ( 1 ) can be expressed in 
terms of the spin correlator: 

G ( ~ 1 x 2 )  = lim 

Following Ref. 7 ,  we give for completeness a brief deri- 
vation of the relation (5).  We represent the spin correlation 
function in the form 

where Z is the partition function. The expression under the 
trace can be represented in the form of a sum of terms, with 
each of which we can identify a corresponding configuration 
of bonds in the percolation problem. Calculating the trace in 
each of these configurations, we find the relation ( 5 ) .  

In the ordered phase the thermodynamic limit and the 
limit h+O cannot be interchanged. To take account of the 
contribution of the IC to ( 5 )  we must set h  = 0  directly in 
the Hamiltonian ( 2 ) .  The spin correlator for p > p c  and 
h  = 0 is equal to the sum of the quasi-averages in each of the 
ground states: a 

0-1 

Since in the ground state of type o the spin S ( 4 )  has a defi- 
nite direction e'") we must distinguish the fluctuations of its 
modulus and of its direction. Therefore, the spin correlation 
function has the form 

(Sa(xl)Sg (xz )  ) (o )=(Sa  ( X I )  ) ( a ) ( S B ( x z )  )(a) 
+ GIc ( X I & )  ea(")eg(0)+ GF ( x l x Z )  1 3 ~ ~ .  ( 8 )  

Here the functions GI, and GF describe, respectively, the 
longitudinal and transverse fluctuations of the spin S .  Sub- 
stituting ( 8 )  and (4) into ( 7 )  and ( 5 )  and comparing with 
( 1 ), we find that in the limit q - 1 the functions GI, and G, 
in ( 8 )  are equal to the density-density correlation function 
of the IC and to the connectedness function of finite clusters, 
respectively. 

3. CORRELATION FUNCTIONS OF AN INFINITE CLUSTER 

To calculate the spin correlation function (8 )  we make 
use of the field representation of the Potts model.8 For this, 
by means of a Hubbard-Stratonovich transformation of the 
term quadratic in S in the Hamiltonian (2 ) ,  we introduce 
the field pa ( x )  = (Sa ( x ) ) ,  after which we calculate the 
trace over {a) in ( 6 ) .  The Lagrangian of the field pa takes 
the form 

Here 8 = kzT, z is the number of nearest neighbors, and the 
function A ( x  - x')  is equal to l/z if x  and x' are nearest 
neighbors, and equal to zero otherwise. The spin correlation 
function ( 5 )  can be expressed in terms of correlators of the 
field pa .  

-h-' (x-x')  . ( 1 0 )  
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When fluctuations of the field pa are neglected the 
magnitude of the field is found by minimizing the Lagran- 
gian ( 9 ) .  For q = 1 we obtain 

A nontrivial solution of the equation for p 
= (pic ) = 1 - (p,) > 0  exists only for p >pc  
= 1 - exp( - l/z) . Calculating the correlation function 
( 8 )  in this self-consistent field approximation, we find for 
the Fourier components of the transverse and longitudinal 
spin correlation functions ( 8  ) the expressions 

The correlators ( 1 2 )  determine the probabilities that two 
points x  and x' are linked together to a continuum path pass- 
ing through a finite and an infinite cluster, respectively: 

Equation ( 1 3 )  shows that in the self-consistent field approx- 
imation an IC can be regarded as an aggregate of clusters of 
finite size. The local structure of an IC near each of the 
points x  and x' is the same as that in these finite clusters, and 
is described by the corresponding factors P, in ( 1 3 ) .  The 
summation over the common coordinate x" of these clusters 
takes account of the fact that in reality these clusters are 
parts of one IC. 

Neglect of the fluctuations of the field pa is valid for 
z)  1, not too close to the transition point. To study the spa- 
tial characteristics of the IC in the fluctuation region we 
expand the Lagrangian (9)  in powers of the field pa:  

Here a is the lattice constant and parameters r and A depend 
on the lattice type. 

Forp <pc, over distances small in comparison with the 
correlation length l z a  Irl-", with r=pc  -p, the correla- 
tion functions of the field pa have the asymptotic forms 

(v~(x~)vB(x~)v~(x~))=G(x<x~x~)~~~T, ( 1 6 )  
where 

Y,  17, and f l  are critical indices of percolation theory. At 
p >p, a condensate appears: 
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and the perturbation-theory diagram technique should in- 
clude condensate lines. Their contribution to the self-energy 
part is determined by the skeleton-diagram series in the fig- 
ure. For x,, (6 the solid lines correspond to the function 

X.. X z  x,  X z  

( 15), and the scaling asymptotic form of the vertex is 

i -1 

where the three-point correlation function is defined in 
( 16). It is not difficult to see that for x,, <{a contribution to 
the self-energy part comes only from the first diagram, 
which contains the smallest number of integrations over the 
coordinates of condensate lines. For the spin correlator we 
find the expression (8),  where the functions G, and GI, for 
x % { are equal to 

Thus, the correlation function G, of the fluctuations of the 
direction of S in the ordered phase falls off more rapidly with 
distance than does the correlation function GI, of the fluctu- 
ations of the amplitude S. We emphasize an important dif- 
ference between this behavior of the Potts model with dis- 
crete symmetry P, , q+ 1, and the behavior of the model of an 
isotropic ferromagnet with the continuous symmetry group 
O ( n ) ,  for which, for x <c, the correlation function of all the 
fluctuations follows the same law.9 

According to the hypothesis of scale invariance, lo over 
distances x-c  the mean square fluctuation of the spin S is 
comparable to the equilibrium value of the spin: 

This condition makes it possible to determine the coeffi- 
cients of proportionality in ( 18). As a check on the scaling 
formulas obtained, in them we set x equal to the minimum 
scale a: 

F 1, GI, ( a )  zp. 

This result is in agreement with the fact that, according to 
the definition ( 1 ), we have 

Over distances large in comparison with the correlation 
length, the function GI, (x )  falls off exponentially; this 
asymptotic form was found in Ref. 4. We note that in this 
case too GI, (x )  decreases more slowly than G,(x). Finally, 
in the Fourier representation for 2<d<6 we have 

Ford = 6 (the upper critical dimensionality for perco- 
lation theory) the IC correlation function ( 19 ) coincides 

with the expression obtained in ( 12) in the framework of the 
self-consistent field approximation (see also Ref. 4).  

Thus, the idea of spontaneous symmetry breaking in 
percolation systems" makes it possible to calculate the spa- 
tial characteristics of an IC. In polymer systems such an IC 
corresponds to an infinite branched molecule-a gel. In 
polymer concentrated polymer solutions (melts) the Ginz- 
burg number rG characterizing the size of the region of 
strong critical fluctuations (see, e.g., Refs. 12 and 4) is 
small. Far from this region ( 171 B rG ) the correlation func- 
tion GI, can be calculated in the self-consistent field approx- 
imation (12) (see also Ref. 4).  We have shown that in this 
approximation an IC looks like an aggregate of finite clus- 
ters, which are, in reality, parts of the IC. We note that essen- 
tially the same physical picture also applies in the descrip- 
tion of the interior of a polymer globule, I' i.e., the condensed 
state of a polymer chain. In the fluctuation region ( 17.1 5 7,) 

the density-density correlation function of an IC is deter- 
mined by the expression ( 19). 

In systems that are far from incompressible, the density 
fluctuations grow as the point of gel formation is ap- 
proached. A field theory describing the general case of com- 
pressible polymer systems was constructed in Ref. 4. When 
the density fluctuations are taken into account other vertices 
besides r and /Z appear in the Lagrangian (14), and grow 
rapidly under the action of renormalization-group transfor- 
mations. These vertices can also be reproduced in the frame- 
work of the field formulation of the three-parameter Potts 
model,14 the Hamiltonian of which is given by ( 2 )  with the 
additional term 

- 

(x,x') 

As shown in Ref. 14, this model describes the statistics of 
finite percolation clusters-lattice animals. Thus, the den- 
sity fluctuations take the polymer system out of the percola- 
tion regime and into the fluctuation regime of lattice ani- 
mals. 

We emphasize an important difference between this re- 
gime in polymer systems and the case of the Potts model 
(20). Whereas in the Potts model it describes only large fin- 
ite clusters, while the connectedness function and statistical 
density fluctuations of the IC are controlled by the percola- 
tion regime, allowance for density fluctuations leads to the 
result that the lattice-animal regime also describes the prop- 
erties of the infinite network of a gel. 

In the self-consistent field approximation the correla- 
tion function of a swollen gel was calculated in Ref. 11. It is 
clear that this function will also have the same form in dilute 
systems in the fluctuation regime of lattice animals over 
scales that are large in comparison with the correlation 
length { of the system. Thus, in polymer systems percolation 
behavior can be observed only in a limited range of their 
parameters. 

An experimental study of the spatial characteristics of 
an IC would be of great interest. In particular, the intensity 
of light scattering and of Bragg scattering of neutrons by an 
IC structure gives direct information about the correlation 
function ( 19). A two-dimensional IC can be formed, e.g., as 
a result of random breaking of bonds of a wire network. The 

831 Sov. Phys. JETP 66 (4), October 1987 S. V. Panyukov 831 



properties of a three-dimensional IC can be studied by im- 
mersing into a liquid a porous material that was above the 
percolation threshold. In the bulk of the sample the liquid 
fills only the IC structure, and this makes it possible to dis- 
tinguish the IC among the clusters of finite size. In polymer 
systems this end is achieved by washing the finite molecules 
out of the gel network. 

The author expresses his gratitude to S. P. Obukhov for 
a discussion of the results obtained. 
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