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The phonon spectrum of metallic glasses is analyzed for the case of an icosahedral crystal on a 
three-dimensional sphere: a regular {3; 3; 5 )  polyhedron in four-dimensional space. A dynamic 
operator is shown to be determined unambiguously by the symmetry and by the conditions that 
the energy remains constant under rotations and translations of the system as a whole. The 
eigenfunctions and the associated frequencies of the normal modes of atoms are found by 
projection onto irreducible representations of the symmetry group. The spectrum found agrees 
with that calculated by a recursion method for a numerical model of amorphous iron. 

1. INTRODUCTION conditions which are imposed on it by the symmetry of the 
A study of the short-range order in metallic glasses polyhedron. The frequencies of the normal modes are calcu- 

shows that a significant number of atoms have icosahedral lafed in Set. 5. 

surroundings, which lead to an energy lower than that for 
2. THE (3; 3; 5 )  POLYHEDRON, ITSSYMMETRY GROUP, AND other groupings of 13 atoms. We know that an ideal crystal ITS 

cannot be constructed from icosahedra because the point 
symmetry group, Y, is incompatible with lattice transla- The polyhedron (or polytope) of interest here has 120 

tions. ~h~ local surroundings of individual atoms, in con- vertices, which lie on the three-dimensional spheres3. If we 

trast, can exhibit such a symmetry. This situation is encoun- make use of the well-known isomorphism between S and 

tered not only in amorphous metal but also in certain alloys the group SU(2) X matrices with a 
of transition metals with tetrahedral close packing of atoms unit determinant, we can show3 that the {3; 3; 5) vertices 
(Frank-Kasper phases) and in quasicrystals of the A1-Mn correspond to the elements of a discrete subgroup of SU(2): 
type. On this basis we might expect that many properties of the icosahedral spinor group Y', which is the inverse trans- 

such systems (especially those which depend on the local form of the ordinary icosahedral group under the mapping 

configuration of atoms) would be determined by the icosa- 
hedral symmetry, among other things. 

The icosahedral short-range order in metallic glasses 
can be studied by considering a hypothetical system ofatoms 
each of which is surrounded by 12 nearest neighbors, which 
form an icosahedron. In ordinary three-dimensional space 
R 3, such a configuration would not be possible, but it can be 
realized on a three-dimensional sphere S3 .  AS a result we 
obtain a regular polyhedron in four-dimensional space, 
which is customarily designated 13; 3; 51, which indicates 
that there are five tetrahedra around each edge, and three 
trihedral faces converge at each vertex of these tetrahedra. 

A polyhedron of this sort has been propo~ed'.~ as a 
model of an amorphous metal in a curved space. A theory 
has been derived for an icosahedral order in glasses3 That 
theory treats the glasses as a result of the projection of a (3; 
3; 5) polyhedron from a sphere S onto a plane three-dimen- 
sional space R 3. The result is an icosahedral structure pene- 
trated by a large number of defect lines, dis~linations.~ The 
structure factor calculated on this basis reproduces the ex- 
perimentally observed structure factor well.5 Calculations 
carried out for various properties also yield encouraging re- 
sults. 

In the present paper we study the dynamic properties of 
an icosahedral crystal. In Sec. 2 we briefly describe the struc- 
ture of the polyhedron, its symmetry group G, and its irredu- 
cible representations. In Sec. 3 we determine the action Gin 
the vibrational representation F, its nature, and the expan- 
sion of F in  irreducible representations of group G. In Sec. 4 
we examine the structure of the dynamic operator and the 

S3=SU(2)  - + S 0 ( 3 )  =SU (2)/Z2. 

The positions of the atoms of the icosahedral crystal on 
S can then be specified by means of the parameters of the 
group SU(2) (the angle g, and the unit vector n),  on the 
basis of the well-known formulas: 

where p, and nu are the angle and direction of the rotation 
axis on which v falls due to the projection SU(2) -+S0(3) ,  
and a is a formal vector constructed from Pauli matrices. 

As the distance on the sphere we should use the arc 
length along a great circle. The distance from an atom corre- 
sponding to the element (n, p) to the unit element 1 .. of the 
Y' group is then equal to the angle p .  The arc length between 
the atoms corresponding to elements w and v is 

The 120 elements of group Y' form nine conjugate 
classes 5 ,  which are characterized by an identical angle e, 
and by equivalent directions of the vectors n (i.e., they are 
coupled by a symmetry transformation from Y) to the ver- 
tices, to the centers of the faces, or to the middles of edges of 
the ico~ahedron.~ The nearest neighbors of each atom are the 
12 vertices of the icosahedron which correspond to the con- 
jugate class V,, with an angle p equal to 2 ~ / 5  (Fig. 1 ). 

The symmetry group of the S sphere is 

822 Sov. Phys. JETP 66 (4), October 1987 0038-5646/87/100822-07$04.00 @ 1988 American Institute of Physics 822 



3. VIBRATIONAL REPRESENTATION OF FAND ACTION OF 
GROUP G ON IT 

FIG. 1.  Icosahedral arrangement of nearest neighbors of a central atom. 

Correspondingly, for the polyhedron we have 

The elements of G are then specified by a pair of elements of 
Y'; (1 , r )~G sends UEY' into Ivr-' for I and EY'. Further- 
more, the actions of (1,r) and ( - I, - r )  are equivalent. If 
an element IE Y' corresponds to (p, ,nl ), then (1, l )~G acts on 
UE Y' as a rotation of nu through an angle p, around the axis 
n, . We thus find a natural splitting of G into "rotations" of 
the type (1,Z) and "displacements" ( 1 .. ,r- ' ) . The order of G 
is 7200. 

It is clear from (2.1 ) that the irreducible representa- 
tions of the group G are the product of two irreducible repre- 
sentations of the group Y', which we denote by r:', a = 1, 
. . ., 9 (Table I ) .  The character (1 , r )~Gin  the representation I's is equal to the product of the characters of Y ': 

The equivalence of (1,r) and ( - I, - r )  means that the 
following relation must hold 

Since the characters of Y' are real, we find from (2.2) 

%ay' (1)xaY' (r) =&'' (-I)xPy' ( - r ) .  

The irreducible representations of group G are thus formed 
by a pair of irreducible representations of group Y' of identi- 
cal parity: 

or 
a '  ( 1 )  a '  ( )  xeP' ( I )  =-xbT' ( -1) .  

TABLE I. Characters of the Y' group. 

The vibrational-representation space consists of all pos- 
sible sets of small displacements of atoms from their equilib- 
rium positions. To find the degree of degeneracy of the fre- 
quencies of the normal vibration modes, we need to expand F 
in the irreducible representations of group G (Ref. 6) .  

In our case, the displacement of each atom, w, is a vec- 
tor in the space tangent to the sphere Tw S 3. By virtue of the 
group structure of Y', the basis of the tangent spaces t o S  at 
all vertices {3; 3; 5 )  can be specified in a consistent way, in 
such a way that under displacements g, EG:W + uw the basis 
vectors Tw S would be converted into the basis TUwS 3. 

Let us examine the action of an arbitrary element of G, 
of the form (u,v-'u), on the representation&'. An element w 
transforms into uwu-'v, and the tangent space to the sphere 
at the corresponding point, TwS 3, rotates through an angle 
p, around nu and is then displaced by v. 

Ifwe represent this by a 360 X 360 matrix, it turns out to 
be of block form with 3 X 3 cells. In the block row corre- 
sponding to w, only a single block is nonzero: that at the 
intersection with the block column of the element uwu-'u. 

The character of the element (1,r) in the F representa- 
tion is the trace of a matrix of this sort. It is clear that only 
those blocks which lie on the diagonals, i.e., only those for 
which the relations 

hold will contribute to it. 
We thus see that I and r lie in the same conjugate class. 

The characters of G are constant on its conjugate classes, 
which are formed by a pair of conjugate classes of Y'. This 
means that the characters of the elements (1,r) and (/,I) are 
identical, and since (/,I) specifies a rotation through an an- 
gle pl around the n, axis they are equal to the product of the 
number of fixed atoms and the trace of the matrix 
A, = rT'(1) which performs this rotation: 

I y" x'y*(l). XR'(J, ~ ) = ~ { , I , v I  - 1 (1) 1 (3.1) 

Here I Y' I = 120 is the order of Y '; I {I) I is the number of 
elements in the conjugate class containing 1; we have 
S{,),{,} = 1 if I and r lie in the same conjugate class or 
SII},(,.} = 0 in the opposite case; and I YII/I{l)I is the number 
of fixed points under the action of (/,I). The irreducible rep- 
resentation T:'(I) specifies a natural representation of Y' by 

I Class 
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I IVI I lVi 130V. I 20V. I ?0V6 I I?V6 I I?V, I 12Va I I1Vs 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Note: T = (6 + 1)/2. 
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rotations of the three-dimensional space. The multiplicity 
with which the irreducible representation of the group G, 
TzB = I':' @ I?;', enters the expansion of the representation 
of F in irreducible terms is6 

Since the character X $  is real, and by virtue of (2.2), 
we find 

Consequently, m(a$) is equal to the multiplicity with 
which r:' enters the tensor product T:' e r;'. 

4. THE DYNAMIC MATRIX 

A force matrix with elements 

acts on Fin the manner of the matrices of a representation of 
G, and i t  decomposes in a corresponding way into 3 X3 
blocks: D(w,u), w, ueYf. By virtue ofthe homogeneity ofour 
system (invariance under displacements), the blocks de- 
pend on the relative positions of the elements w and u; i.e., 

B (w, u) =B (Iyr, W-'u) =B (w- ' v ) .  (4.1) 

We adopt the customary assumption (Refs. 7 and 8, for ex- 
ample) that the part of the force matrix which is not diag- 
onal in the atoms is nonzero onlyAat nearest neighbors. This 
assumption means that we have D(u) # O  only if v = 1 y. or 
UE V6. 

A 

Let us consider D(u) for UEV~, p, = 27~/5. The vectors 
n, for ue V6 are directed to the vertices of the icosahedron. 
The e l e~en t s  of G which l epe  l,.ha%d u gxed must not 
changeD(u). Since we have D(u)+A,D(u)A; as u-+Iul-', 
by choosing as u an element u, with nu" = (0,0,1) and by 
considering rotations through angles which are multiples of 
2 ~ / 5  around the z axis (such rotations send the icosahedron 
into itself), we find 

h 

yhere E is the 3 X 3 unit matrix, and the projection operator 
P,, projects onto the direction of the vector n: 

h 

To determine D( u )  on an arbitrary ue V6 we need to perform 
a corresponding symmetry transformation (/,I) such that u, 
is sent into u. We then find 

The dynamic matrix must satisfy the condition that the 
energy is constant under parallel translations: 

D (u) =o. 
- 

VEY' 

Under our assumptions this condition means 

By virtue of the transformation law for a projection op- 
erator under the action of Y', a sum over a conjugate class 
commutes with any operator from T I ' .  From Shur's 
lemma,9 we then have 

where 2 is the identity operator. We can then write 

This result corresponds to the situation in an ordinary crys- 
tal with a point group of symmetry high enough to make the 
three-dimensional representation A irreducible. A block of 
the force matrix which is diagonal in the particle indices is 
then a scalar: 

5. CALCULATION OF THE NORMAL VIBRATION 
FREQUENCIES 

We need to find the eigenvalues of the force matrix. For 
this purpose we should examine the effect of the dynamic 
operator on the characteristic functions lap ), which trans- 
form under an irreducible representation of group G (Ref. 

where duo is the dimensionality of the representation TzB,  
and la) is an arbitrary function from Fof fairly general form. 

As la) we choose In; 1 y. ): a state for which an atom at 
the identity of the group is displaced a small distance along 
the direction of the unit vector n, while the other atoms re- 
main at rest. We can then write 

where wao is the frequency which corresponds to Tzo. Using 
(5.1) and (2.2), we find 

uEP' 

where the operator 

in R specifies the displacement of atom u in the characteris- 
tic function of the form lap) .  

Relation (5.2) must hold for all the l a p )  components, 
i.e., for the displacements of all the atoms, including that 
corresponding to unity. We then find 

0- z -.('Y,) B (u) ep- map cab . 
EY' 

From the constancy of the characters on the conjugate 
classes and (5.3) we find 
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~ ( l y ' )  dddp 
jag - y, l r  2 d' ( A )  x l '  ( A )  2 nu, 

ACY' u€A (5.5) 

where A runs over all nine conjugate classes V'. The sFm 
within a conjugate class in (5.5) commutes with all the A,.  
Using Schur's lemma, working by analogy with (4.4), and 
comparing the traces of the mat rice^,^ we find 

= 2 Ex4 ~ ' ( u )  iUZ D ( u )  =O. 
40 u V 

For a = 1 and B = 4 the following condition must hold: ' b ( v )  xiy'  (u-'u) A.=o. 
4o u , " e Y 8  

The change of variables w = u-'u yields 

We must then have 

V 

This result could be obtained by examining the change 
in the energy upon a small rotation. With w - lwl -', a dis- 
placement with p, 4 1 gives us which leads to the expression 

- (1 y ,) - dadg 
C ~ B  -- 360 m (a7 $) fi. 

Relation (5.4) then becomes 

,. 
Aw=cpl sin cpwA,[nwnll 

Expanding the energy change in a series in the displace- 
ments, and equating the terms for all powers of p, to zero, we 
find condition (5.12). 

Carrying out summation (5.12) for the D(u) given by 
(4.20) and (4.5), we find 

dad, z ~ ( v j  d;' =oat -m(a, B ) E .  
~ E Y '  360 

In the case of multiple terms in the expansion of F [i.e., 
in the case m ( a ,  0 )  > 1 ] the problem becomes slightly more 
complicated, because l a p )  is the sum of several different 
functions, which transform in the same way but which corre- 
spond to different eigenvalues. In this case (5.2) is replaced 
by rn(a.n) 

D ( u )  k = - 4  (2c,+c.) E+4X4YY ( v 6 ) 6 + 4  (c,-c.) E. 
U G Y '  

We thus find 4c,(7 - 3)  = 0, where T = (6 + 1)/2 is the 
golden section. In order to obtain w ,, = 0, we must require 
c, = 0. 

Substituting (4.2), (4.5) and (5.6) into (5.1 l ) ,  we find 
the following expressions for the frequencies of normal vi- 
brations corresponding to simple terms: 

e x 1  

where 

For a sum operator of the type (5.1), relations (5.5) and 
(5.7) again perform projections onto this representation. 
The frequencies are found from an equation analogous to 
(5.4): 

Introducing the notation 

where the operator 

7 - 1  

is given by expression (5.3). 
In order to solve Eq. (5.10) with several unknowns we 

should act on lap ) with a set of commuting operators { D ~  ) 
which have identical eigenfunctions corresponding to eigen- 
values { w z , i ,  ). If m ( a ,  0 )  = 1, we find the following ex- 
pressions for the frequencies: 

we can write 
1 

w a ; c = a ( i y r )  + - [ c i x  xayr ( ~ ) ~ ~ ( u ) i .  
40 u , Y f  

It  is easy to show (see the Appendix) that 

The expansion of F includes two three-dimensional repre- 
sentations rf4 and T z ,  which correspond to translations 
and rotations of the entire polyhedron and which therefore 
have vanishing frequencies. 

For a = 4, a n d p  = 1 we find from (4.3) 
Substituting these expressions into (5. IS), transforming the 
sum in the last term by analogy with (5.5), and using (5.6), 
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A A 

TABLE 11. The coefficients fa, of the expansion of tr(Q, (u)A,  ) in the characters of group Y'; 
the dashed correspond to representations Tz, which do not appear in the expansion of the 
vibrational representation. 

-- - 

we find expressions for the square of the frequency corre- 
sponding to a simple term in the expansion ofFin irreducible 
representations of group G: 

The values off are given in Table 11; their meaning is dis- 
cussed in the Appendix. Since c, = 0, and since the force 
matrix is positive definite, we can write c, = - wt < 0. 

We finally find the following result for simple terms: 
~ a a = ~ o  (4 - faa)  '. 

In order to find two different frequencies of a unique multi- 
ple term [m(9,9) = 2 1 ,  we need to evaluate the sum (5.7) 
with the square and cube of the dynamic operator. 

As a result we find the system of four equations 

yhere S ,  a%d S2 are some matrix elements of the operators 
C ii;,: and C ;&:, and Xk are the corresponding matrix ele- 
ments of the sum on the left side of (5.7) for Dk . It is easy to 
derive 

TO  find^,  and^, we need tocalculatea ( u )  a n d 5  ( u )  from 

h r h 

as a result they are expressed in terms of E, Pnu,  and A, .  
The system (5.17) can be solved easily by switching to 

the new variables 

Using ( 5 . 1 8 ) ,  we then find 

from which we easily find a,,, , , and a,,(,) . 
6. RESULTSAND DISCUSSION 

Table I11 shows the normal-vibration frequencies cal- 
culated from (5.16) and (5.20), along with their degrees of 
degeneracy. Also shown are the irreducible representations 
to which they correspond. The state density is shown in Fig. 
2 ,  where each frequency corresponds to a peak, whose height 
is equal to the degree of degeneracy. 

Significantly, the condition c, = 0 leads to a twofold 
degeneracy with respect to permutations; the effect is to dou- 

TABLE 111. Frequencies of the normal vibrations of the atoms of a polyhedron and degrees of 
degeneracy. 
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Frequency, 
in units 
of w, 

0 
0.874 
1.288 
1.598 
1.663 
1.701 
1.851 
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Degree Of 

~~~~~y 

40 
16 
16 
24 
25 
36 
24 

~ ~ ~ ~ d ~ ~ i b l ~  repre. Degree Frequency, Irreducible repre- 
sentations (a, 8) 1 degeneracy 1 .".. sentations (a,. 

(1.4) and (4.1) 
(2.2), (2.6) and (6.2) 
(8.4)and(4.8) 
(9.6) and (6,9) 
(4.4) 
(8.5) and (5.8) 
(9.9) 1 

(8.7) and (7.8) 
(6.6) 
(7.7) 
(9.3) and (3.9) 
(8.8) 
(9.9) 2 
(5,7) and (7.5) 

6 
20 
30 
45 
9 

30 
36 

1.913 
2.158 
2236 
2.258 
2.518 
2.669 
2.690 



APPENDIX 

FIG. 2. Spectrum of a dynamic operator on a (3; 3; 5 )  polyhedron in 
comparison with the frequency density of the normal vibrations of atoms 
in a numerical model of amorphous iron" (solid line). The frequencies 
are expressed in arbitrary units 0,. The height of each peak is proportional 
to the degree of degeneracy of the corresponding frequency of the normal 
mode of the polyhedron. 

ble the weight of the frequencies corresponding to the non- 
diagonal representations rzo,  i.e., corresponding to repre- 
sentations in which we have a #P. 

When an amorphous medium is constructed from ico- 
sahedral blocks by means of "projections," the low-frequen- 
cy part of the spectrum should undergo the greatest change. 
This part of the spectrum if formed primarily by long-wave 
excitations of the acoustic-phonon type. On a polyhedron, 
such excitations cannot be reproduced because of the finite 
number of atoms, but they are totally insensitive to the struc- 
ture. In the Debye model they are determined by the macro- 
scopic elastic constants. 

In contrast, the high-frequency part of the spectrum, 
which includes most of the frequencies according to the esti- 
mates of Ref. 10, depends on the short-range order, i.e., on 
local atomic configurations, which are modeled quite well by 
an icosahedral crystal. The considerations are supported by 
a comparison of the calculated spectrum with the spectral 
density of the vibrations of atoms which was obtained in Ref. 
11 by the method of continued fractions for a numerical 
model of amorphous iron (containing 500 atoms). The spec- 
trum is shown in Fig. 2. Despite the diversity of spectra, we 
see that the qualitative features are reproduced satisfactori- 
ly. 

After this work had been completed, I learned of Ref. 
12, where similar results were obtained by another method: 
an explicit construction of eigenstates from the basis func- 
tions of irreducible representations of the SO(4) group, hy- 
perspherical harmonics. The approach of the present paper 
appears to be more physical, since it makes more extensive 
use of the "crystallography" of a polyhedron. As a result, the 
entire spectrum is determined by a single force parameter 
and is calculated analytically. There is no need to resort to a 
numerical solution of an equation like (5.2) for a binary 
potential of a particular type. The quasimomentum concept 
which was introduced by WidomI2 seems extraneous since 
this quantity is conserved only in the long-wave region, 
where the frequency is insensitive to the local structure, 
upon a projection of the polytope onto R 3. 

I sincerely thank A. Ya. Belen'kii and A. L. Roitburd 
for useful discussions of these questions. 

Calculation of Bo(u) and &(u). We will first show that 
Bo ( u )  is a central function of group Y', i.e., that it is con- 
stant on the conjugate classes: 

"EV8 

Since the character Xi' is not changed by a cyclic per- 
mutation of the factors (like the trace of the corresponding 
matrix), we find 

Clearly, when v runs over V,, w-'vw also runs over all of V,, 
and the sum does not change: 

As a central function, Bg ( u )  can be expanded in a linear 
combination of characters13 ( a  Fourier transformation): 

0 

The expansion coefficients b f are determined by the inverse 
Fourier transformation: 

where the asterisk indicates convolution of functions. 
The coefficients of a Fourier expansion of the convolu- 

tion of two functions in the matrix klements of irreducible 
representations of a group are known'4 to be equal to the 
product of the corresponding coefficients for the functions 
being convolved. We can thus write 

To evaluate the sum 

we need to study how the terms transform upon conjugation. 
It is easy to show that we have 

A 

Since A, transforms in thz sameAway, the sum over the 
conjugate class of the product Qo (u )A, commutes with any 
operator r:', and from Schur's lemma9 it is 

' {u} ' tr (6, (u) iu) k. r, &(.,h=- 
U E I U ~  

3 
A A 

By virtue of the transformgion la? for Qo (u ) A, under con- 
jugations, the function tr(Qo (u)A, ) is constant on the con- 
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jugate classes and can be written as a linear combination of 
characters: 

0 

where the expansion coefficients 

are the same, to within a factor c, - c,, as the last term in the 
sumin (5.15). A 

The central function tr(Qo (u);, ) is found by direct 
calculation from (5.14), with allowance for the symmetry of 
$e icosahedron; this symmetry facilitates the derivation of 
Qo ( u ) .  Expansion (A9) is found from the table of char- 
acters of Y '  (Table I) .  
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