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It is shown that the wave function of a highly localized impurity state with a given symmetry can 
be constructed using a small number ofparameters and the k.p expansion of the wave function in 
the vicinity of various critical points of the Brillouin zone. This method is used to obtain the wave 
function of a deep acceptor state with t ,  symmetry in germanium and silicon. The cross sections 
for direct and indirect optical transitions are calculated in the impurity absorption region of Ge. 
The possibility of determination of the parameters of the wave function by modulation 
spectroscopy methods is discussed. 

Deep impurity centers in semiconductors are currently 
described mainly using two approaches. In the first ap- 
proach the wave function of an electron state of an impurity 
center is constructed by hybridization of an atomic wave 
function with wave functions of the lattice ions. ' Although 
progress has recently been made in such quantum-mechani- 
cal calculations, considerable computational difficulties are 
encountered in this approach. 

The second, semiphenomenological, approach is based 
on the fact that in describing a large number of processes 
involving deep impurity centers we need to know the wave 
function only at a large distance from an impurity center 
(i.e., for small values of the quasimomentum). Then, using 

We shall write down the wave function of a state of an 
impurity center in the form of a series: 

I m)=V-I" Z c a m ( k )  e ' ~ ' ~  a, ko ) ,  (1 
k,a 

where the expansion is in terms of the basis functions of the 
k-p method v - 1'2e"rla,ko) .* Here, k, can be any extremal 
point of the energy in the Brillouin zone and the wave vector 
k is measured from the point k,; the index a represents the 
band states at the point k, and Vis the volune of the crystal. 
Using the Schrodinger equation ,. 

( H , - E )  Irn>=-Pim), (2) 
the short-range nature of the impurity potential, we can con- 
struct the wave function of an impurity state using the zero- wheregc is the Hamiltonian of an electron in a crystal and E 

radius potential model in the range (R, is the charac- is the energy of a level, we can readily obtain equations for 

teristic radius of action of the impurity potential) .24 In this the coefficients C ,". 

model the energy of a level is deduced from experimental 
results and employed as a parameter of the theory. 

[ H a ,  ( k )  -E6 , , ]C~=- Ia" ' (k0 .  k )  . (3) 
R 

Our aim will be to develop further this semiphenomeno- 
logical approach in order to provide a description of electron Here, ffd is the Hamiltonian of the kop method in the vicini- 
transitions involving an impurity center in the vicinity of tY of the point ko and 

various points in the Brillouin zone. By way of application, 
( k 0  k )  a ,  k  1 1 m v J r e -  (4 )  we shall calculate the photoionization cross sections of di- 

rect and indirect transitions from a deep acceptor center in a A 

Since the potential V is of the short-range type, in the case 
many-valley semiconductor of the Ge type. 

when k &  R ; ' we can assume that ear=: I ,  and then the coef- 

1. WAVE FUNCTION OF A DEEP IMPURITY CENTER IN A ficients I are independent of k:  
MODEL OF A SHORT-RANGE POTENTIAL 

We shall construct the wave function of a bound state 
for the specific case of a deep acceptor center. In doing this 
we make substantial use of the hypothesis of the short-range 
nature of the impurity potential. Moreover, we shall assume 
that the position of the impurity level in the band gap and the 
symmetry of the impurity state are known. We shall consider 
only states with t ,  symmetry. Such a state can be formed, for 
example, as a result of d-shell splitting of a transition metal 
impurity ion in a crystal lattice field having T, symmetry. 

We shall begin our discussion with silicon. It is known 
that the spin-orbit splitting of the energy bands is small com- 
pared with the energy of a deep level,'' which makes it possi- 
ble to ignore the spin-orbit interaction. In this case the states 
of the center with symmetry t ,  are characterized by an index 
m, which can assume three values: m = - , + , 0, corre- 
sponding to three projections of the "angular momentum" 
L =  1. 

I,"' ( k o ,  k )  -1,'" (ku ,  0) --I,"' (ko) , 

and the solution of Eq. (3)  can be represented in the form 

where 

is the Green's function of the k-p Hamiltonian H. 
If we limit our treatment to the interaction with the 

nearest energy bands, we can use Eq. (5 )  to construct the 
wave functions in the vicinity of extremal energy points us- 
ing a small nunber of parameters. 

In the case of silicon there are two special points in the 
Brillouin zone: the point I' at the top of the valence band and 
the points A located on axes equivalent to [loo]. 

We shall consider the behavior of the wave function in 
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the vicinity of the point T. The potential of an impurity cen- 
ter, which is formed by replacing one of the lattice atoms 
with an impurity atom, has the symmetry T, (it should be 
pointed out that the center has no definite parity). The selec- 
tion rules ensure that out of the nearest nine bands only two 
bands contribute to the wave function of an impurity state 
and their symmetries are T;, (valence band) and r,,, for 
which the wave functions have opposite parities relative to 
inversion. Therefore, only the following differ from zero: 

+Iam(0) alP I m)=V-'"Ar+Ga, 

and (6) 

-Iam(0)=(I'is, alP(m>=V-'"A,-G,,. 

Here, the index a labels degenerate states in the T;, and T ,, 
bands and, as in the case of m, these states correspond to 
three projections of the momentum L = 1 along a quantiza- 
tion axis, selected so as to be parallel to the [001] direction. 

Using the spectral representation of the Green's func- 
tion 

xav' (k) ~ e '  (k) 
e. (k) -E 

[x" is the eigenfunction of the Hamiltonian in Eq. ( 3 )  corre- 
sponding to the eigenvalue of the energy E ,  (k)  ] and Eq. (5)  ; 
we can readily see that the contribution of each band is in- 
versely proportional to the difference between the energies 
of the level and of the given band. Therefore, in discussing 
the majority of the effects we need to consider only the con- 
tribution of one valence band. This approximation was used 
in Ref. 4. 

If we describe the valence band using the Luttinger 
Hamiltonian in the spherical approximation5 and ignore the 
spin-orbit interaction, we obtain from Eqs. (5)-(7) 

A,+ ( I ) '  (k) D:: (k) 
canl(o, k) % 9 E DavEe+,v (k) 

Here, E, is the difference between the energies of the level 
and the top of the valence band (Fig. 1 ) and D"' represents 
the matrices of finite rotations of the momentum L = 1 
(Ref. 6 ) ,  which ensure that the quantization axis is parallel 
to the quasimomentum. The index v labels the valence sub- 

bands: v = + represents the doubly degenerate heavy-hole 
subband, whereas v = 0 corresponds to the light-hole sub- 
band. In our approximation the energy spectrum of the sub- 
bands is isotropic: &+ (k)  = fi2k ' /2m,  ; ~ , ( k )  = fi2k ' / 2 m , ;  
m ,  and m ,  are the effective masses of the heavy and light 
holes. 

In discussing the wave function in the vicinity of the 
point A we shall consider only the contribution made by the 
conduction band (symmetry A, ) to the impurity state. Six 
Ic,kA,, ) wave functions are characterized by the directions of 
the vector k,,, ( I  is the index of a valley). Only one of the 
P ( k , ,  ) - I  ;"( kA ) constants is independent, so that these 
constants can be represented conveniently in the form 

The matrix D 6: describes the rotation which ensures that 
the axis of the I th valley coincides with the quantization axis. 
In the case of the wave function in the vicinity of the point A, 
we find from Eqs. (5)-(7) that 

Here, Ec is the difference between the energies of the level 
and the bottom of the conduction band (Fig. 1); 
E ,  (k)  = fi2k i / 2 m l l  + #k : / 2 m ,  ; KII , k,,  mil, and m, are 
the components of the wave vector and of the effective 
masses along directions parallel or perpendicular to the axis 
of a valley (oriented along the vector k,,,). 

We shall normalize the wave function of the bound state 
following the BIP method.7s8 We shall do this by splitting the 
Brillouin zone into regions centered at the critical points T 
and A. Inside each of the regions 0, and InA,, we shall con- 
sider only the contributions made to the impurity state by 
the nearest of the bands, which gives 

(11) 

Substituting here Eqs. (8 )  and (10) for the coefficients C, 
we obtain the following approximate relationship between 
the constants A ,t and A,  : 

FIG. 1 .  Energy band structure of silicon ( a )  and germanium 
(b)." The dashed line represents the position of an impurity 
level in the band gap. 
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Here, p, = (m: mll ) ' I3 is the density-of-states mass in the A 
valley of the conduction band. The radius of convergence of 
the first integral in Eq. (11) is of the order of 
fiP1(2mh E, ) 'I2, which in the case of a level lying in the 
middle of the band gap (E, ~ 0 . 6  eV) is about 0.3k,. Such a 
value of the wave vector is clearly at the boundary between 
the range of validity of the effective mass approximation and 
that of the BIP method. Nevertheless, in this range of ener- 
gies we can regard Eq. (12) as an interpolation formula 
bearing in mind that its contribution, in accordance with Eq. 
(12), decreases as we move away from one of the bands. 

We shall now consider deep centers with t2 symmetry in 
germanium. The spin-orbit splitting of the valence band of 
Ge is A,, -0.28 eV, which is comparable with the energy of a 
level, so that we can naturally expect the spin-orbit interac- 
tion in the Ge lattice to split the sixfold-degenerate level of 
the symmetry t2 (when spin is allowed for) into a fourfold- 
degenerate state y,, and a doubly degenerate state y,,. We 
shall consider only the state y,,. It should be pointed out 
that, in contrast to a shallow acceptor, this state does not 
have a definite parity. We shall label the states of a center by 
the index M which has four values M = + 3/2, + 1/2, cor- 
responding to the projection of the "angular momentum" 
J = 3/2 along the quantization axis. We shall construct the 
wave function in the vicinity of the point r (where the top of 
the valence band is located) and of the point L (where the 
conduction band minima are situated). We can readily show 
that, by analogy with Eq. (6) ,  the state y,, includes contri- 
butions only of the states Tc (valence band) and I?; (Fig. 
2) in the vicinity of the point J?. Therefore, 

The index a labels excited states in the bands T: and I?, 
( a  = f 3/2, + 1/2). If, by analogy with the case of silicon, 
we consider only the contribution of the valence band, then 
using the Luttinger Hamiltonian in the spherical approxi- 

FIG. 2. Parameters of direct and indirect optical transitions from a deep 
.impurity center in Ge. 

mation, we find that 

B  + o;fS"* ( k )  D;:' ( k )  CmM(O, k )  = --%z 
V h  v En+&,&) 

Here, E +  ( k )  = +i2k2/2m1, E, 3/2 ( k )  = fi2k2/2mh; mh 
and m, are the effective masses of the heavy and light holes. 

In discussing the behavior of the wave function in the 
vicinity of the point L we shall allow for the contributions 
made to the impurity state both by the conduction band (of 
symmetry L ,  ) and of the doubly degenerate valence band 
(symmetry L ; ). This is necessary because the separations 
from the level to the valence and conduction bands are com- 
parable, at least for those levels which are in the lower half of 
the band gap (Fig. 2). We shall ignore the spin-orbit split- 
ting of the valence band at the point L, because it is small 
compared with the depth of the level. The basis functions of 
the k - p  method for this valley are six wave functions 
la,s,kh,, ) : 

Here, 1 is the valley index; a = 0 corresponds to the bottom 
of the conduction band; a = + represents the states in the 
valence band; s = + 1/2 is the spin index.2' We shall assume 
that the effective Hamiltonian in the vicinity of the point L is 
a two-band Hamiltonian of the Kane type: 

Here, E + and E- are the separations from the investigated 
level to the conduction and valence bands at the point L 
(Fig. 2);  k +  = f 2-'I2(k, + ik,,); P i s  the Kane param- 
eter; P = fi2Eg,, /2m, ; E , ,  is the width of the band gap at 
the point L. The Green's function corresponding to the 
Hamiltonian of Eq. ( 15) is 

8- i k , P  ik-P 
G = ' ( ik P - ( E  + P 2 k L 2 2 8 )  D - 

-k-2 P  "6- 

~ ik, P  - - k + 2 P 2 / ~ -  - (E+ + P2kL2/2e-)  

(16) 

w h e r e D = ~ + ~ _ + P ' k : , k :  = k f  +k:. 
Using the rule for the addition of angular momenta, we 

find that the constants If;t, (k, ) can be represented in the 
form 

Here the parentheses contain the Wigner 3j symbo16and D is 
a matrix which,as in the case of silicon, ensures that the axis 
of the 1 th valley coincides with the [001 ] quantization axis. 

Equations ( 16) and ( 17) describe the wave function in 
the vicinity of the point L and in this case the constants 
B  ,+ = B  , - B  are related to the contribution of the va- 
lence band, whereas B  - B  L is related to the conduction 
band. 

In general, it is not possible to find the relationship be- 
tween the parameters B  at the points T and L, because the 
corresponding normalization integral diverges. If an energy 
level is closer to the conduction band (E, &E- ) we can use 
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the one-band approximation. Then, the normalization con- 
dition subject to the comments made in the derivation of Eq. 
(12), yields 

Here,,u, is the density-of-states effective mass of the L valley 
of the conduction band of Ge. 

2. CROSS SECTION FOR A DIRECT OPTICAL TRANSITION 
BETWEEN AN ACCEPTOR CENTER AND THE CONDUCTION 
BAND OF Ge 

It is known that band states with any value of the quasi- 
momentum right up to the reciprocal lattice vector can con- 
tribute to a state localized in r space. Consequently, direct 
optical transitions from an acceptor center to the conduction 
band of Ge are possible. Naturally, the probability of a tran- 
sition of this kind is governed by the asymptotic form of the 
wave function of a deep center corresponding to k- k,. We 
shall calculate the photoionization cross section for a transi- 
tion which is accompanied by the formation of an electron in 
the conduction band and of a hole in an acceptor state. For 
y,, center of symmetry this cross section for direct allowed 
transitions is given by 

Here, k is the quasimomentum of the final state of the con- 
duction band; s is the spin symbol; I is the valley index; fi is 
the momentum operator; e is a unit vector of the polarization 
of light; e and mo are the charge and mass of a free electron; 
no is the refractive index; h is the photon energy; c is the 
velocity of light. 

We shall calculate the matrix element of an optical tran- 
sition in the vicinity of the point L using Eqs. ( 16) and ( 17). 
Applying the conditions of unitarity for the 3jsymbols and D 
mat rice^,^ we find that the expression for the sum of the 
squares of the matrix elements of an optical transition to a 
valley with the index characterized by the quantum numbers 
M and s can be represented in the form 

where Gay and B I  are given by Eqs. (16) and (17); 
PaB (e)  = (a,kL IpelP,k, ) is the matrix element of an opti- 
cal transition between the band-edge states at the point L; X; 
are the coefficients which determine how the Bloch ampli- 
tudes of the conduction band depend on the wave vector in 
the Kane model. Using the Hamiltonian of Eq. ( IS), we 
obtain 

where E, is the electron energy of the conduction band mea- 
sured from the valence band edge at the point L. The final 
expressions for the cross section will be obtained for the case 

of small photon energies above the threshold; 
(h - E+ ) ~ E + , E - .  Retaining only the terms quadratic ink  
in Eq. (20), we find that 

1 mop 
 TI^(*) z-(-Iz{ 3V fie- l ~ L c 1 2 (  I i - 5 )  EK,, V2 ( k e )  E + ~  ,Z 

where e:" and e y  are the components of the polarization 
vector perpendicular to the axis of the I th valley, 

( 1 )  e l , ,=  ( e J 1 ' )  '+ ( e J 1 ' )  ', ( k e )  ,=k,e,"'+k,e, . 
The partial cross section for a phototransition to a val- 

ley with the index I is readily described by the expression 

where 

and 

and the dimensionless parameters b , ,  are defined by 

The polarization dependence of the partial cross sec- 
tions can be determined if we express the projections e , ,  in 
terms of the components of the polarization vector along the 
[ 1001 principal crystal axes ex, e,, and e,: 

Summing the contributions of four valleys, we obtain the 
following expression for the total photoionization cross sec- 
tion: (T? = (8/3)ao@. 

3. CROSS SECTION FOR AN INDIRECT OPTICAL 
TRANSITION TO THE CONDUCTION BAND OF Ge 

The cross section for an indirect optical transition ac- 
companied by phonon emission is 

Here, the indices p and k describe intermediate (virtual) 
band states of energy E, (k) ;  k', s, and I are the final states of 
an electron in the conduction band; M,,s, is the matrix ele- 
ment of the electron-phonon interaction operator; h, is the 
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phonon energy. The rest of the notation is the same as in Sec. 
2. 

We shall consider only the transitions which are accom- 
panied by phonon emission, because this indirect transition 
channel predominates9 in the case of Ge. We shall assume 
that the only intermediate states in Eq. (25) are the T; 
states, so that the indexp represents double (spin) degener- 
acy of these states. The selection rules for a transition accom- 
panied by the emission of an LA phonon9 give 
M,,s, = M6,, , . Since the phonon energy spectrum near 
the boundary of the Brillouin zone depends weakly on the 
phonon wave vector, we shall assume that 
M(k - k') =M(qL ) =M, and, moreover, we shall consider 
only the spontaneous process of phonon emission. 

Substituting in Eq. (25) the wave functions of the state 
y,,, which are governed by Eq. (13), we readily find the 
cross section for an indirect transition: 

where 

Here m2 is the effective mass of the band Ti; E,,, is the 
width of the band gap at the point I?; is the energy deficit 
for a direct optical transition (Fig. 2). Equation (27) is de- 
rived using an approximate expression from the two-band 
Kane model for the matrix element of an optical transition at 
the point r: P f, =:mi E,,, /2m,. We can estimate the matrix 
element M, using the data on the interband absorption of 
light in Ge. Such an estimate was obtained by Kane," who 
found M i  V z 4 . 3 ~  eV2.cm3. 

4. DISCUSSION OF RESULTS 

Using the final expressions in Secs. 2 and 3 and the actu- 
al values of the band parameters of Ge we shall now estimate 
the ratio of the photoionization cross sections for a deep 
acceptor level y,, in the case of direct and indirect transi- 
tions: 

Hence, it follows that in the case of the centers whose wave 
functions are governed by a short-range potential, the direct 
optical transitions to the side minima of the conduction band 
should predominate over indirect transitions, because an es- 
timate obtained by the strong-coupling method gives 
BL-B,?. 

It follows from the relationships of Eq. (25) in Sec. 2 
that the partial cross sections of direct optical transitions in 
the vicinity of the point L depend on the orientation of the 
polarization vector of light relative to the axes of the valleys 
and this should give rise to selective optical pumping of dif- 
ferent valleys when a sample is illuminated with polarized 

light. This effect can be investigated by determination of the 
relaxation characteristics of the cyclotron resonance signal " 
or by a study of the polarization of the luminescence under 
uniaxial deformation conditions. 

Transitions from a deep acceptor center to the valence 
band have been investigated by various authors4allowing for 
the contribution of one valence band. Inclusion of a higher 
band I?; (TI, ) opens up, in principle, a channel of allowed 
optical transitions from acceptor states with t ,  symmetry to 
the valence band, but since the band r; is remote, this con- 
tribution can be significant only near the absorption edge. 

Investigations of optical transitions in the impurity ab- 
sorption region by modulation spectroscopy methods'' 
makes it possible, in principle, to determine the contribu- 
tions of the band states in the vicinity of various critical 
points in the Brillouin zone (which means we can find the 
constants B*, B L ,  etc. ). Investigations of the polarization 
dependences which then apply may prove particularly fruit- 
ful. The constants found in this way together with Eqs. (8) ,  
( lo ) ,  ( 14), ( 16), and ( 17) would give uniquely the wave 
function of a deep impurity center, which could be used to 
calculate various effects associated with deep impurities 
(tunneling, radiationless recombination, etc. ) . 

It should be pointed out that these calculations of the 
photoionization cross sections have been carried out ignor- 
ing impurity charge states and can be used directly in the 
case of centers which become neutral after the photoioniza- 
tion event. The charge of the centers can be considered by 
introducing an appropriate Sommerfeld f a ~ t o r . ~  

The authors are grateful to V. I. Perel' for valuable dis- 
cussions. 

"For example, in the case of the valence band at the point r we have A, 
~ 0 . 0 5  eV. 

"Here, as usual, S i s  a function which is invariant under transformations 
of the group C,,; X and Yare functions which transform as the corre- 
sponding coordinates. 
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