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A theory is derived for the angular dependence of the upper critical field H(8) of a superlattice 
formed by thin superconducting layers with Josephson junctions between them. The function 
H(8) is singular at small angles at all temperatures. Expressions are derived for the quantity 
P(H) = d H  /dB 1, = , , which characterizes the singularity. The functional dependence H(8 )  is 
found for all angles in the region of the "two-dimensional behavior" of the superlattice (low 
temperatures). The change in H (  8) is found to be sharper than that predicted by the Tinkham 
formula for thin films. The effect of nonideal superlattice structure on H ( 8 )  is studied. 

INTRODUCTION 

Research on semiconducting superlattices has recently 
been supplemented with active research on superlattices 
containing layers of superconducting material. A super- 
structure in a solid modifies the spectra of elementary excita- 
tions and gives rise to changes in several macroscopic prop- 
erties. 

The most characteristic feature of the static properties 
of superlattices is the unusual temperature dependence of 
the upper critical magnetic field, H ,, ( T) , in the case in which 
the layers are oriented parallel to the field (8 = 0) .  As the 
temperature is lowered near a certain value Fc < Tc (T, is 
the temperature of the superconducting transition in a zero 
field), a crossover occurs in the behavior of H ( T) : a transi- 
tion from a linear dependence to a square-root depend- 
e n ~ e . ' - ~  This transition is extremely sharp.3 It is usually as- 
sumedI4 that the properties of a superlattice in the 
"three-dimensional region" ( T >  IT,) are the same as the 
properties of an anisotropic bulk superconductor, while 
those in the "two-dimensional region" ( T <  IT,) are the 
same as the properties of a single film. We know that the 
angular dependence of H, for a thin film is quite different 
from that of an anisotropic bulk superconductor; the two 
cases differ fundamentally when the angular deviation 8 
from parallel orientation is small. For an unbounded bulk 
medium we would have H(0 )  - H(8) a 8 ', while for a thin 
film H(8) would be a singular function: H(0 )  - H(8) a 18 1 .  

The behavior H(8) observed e~per imenta l ly~ .~ ,~  usual- 
ly deviates both from the Tinkham thin-film formula7 for the 
two-dimensional case and from the Lawrence-Doniach for- 
mulas for the three-dimensional region, in the direction of a 
sharper change in the critical field as a function of the angle. 

i n  this paper we analyze theoretically the angular de- 
pendence of the critical field of a superlattice with dielectric 
interlayers, which provide Josephson junctions between the 
superconducting layers. We will see that the intuitive as- 
sumption that the Tinkham formula would be valid for a 
superlattice in the two-dimensional region is not correct, be- 
cause of a peculiar proximity effect between adjacent layers 
of the superlattice. An expression derived with allowance for 
this effect does indeed predict a sharper change in the critical 
field as a function of the angle than that predicted by the 
Tinkham formula. 

The discrete structure of the superlattice causes the 
H(8 )  functional dependence to be singular as 8-+0 at all 

temperatures, including the region of three-dimensional be- 
havior. We derive expressions for the quantity P =  d H /  
d / 8 1 1, = , , which characterizes this singularity, as a function 
of the magnetic field for the regions of both two-dimensional 
and three-dimensional behavior. We find the width of the 
characteristic range of angles in which the Lawrence-Don- 
iach formula does not apply. 

We will see that in a defective superlattice, with devia- 
tions from strict periodicity, the curves of H(8) at small 
angles are sharper than those for an ideal superlattice. As the 
defect in the superlattice we consider a single metal layer in 
the volume of a superlattice with a thickness which differs 
from the thicknesses of all the other layers; we also consider 
the superlattice boundary. 

To study the functional dependence H(8) in the limit 
8-0 we use the method of adiabatic separation of variables 
in the linearized Ginzburg-Landau equation. This method 
results in a simple and graphic derivation of exact expres- 
sions for P(H) in all the cases mentioned above. 

This work was carried out in parallel with an experi- 
mental study of the angular dependence of the critical field 
for V/Si superlattices. The results of the experimental study 
are reported in the second part of this studyS9 In that other 
paper we also compare the experimental results with the 
theoretical results of the present paper. 

1. ADIABATIC METHOD IN THE PROBLEM OFTHE ANGULAR 
DEPENDENCE OF THE CRITICAL FIELD 

A slab inhomogeneity in a superconductor influences 
the orientational dependence of the critical magnetic field H. 
When the angle 8 between the field and the plane of the 
inhomogeneity is 0 or ~ / 2 ,  the problem of the form of a 
superconducting nucleating region can be solved relatively 
easily, thanks to the symmetry. For an arbitrary angle 8, the 
functional dependence H(8) can be found at best approxi- 
mately, for example, by variational methods. l o  The only ex- 
ceptional case is that of orientations which deviate only 
slightly from parallel. We will develop a simple method for 
determining the limiting behavior of H(8) exactly in the 
limit 8- 0, without reference to the nature of the inhomoge- 
neity (which might be, in particular, the boundary of the 
sample or a regular arrangement of layers in the superlat- 
tice). The functional dependence H ( 8 )  is found to be singu- 
lar; as a rule, we have H(0)  - H(8) a 18 1. 

Determining the critical field reduces to solving a lin- 
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earized Ginzburg-Landau equation. Let us assume that the 
field H is oriented along x, while the plane of the inhomoge- 
neity is rotated by an angle 8 ( 1 with respect to H around the 
y axis. The Ginzburg-Landau equation then takes the form 

Here 6 is the coherence length at T = 0; @, = ?rtic/e is the 
quantum of flux; T = (Tc  - T) /T , ,  where T, is the transi- 
tion temperature at H = 0; and the operator ii characterizes 
the inhomogeneity. 

Basing our approach on the analogy between the linear- 
ized Ginzburg-Landau equation ( 1.1 ) and the Schrodinger 
equation, we borrowed the idea of adiabatic separation of 
variables from quantum mechanics" in order to calculate 
H ( 8 ) .  The dimensionless temperature of the superconduct- 
ing transition in a magnetic field, T ,  in ( 1.1 ) corresponds to 
the smallest energy eigenvalue of the motion of the particle 
determined by the Schrodinger equation. The part of Eq. 
( 1 .1 )  in braces corresponds to the energy of the motion 
transverse to the field H. The energy of the "longitudinal" 
motion becomes progressively smaller in comparison with 
the energy of the "transverse" motion as the angle 8 de- 
creases. It is this circumstance which makes it possible to use 
the adiabatic separation of variables. We first determined 
the eigenvalue T ,  and the eigenfunction 1CI, (y ,z)  of the oper- 
ator 

treating the variable x as a fixed parameter. 
If $(y,z) = eiky p(z ,k)  and T,  = T,  (H , k )  are the eigen- 

function and eigenvalue for 8 = 0, at nonzero 8 we have 

T ~ = T ~  ( H ,  k + 2 n 0 H ~ l @ ~ ) .  (1.3) 

An inhomogeneity affects the critical field at H = 0 only if a 
nucleating region is localized near this inhomogeneity. Lo- 
calization corresponds to the existence of a minimum on the 
curve of T, versus k at some k = k,(H). The most typical 
case would be a quadratic dependence r , ( k )  near 
k = k,(H). Assuming k = k,(H) in ( 1.3), we expand T,  in 
a series in x:  

A substitution of the eigenvalue ( 1.4) for the operator X, in 
( 1.1 ) shows that the spectrum, of the energies of the mo- 
tion along the field, changes qualitatively when 8 undergoes 
an arbitrarily small deviation from 0. Specifically, at 8 = 0 
the spectrum is continuous, and the smallest value, T I I  = 0, 
corresponds to a spatially uniform solution, while for 8 f 0 
the spectrum of the longitudinal motion becomes discrete, 
and the lowest level corresponds to the energy of the zero- 
point vibrations along the x axis. In this case we have T I I  > 0. 
The change in the nature of the spectrum makes the critical 
field a nonanalytic function of the angle 8. As we will see 
below, the amplitude of the zero-point vibrations is small 
enough that we can restrict the discussion to the quadratic 

expansion in ( 1.4). The equation determining .rll is thus the 
Schrodinger equation for a harmonic oscillator: 

Using the smallest eigenvalue obtained from ( 1.5 ), we 
can easily determine the functional dependence 7(H,8)  at 
small values of 8, and we can determine the derivative 

The function $ ( x )  found from (1.5) decays over a 
characteristic distance x, oc 8 -'I2. Consequently, the quan- 
tity Ox in which the expansion is carried out in ( 1.4) is small 
in the limit of small angles (Ox, a 8 ' I 2 ) ,  so that we can re- 
strict the discussion to the quadratic potential in ( 1.5). 

The adiabatic eigenfunction $(x,y,z) = $ ( x ) $ ~  (y,z) 
which we have constructed is applicable if the component of 
the kinetic energy associated with the longitudinal motion, 
- 'd  2/dx2, is substantially larger by virtue of the function 

$ ( x )  than the component which comes from the parametric 
x dependence of the function $x (y ,z) .  This condition can be 
formulated as an inequality which states that the distance 
between the eigenvalues rll is small in comparison with the 
scale of the variation, T, ( k ) .  For superlattices with super- 
conducting layers of thickness d, the adiabatic approxima- 
tion can be used under the condition 

It follows from ( 1.5 ) that H is a linear function of 18 I as 
8+0. In certain special cases, e.g., for a plate in a parallel 
field equal to the vortex entry field,' the quadratic term may 
be absent from expansion ( 1.4). The result will be a change 
in the functional dependence H ( 8 ) .  It is easy to show that if 
the expansion ( 1.4) begins with the term of order 2n then we 
would have 

Expressions ( 1.6) and ( 1.8 ) are valid for an inhomoge- 
neity of arbitrary type, in particular, for the boundary of a 
sample. The effect of a boundary on the angular dependence 
of the critical field has been studied in several theoretical 
papers.'2 The result derived by Saint-James et al.' agrees 
with ( 1.6) of the present paper in the limit T+ Tc , with d 2 ~ /  
2dk z 1 .  The reasons for the difference between the result of 
Ref. 7 and the exact result-a difference which increases 
with decreasing temperature-were pointed out by Thomp- 
son.'' In that paper Thompson derived an expression equiv- 
alent to (1.6) through a rather complicated analysis of the 
perturbation-theory series for the case of a plate with ideal 
boundaries. The derivation which we have set forth here not 
only is clearer than the series analysis of Ref. 12 but also 
allows one to immediately see the behavior H ( 8 )  in the par- 
ticular case in which the field H ( 0 )  is equal to the vortex 
entry field H,: In this case we have n = 2  and 
H ( 0 )  - H ( 8 )  a 18 I4l3. 
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2. ANGULAR DEPENDENCE OF THE CRITICAL FIELD FOR AN 
IDEAL SUPERLATTICE 

We examine the behavior of H(8) for a strictly periodic 
superlattice obtained by alternating metal layers of thick- 
ness d and layers of an insulator (or semiconductor) of 
thickness s. The coupling between the metal layers is as- 
sumed to be weak, and this weakness is reflected in the 
boundary conditions where two successive periods of the su- 
perlattice adjoin each other: 

$'(Dn+d/2) =$'[D(n+l) -d/2], 

The extrapolation length I, which is inversely proportional 
to the energy of the Josephson junction,I3 is large: I>d. The 
period is D = d + s. If, in addition, the metal layers are too 
thin for vortices to penetrate into them [d < L, , where the 
magnetic length is L, = (@0/2n-H)112], there is no diffi- 
culty in deriving a finite-difference equation for the order 
parameter $, in the  layer^.^.'^ If terms proportional to the 
productI4 ofsmall parameters, ( d  /I) (D  /L, )', areignored, 
the equation for $, (x,y) becomes 

(The superlattice layers run parallel to the xy plane; the 
magnetic field is oriented along the x axis.) It follows from 
(2.2) that the spectrum T, (H,k) is determined by the equa- 
tion 

The minimum eigenvalue T, corresponds to k = 0. We 
know3.I4 that in the behavior T, ( H )  and thus in that of the 
parallel critical field H ,, ( T )  there is a crossover correspond- 
ing to a transition from three-dimensional to two-dimen- 
sional behavior. For our purposes below, it is convenient to 
introduce a characteristic crossover fieldI4 Hcr in (2.3), 

and to transform from k and T, to the dimensionless param/ 
eters r and A (H,k) : 

The quantity A depends periodically on r. One period corre- 
sponds to values lr1<1/2. In terms of dimensionless vari- 
ables, Eqs. (2.3) and ( 1.6) take the form 

The equation written in the form (2.6) is convenient for 
analyzing the low-temperature region, where H,,/H is a 
small parameter. In this H region, it suffices in calculating 
d H  /dB to lowest order to consider Eq. (2.6) for $o only and 

to set $, = $-, = 0. We then find 0 = - 3@,/vd from 
(2.7); this value agrees with the value for an isolated thin 
film. '*I2 TO derive the first nonvanishing corrections to this 
result, we should use an iteration method to solve the system 
of equations for $o and $ * , , ignoring $ *, . The calculations 
yield 

Expression (2.8) shows that for a superlattice the correction 
to the "thin-film" value of 0 increases rapidly with increas- 
ing temperature (i.e., with increasing field H ) .  In agreement 
with ( 1.71, the linear asymptote of H(B) prevails at angles 

18 1 < n-d 2~ /2Q0. 
In analyzing the behavior B(H) in weak field 

(H<Hc, ), it is convenient to use Fourier transforms, put- 
ting (2.6) in the standard formI5 of the Mathieu equa- 
t i ~ n . ~ . ' ~  In the strong-coupling approximation we find the 
following from the Mathieu equation: 

?, ( H ,  r )  =h ( H )  
+Ah  ( l+cos 2nr) 12. 

Using the zone width M found by the WKB method,I5 and 
using (2.9) to calculate the derivative 8 2A /a?, we find from 
(2.7) 

In weak fields the quantity P(H) is thus an exponential 
function of the field. Figure 1 shows a curve of P(H)  over 
the entire field range for the case D = d. 

For superlattices, the angular interval in which the lin- 
ear behavior H( IB 1 )  is valid depends strongly on the tem- 
perature. For H< Hcr , the H(8)  dependence for the super- 
lattice as a whole is similar to that for a homogeneous but 
isotropic superconductor. Near 6' = 0, this function is dome- 
shaped. In contrast, however, expression (2.10) reveals a 
singularity at 8 = 0. Actually, the expression for a homogen- 
eous but anisotropic superconductor describes the behavior 
H( B) for a superlattice with a certain deviation from a paral- 
lel orientation ( I B I 2 8 *). For an ideal superlattice it is sim- 
ple to evaluate 0 *, since we can c~nstruct '~." a one-dimen- 

FIG. 1. Thenormalizedderivative ( r d  '/3@,) (dH  /d  10 1 ) 1, = , versusthe 
reduced magnetic field H/H,,  for the case D = d. The dashed lines show 
the asymptotic behavior of (2 .8)  and (2.10) in the region HzH,, .  
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sional Ginzburg-Landau equation which determines H( 0)  
for any angles 0. In the coordinate system of the superlattice 
[the plane of the layers coincides with the xy plane; 
H = (H, ,O,H, ) ] this equation becomes 

Here R is determined by (2.5) with the obvious substitution 
H-H, ,T, (H,k) -7; (H,to); and the dimensionless coordi- 
nate is t = (~TDH,  /@,)y. The quantity R depends periodi- 
cally on to: R (to) = R (to + 2 ~ ) .  The terms in braces in 
(2.11 ) constitute an energy operator with a periodic poten- 
tial, which forms a band spectrum. Since we are interested in 
the smallest eigenvalues, we set to = 0 at this point. The sec- 
ond term on the left side of (2.11 ) distorts the periodic po- 
tential. If this is a smooth distortion, its effect on the spec- 
trum of A values can be treated in the effective-mass 
approximation,18 which is equivalent to the adiabatic ap- 
proximation used above. The adiabatic approximation is 
thus valid as long as the smooth quadratic increment in the 
periodic potential remains small in comparison with the 
band width M as t increases. Since the energy of the zero- 
point vibrations is determined by the region of t  values near 
the minimum of the smooth potential, the condition for the 
applicability of this approximation can be written in the 
form 

(cDoH,/2nDZH,')WAi1. (2.12) 

This inequality enables us to estimate the width of that 
region of small angles 16' 1 < 6' * in which the functional de- 
pendence H(6') deviates from the dome shape. Using the 
explicit expression for M at H <  H,, and (2.12), we find 

[This expression agrees with condition ( 1.7 ) . ] 
At low temperatures ( H 3  H,, ), over nearly the entire 

angular range the periodic potential in (2.11) has only a 
slight effect on the minimal eigenvalue A and can be dealt 
with by first-order perturbation theory. The functional de- 
pendence H (  T,0) is then given by the expression 

2ngZH sin 0 n2 dgU2 cos2 0 
7 = -t 

@ o 3@0 

The condition for the applicability of perturbation theory is . 
determined by the inequality H% H,, . Equation (2.14) takes 
a particularly simple form at small angles, with 

where it is sufficient to consider only the first two terms in 
(2.14). In this case, using the low-temperature asymptotic 
behaviorI4 for the field H ( T), 

3"@0 T,-T 
H,, ( T )  = - --- 2E2 

n d  ( T c  ) = ( 1 - - )  d l  (2.16) 

and the customary expression for H, (T) ,  we can put Eq. 
(2.14) in a form similar to that of Tinkham's formula7: 

Using this equation, as in the case of the ordinary Tinkham 
formula, we can construct the angular dependence H(0 )  
knowing only the experimental values ofH, ( T) and H ( T) . 
The temperature TC is found from the experimental data by 
linearly extrapolating the low-temperature part of the 
H 2 (  T) dependence to H = 0. Expression (2.17) evidently 
describes a decrease in the critical field with angle which is 
more rapid than that described by the Tinkham formula. 
The reason lies in the difference between the extrapolation 
temperature PC and T, , which is in turn a consequence of the 
discrete nature of the structure of the superlattice and the 
distinctive proximity effect in a system of weakly coupled 
layers.I4 

3. STRUCTURAL FEATURES IN THE H(0) DEPENDENCE IN A 
SUPERLATTICE WITH A SLAB INHOMOGENEITY 

We showed above that the derivative P(H) is finite in 
an ideal superlattice. In weak fields, where the size of the 
superconducting nucleating region, I, = (Hc,/2H) "'0, is 
large in comparison with the period D of the superlattice, the 
values ofp(H) become small, since a large nucleating region 
is only slightly sensitive to the discrete nature of the struc- 
ture of the superlattice. Under these conditions, the behavior 
B(H) may be substantially affected by the irregularity of the 
superlattice, which leads to pinning near a defect of a super- 
conducting nucleating region spanning a large number of 
layers. 

Let us examine how P(H) is affected by a very simple 
irregularity: a single "defective" metal layer, with a thick- 
ness which deviates from the nominal thickness by an 
amount Adgd. The parameters D and 1 are assumed to re- 
main constant. To calculateB(H) we need to again find the 
spectrum of T, (H,k) values from Eq. (2.3), this time incor- 
porating the inhomogeneity of the superlattice layers: 
d (n )  = d + AdS,,,. 

Since the size of the nucleating region, I,, is large in 
comparison with D, we can switch from n to the continuous 
variable Z = nD and replace the finite differences by deriva- 
tives. To lowest order in the parameters Ad /d and (D /IH )' 
we find the following equation from (2.3) : 

The term with the S-function is a small perturbation. To first 
order in the parameter Ad /d we find from (3.1) 

T~ (H,  2,) =a:'' (H) ft:' (H, Z,), 

( 0 )  xD2H,, 2ng2H ,,, ,,, Ad D 
TI (11) = ----- - 

@ o  00 ' 
71. =tL - 

2n1,d 

(for convenience in writing these expressions, we have intro- 
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duced the coordinate of the center of the nucleating region, 
Zo = @,k /2?rH). 

It can be seen from (3 .2 )  that either a thick ( A d  > 0 )  or 
a thin (Ad  < 0 )  defective layer will result in the localization 
of a nucleating region. In the former case the center of the 
nucleating region "settles" at the inhomogeneity, while in 
the latter case it settles at a distance 21121H from it. Since the 
analysis is absolutely the same in the two cases, we set Ad > 0  
for definiteness. From (3 .2 )  and ( 1.6) we find 

The functional dependence P ( H )  cc H 5 1 4  holds for an arbi- 
trary disruption of the periodicity of the superlattice due to 
deviations of the thicknesses d  and s from their nominal val- 
ues, provided only that the total thickness of the defective 
region remains significantly smaller than the dimension of 
the nucleating region, I, .  In the case of thin insulating inter- 
layers there is an extremely high probability for the forma- 
tion of a defect consisting of two neighboring superconduct- 
ing layers which "coalesce" because of a hole in the 
interlayer. For such a defect we have 

( H )  =- (3"/env4) (cDo/dZ) (H/H, , )"&,  

where we are assuming S ( d , D z d .  
A linear variation in the critical field as a function of the 

angle in the presence of defects of this sort should be ob- 
served in the region 0  5 8 *: 

It follows from (3 .4 )  that when there is a defect in a superlat- 
tice the angular region near 0  = 0  in which H ( 0 )  varies 
sharply becomes substantially larger than in the case of an 
ideal superlattice. 

Comparing (3 .3 )  and (2 .10) ,  we find the field interval 
for which the inhomogeneities dominate P ( H )  : 

The deviation from linearity in (4.1 ) [a positive curvature in 
P ( H ) ] ,  due to the discrete nature of the structure of the 
superlattice, arises in fields 

In fields satisfying ( 4 . 2 ) ,  the functional dependence P ( H )  
in the case of a surface conductivity is not qualitatively dif- 
ferent from that shown in Fig. 1 .  In particular, the function 
P ( H )  tends in the limit H / H , ,  -+ toward the value 
- 3@,/nd ', which corresponds to a thin film. The only dif- 

ference is that the correction proportional to ( H C r / H l 4  is 
half the value given in ( 2 . 8 ) .  

In a superlattice of finite thickness 9, the field H,, is 
supplemented by another characteristic field, the vortex en- 
try field7 

Changes occur in expression (4.1 ) as H is reduced to a level 
on the order o f H V : P ( H )  vanishesI2 as the square root of the 
field strength as H+ H v  + 0  and tends toward the nonzero 
value 

as H+O (Fig. 2a) .  This value is of course far smaller than 
the value of 0 in a strong field, P(O)/P(  a ) = ( d  / 
Y ) 2 ~ ~ 2 ~ c r / @ o <  1.  

If a superlattice borders a normal metal, there is no sur- 
face superconductivity. In this case the nucleating region lies 
in the interior of the superlattice. Because of the finite size of 
the sample, the decrease in the field which results from the 
exponential decay of P ( H )  [see (2 .10)  1 in the region 
H  5 H v  causes P ( H )  to grow to a value on the order of that 
in (4 .3 )  (Fig. 2b). A Nb/Ta superlattice with normal outer 
layers was studied in Ref. 19. In the case of a weak interlayer 
coupling, the behavior P ( H )  for H <  H,, is complicated, re- 
gardless of the type of interlayer (insulating or normal). The 
angular dependence for a sample with D  = 780 A and 
d  = 290 A is indeed free of the behavior (4.1 ), characteristic 

According to ( 3 . 5 ) ,  this region is - 0.5Hcr in the case I Ad / 
d  1 ~ 0 . 1 .  

4. EFFECT OF SUPERLATTICE BOUNDARIES ON H(0) 

The boundary of a sample, like a slight inhomogeneity 
in the volume of a superlattice, leads to qualitative changes 
in P ( H )  only in the limit of weak fields, where we have 
I ,  %D. We first consider a single ideal superlattice boundary 
formed by decoupling the layers n  = 0  and n = - 1. In this 
case, Eq. (2 .3 )  holds for all n> 1 .  For n  = 1, the finite-differ- 
ence operator in i 2 . 3 )  should be replaced by the first-order 
finite-difference A'$, = $, - When we switch to the 
continuous variable Z = nD in ( 2 . 3 ) ,  we find the boundary 
condition $ ' ( O )  = 0 .  The problem of determining the 
r1 ( H , k )  spectrum thus reduces to the well-studied problem7 
of a surface superconductivity. In applying ( 1.6) to this 
case, we would like to put it in a dimensionless form, making 
use of the characteristic values H  and k .  We can then use the 
numerical results of Thompson.I2 Taking this approach, we 
find FIG. 2. Schematic plots of P ( H )  for a bounded superlattice sample of 

thickness 2 in weak fields ( H g H , ,  ). a-Ideal boundaries [the value of 
P ( 0 )  is given by ( 4 . 3 ) ;  thedashed lineshows ( 4 . 1 ) ;  H ,  is the vortex entry 
field]; b--case of a superlattice bounded by layers of a normal metal. 
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of a surface superconductor. However, the deviations from 
the Lawrence-Doniach formula caused by the finite thick- 
ness of the sample, Y = 5200 A, are also indistinguishable 
on the plots shown in Ref. 13. According to (4.3), the value 
ofB in the limit H-0 would be only - 1 Oe/deg. 

5. H(0) FOR A SANDWICH OF TWO IDENTICAL FILMS 

To find substantial differences from the behavior of the 
critical field for an isolated thin film we need go no further 
than a system consisting of only two identical metal layers 
with a Josephson junction between them. An analog of the 
crossover phenomenon characteristic of a superlattice arises 
in such a system. In a weak field,'' with 

the nucleating region spans the two metal layers, and its cen- 
ter is at the middle of the sandwich. In a strong field 
( H >  H,, ) the nucleating region is localized in one of the 
layers. Correspondingly, the functional dependence H ( T) 
has a characteristic positive curvature near values H-H,,. 
The crossover is also manifested in the angular dependence 
of the critical field. For a sandwich one can find an analytic 
functional dependence P(H) over the entire field range: 

The values offl(H) at H = 0 and as H- co are the same as 
those for isolated films of thicknesses 2d and d, respectively, 
reflecting the change in the structure of the nucleating re- 
gion in a sandwich as the field increases, as mentioned above. 

In very weak fields, H<H,,, the H(8) dependence is 
described by Tinkham's formula. Under the condition 
H) H,, , the angular dependence of the critical field is deter- 
mined by (2.14), provided that the parameter 26 2/dl in the 
last term is halved. 

In strong fields, no qualitative differences are found in 
the behaviorP(H) and H(8) for a sandwich and for a super- 
lattice. 

CONCLUSION 

The upper critical field of a superlattice can be found for 
an arbitrary temperature and for an arbitrary orientation of 
H with respect to the superlattice layers, even on the basis of 
the Ginzburg-Landau equations, through numerical solu- 
tion of these equations. Correspondingly, a calculation of 
this sort is meaningful only for specific experimental condi- 
tions. Analytic methods make possible substantial progress 
in the study of the behavior H( T) in the case of two special 
orientations of H, parallel and perpendicular to the layers. 
These cases have been the subject of most of the studies (e.g., 
Refs. 14 and 20-24). 

Analytic functions H ( 8 )  can be constructed over broad 
angular regions if the problem has a small parameter. In 
weak fields, the small parameter is the ratio H/H,, < 1, 
which makes it possible to derive the Lawrence-Doniach for- 

m ~ l a . ~  That formula, however, can not be used at small an- 
gles [see (2.13) ]. In the case of a strong field, the small 
parameter is " H,,/H< 1. It can be seen from (2.14) and 
(2.16) that in the latter case the expression for H(8) differs 
from Tinkham's formula by terms of order (T, - PC ) /  
(IT, - T), which are proportional to the strength of the cou- 
pling between layers. At relatively small angles (2.15), 
expression (2.14) reduces to (2.17), which is similar to 
Tinkham's equation. Expression (2.17) can be used to con- 
struct the angular dependence H(8) on the basis of no more 
than the experimental values of H, ( T) and H ( T) . The dif- 
ferences between the expression derived here for H ( 8 )  and 
the Lawrence-Doniach and Tinkham relations stem from 
the correct account of both the discrete structure of the su- 
perlattice and of the finite force of the coupling between indi- 
vidual layers in the superlattice. 

The adiabatic method developed in the present paper 
can be used along with a different small parameter, the angle 
8. Correspondingly, it becomes possible to determine the be- 
havior H(B) at small angles for arbitrary values of H /H,, . 
We have used this method for an ideal structure to find the 
deviations [see (2.8) and (2.10) ] from these other formulas 
for small angles. A more important point, however, is that 
the derivative d 2 ~ , / a k 2 ,  which determines the value of 
fi = aH /a 18 I I ,,, , is very sensitive to irregularities of the 
superlattice at weak magnetic fields. In particular, we 
showed in Sec. 3 of this paper that a defective layer in a 
superlattice substantially increases the values of o(H) for 
H<H,,. Measurements of H ( 8 )  at small angles can thus 
provide information on the irregularities of a superlattice. 
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