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We investigate interband magnetic breakdown (MB) in a metal with an arbitrary dispersion law, 
taking account of spin-orbit coupling and the spin splitting ofconduction electron (CE) levels in 
a magnetic field. We determine the CE spectrum in regions of quasimomentum space having a 
small band gap. An expression is derived for the full fourth-rank s matrix, a fundamental dynamic 
characteristic of MB, and for the probability of MB with spin flip. As an example, we derive the 
dispersion relation and determine expressions for the CEg-factor in a simple "double figure 
eight" MB configuration, for various limiting cases. We demonstrate that just as in the case of 
stochastic MB, coherent MB can result in broadening of the CE paramagnetic resonance line in 
Zn and Mg. 

1. The term "magnetic breakdown" ' (MB) refers to a 
collection of phenomena due to tunneling of conduction 
electrons (CE) in a magnetic field between classical trajec- 
tories in different bands. The reviews in Refs. 2 and 3 give a 
fairly complete picuture of the work done in this field follow- 
ing the experimental discovery of MB in 1961.' A corner- 
stone of the theoretical treatment of MB is the ability to 
isolate small regions of quasimomentum  pace^.^ within 
which CE wave functions from different bands overlap in a 
strong magnetic field, and the usual quasiclassical approxi- 
mation for metals (see Ref. 5, for example) is inapplicable. 
Because these regions where two bands are anomalously 
close are small, it is possible to treat them as independent 
quantum scattering centers for conduction electrons, mov- 
ing along quasiclassical trajectories in a magnetic field 
H(O,O,H) : 

cmp (p)  =E, p,~=p,,=const, (1)  
where E is the energy, E, (p)  is the CE dispersion relation 
in the m-band, p = t,L is the "spin" subscript, taking spin- 
orbit coupling (SOC) into ac~ount,~. '  and p is the CE quasi- 
momentum. We assume that the energy E lies in the range of 
band overlap: 

One fundamental dynamic characteristic of MB is the 
scattering matrix or s - m a t r i ~ , ~ . ~  which relates quasiclassical 
CE wave functions on segments of CE trajectories ( 1 ) in two 
bands which converge at a MB center. Knowing the ele- 
ments of the s-matrix, it is easy to derive the probability of 
MB and of phase jumps in the CE wave function occurring 
during MB, to find the CE energy spectrum, and to calculate 
macroscopic electronic properties of a metal under MB con- 
d i t i on~ .~ ,~ , ' , ~  Up to now, the usual second-rank s-matrix ob- 
tained in Ref. 4, which is the same for all CE spin directions, 
has been used in MB theory. Thus, the theory has dealt with 
two independent types of CE motion under MB conditions, 
spin up and spin down. 

Using a simple model of a metal, it was noted in Ref. 10 
that SOC can lead to CE spin flip during MB. Thus, the s- 
matrix can have nonzero nondiagonal spin terms, and the 
addition of two spin degrees of freedom requires that a full 
fourth-rank s-matrix be calculated for a metal with arbitrary 
dispersion relation. 

To find thes-matrix when SOC is present, we generalize 
the method of Ref. 4, in which spin was ignored in the deriva- 
tion of the s-matrix elements. We first investigate the CE 
spectrum with no magnetic field, taking SOC into account, 
in regions of p-space "suspected" of MB, with a band gap A 
which is much smaller than E, (E, is of the order of the width 
of the band). Then, after constructing the CE Hamiltonian 
for H #O in such a region (hereafter called an MB region) 
and solving the corresponding Schroedinger equation, we 
find the CE wave functions. Finally, by matching these func- 
tions and the quasiclassical wave functions which apply far 
from the MB regions, we obtain the full s-matrix. 

Using the s-matrix thus obtained, we analyze the spec- 
trum of a simple "figure eight" MB configuration, and find 
an expression for the electron g-factor of such a trajectory 
for various limiting cases. 

As in Ref. 4, the calculations here are carried out to first 
order in K = &I,/&,, where w, is the characteristic cyclo- 
tron frequency of the conduction electron. This condition 
holds for H <  10'-lo9 Oe, and does not in fact restrict the 
applicability of our results. 

2. Let us consider the CE spectrum for H = 0, with 
spin-orbit coupling. We write the one-particle Schroedinger 
equation in the p-representation5-': 

(P) umpo ( r )  = ~ m p  (P) umpp ( r )  

Hpre & = @ + gs is the CE Hamiltonian with H = 0, 
2P is the SOC Hamiltonian, and p enters into (2)  as a pa- 
rameter. In the presence of SOC, the Bloch factor u,, for 
the stationary CE wave function 

Ympp (r)  =elprIn U ~ P P  (r)  

becomes a spinor6.": 

where we assume6 that /A,, I > Ipp, 1, SO that the eigenvalue 
eZ of the Pauli spin matrix is greater than zero: 

~ y m p + ~ ~ z ~ ~ m p + ~ > o .  

Since the lattices of all metals contain inversion centers, 
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for H = 0 we have E,, (p)  = E,, (p) = E, (p),  i.e., with 
SOC, the system of a two-fold "spin" degeneracy, and be- 
cause of time-reversal symAmetry, y,,, is related to y,,, by 
the conjugation operator C (Ref. 6) :  

h 

where i and K are the spatial inversion and complex conju- 
gation operators, respectively. The sign of the result depends 
on the parity of the CE wave function: the upper sign holds 
for a wave function which is even at the center of the m-band, 
and the lower holds for an odd function. 

It is well known6s7 that the extent to which SOC affects 
the band spectrum and CE wave functions depends on the 
relationship between the coupling energy 6'"' <E, and the 
distance to the nearest band in which SOC is neglected, 

*re EL (p) is the energy eigenvalue corresponding to 
*(p). For example, when 6'") & AO (p), spin-orbit cou- 
pling has only a minor influence on the spectrum, and it can 
be assumed that the band gap is 

For estimation purposes, we use W,, obtained from 
first-order perturbation theory (see, for example Refs. 7, 
12): 

h 

where YO,, = is an eigenfunction of P, and is a 
pure spin function: 

Since SOC in a real metal is governed by regions deep within 
the  ion^,'^,'^ we may replace the matrix element of 2F in the 
Bloch functions, for our estimates, by the matrix element of 
the spin-orbit Hamiltonian between atomic wave function. I' 

To the indicated approximation, we then have from Eq. (5 )  

It can thus be seen that when A(p) = : E ~ ,  spin-orbit coupling 
can be ignored. 

In order to find A,, andp,, when {=:AO(p), it is gener- 
ally necessary to solve the appropriate secular equa- 
tion.7,~2,~4,~5 w e note in passing that p,, can become of order 

A,, , and when AO(p) = 0, the degeneracy can be removed by 
spin-orbit c o ~ p l i n g , ~ , ' ~ . ' ~  i.e., A(p) #O. 

The close approach of trajectories ( 1 ) having different 
indices m occurs in those regions of p-space where the band 
gap satisfies A(p) &E,. It is clear from the foregoing esti- 
mates that SOC can have an important effect in such regions 
on CE wave functions and the structure of the band spec- 
trum. 

We now take a more detailed look at the CE spectrum in 
the presence of SOC and with H = 0, in the vicinity of some 
point p' at which two bands approach one another closely 
and A (p)  <E@ Since for given p', the urn,., (r)  comprise a 
complete set of orthonormal functions, they can be used to 
expand u,, at any other point p: 

m'p '  

In a small neighborhood of p'(6p = p - p', lSpl< G, where 
G is the characteristic period in p-space), the influence ex- 
erted by other bands can be neglected4: 

R m p ( p p ' - l  (m, ml=l, 2 ) ,  

For the sake of definiteness, we assume from here on that the 
two anomalously nearby bands have indices m = 1 and 
m = 2. 

Taking advantage of the smallness of Sp, we obtain the 
following expansion from Eq. (2) : 

where 

h 

and V is the CE velocity operator with H = 0. Substituting 
(7)  and (9)  into the Schroedinger equation (2)  and making 
use of (8) ,  we obtain a system of four equations: 

(p') - E l S m ~ . ~ ~ 4 ~ p ~ ~  
m'p'  

m, m', m V = l ,  2. (10) 

Due to2ymmetry under the conjugation operation (4),  
the matrix V(p) appears as follows: 

where 

The upper signs apply when the wave functions in the two 
bands are of the same parity, and the lower signs apply other- 
wise. It cgn be shoyn, as in Ref. 4, that because of the invar- 
iance of X u n d e r  I, phase factors can be chosen for the wave 
functions in such a way that Im C(p)  = Im D(p)  = 0 for all 
points in p-space. The difference between the present results 
and those in R$. 4 is associated with the appearance of D # 0 
in the matrix V due to spin-orbit coupling. For D = 0, the 
matrix ( 11 ) can be decomposed into two independent sec- 
ond-rank matrices, and we arrive at the same results as in 
Ref. 4 for either spin direction. For 64 A, we can estimate 
the magnitude of D. Using (5 )  and (6),  we obtain for the 
main contribution [ -p /m in (9a) ] ID(p) 1 =: [(/A(p) ] Vo, 
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where Vo- IV,,, I is the characteristic speed of the con- 
duction electrons. For 6 2  A', it can happen that ID1 - Vo. 

Equating the determinant of the system ( 10) to zero, 
we find the CE spectrum near p'; it is found to be doubly 
degenerate ( H  = 0)  : 

The smallness of A in Eq. ( 12) means that in the neighbor- 
hood of p', the dispersion law &, (p) (and its corresponding 
Bloch factors) is a sharply peaked function of p, i.e., it typi- 
cally varies within an interval 5 (A/&,)G4 G (considered in 
more detail in Ref. 4).  

In order to analyze conduction electron behavior for 
H #O, it is convenient in what follows to employ a modified 
Kohn-Luttinger repre~entation.~ To do so, we need func- 
tions which depend smoothly on at least one component of p 
(see Sec. 3). The E, ( p )  [and the corresponding urn*p ( r )  ] 
are such functions, where p lies in a region of p-space near p' 
in which A(p) = E,, (p)  - E,, (p)  attains a minimum [the 
E,, (p)  are given in Eq. ( 12) 1 : 

min ~ ( p ) = b ( p ) .  

There are generally no physical restrictions on the mu- 
tual orientation of the matrix elements of the CE velocity 
operator-the vectors B, C, and D in Eq. ( 12) [see also Eq. 
( 1 1 ) 1. In seeking a minimum of A (p),  we therefore analyze 
all of the possible configurations. 

1)  The three vectors B, C, D in (12) are collinear: 
B(pl) IIC(p') I(D(pl). Everywhere in the neighborhood of p', 
we then have A(p) #O, and A(p) attains a minimum on the 
plane 

(called the M-plane from here on4). Because of the small- 
ness of the pseudopotential for many metals, such spectra 
are common, and the M-plane coincides with the boundary 
of the Brillouin ~ o n e . ~ ~ ~ , ' ~ ~ ' ~  On this point, in Ref. 13, the 
smallness of the pseudopotential (narrower, however, than 
with SOC) is presented as an argument for the importance of 
SOC in the MB spectrum of Zn, Mg, and other hexagonal 
metals. Other mechanisms can also give rise to this type of 
~ p e c t r u m . ~ . ~ . ' ~  

Near the M-plane, the dispersion relation is given by 

Here n is the unit normal to the M-plane, the point p, lies on 
the M-plane, Sp, = n(p - p, ), C'"' = C'"' (p, ) is the nth 
component of vector C at the point p,, a = D'"' (p, ) /  
C'"', and A = A(p,). Note that now the functions 
E,, (p, ) and urnpMp are smooth functions of p, (their char- 
acteristic range of variation on the M-plane is - G) . Figure 
la  shows a typical constant-energy surface E, (p )  = E near 
the M-plane. 

2)  The vectors B, C, D are coplanar, with two possibili- 
ties. 

FIG. 1. Schematic diagram of portions of the constant-energy surfaces in 
regions of anomalous approach of two bands ( I  and 11). Arrows indicate 
the direction of motion of conduction electrons along the trajectories ( 1 ). 
For clarity, spin splitting is not shown. a )  M-plane spectrum. For simpli- 
city, H lies in the M-plane. b) p,-curve spectrum ( 0  is a point of unavoid- 
able degeneracy). c) p, -curve spectrum (Ois the point of minimum band 
gap 1. 

2a) CIID, but C is not parallel to B. A (p)  vanishes along 
the intersection of the two planes 

If the constant-energy surface E, (p)  = E intersects such a 
line of unavoidable degeneracy5 (po-line4), then the part of 
the surface near the line takes the form of an elliptic cone 
(see Fig. lb) .  The interior regions corresponding to the dif- 
ferent bands are separated by the point po = po(E), at which 

(pO) = E~ (pO) = E. The procedure for choosing the func- 
tions E,, (p)  (and corresponding Bloch factors) with their 
analyticity taken into account, the equations describing the 
spectrum near the po-line, and the equation of the elliptic 
cone, as presented in Ref. 4, may be easily generalized to the 
case at hand: 

3 

(15a) 

Here A = A(po) GO, while Eq. ( 15a) has been written out in 
a coor$inateA system^ ^in which the tensor 
A,, = SpV, Sp Vk - Sp( V,, V, ) is diagonal; the Ak are the 
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eigenvalues of the tensor A,, , and the 3-axis is directed along 
the axis of the cone. In contrast to Ref. 4, taking the trace 
here also involves a summation over "spin" variables. In the 
present instance, this leads to the same renormalization fac- 
tor 1 + a2 as in case (1).  

2b) Cis not parallel to D. Here it is essential that D#0, 
and naturally this has no analog in Ref. 4. As in case ( 1 ), the 
gap near p' is A (p)  # 0, but the minimum of A (p)  occurs on 
the curve of anomalous approach (which we call the pA- 
curve). The constant-energy surface near the pA -curve may 
be approximated by a hyperboloid of two sheets, with 
pa = pa (E) . Equations ( 15 ) and ( 15a) are also valid here, 
but with 

The form of the constant-energy surface is shown in Fig. lc. 
3) The vectors B, C, D are linearly independent. Then 

min A (p)  = 0 occurs at an isolated point on the intersection 
of the line (14) and the plane D-Sp = 0. If that point p, 
happens to be on the surface E, (p)  = E, where E = ECr is a 
critical value of the energy, then it becomes the vertex of a 
cone, and the spectrum is the same as in case (2a). In gen- 
eral, depending on the value of E, one obtains a spectrum 
with a necked-off discontinuity,' i.e., the spectrum near p, 
for E #E,, is well approximated either by a hyperboloid of 
two sheets [which reduces to case (2b) 1,  or a hyperboloid of 
one sheet (the situation prior to necking off 5 ) .  In the latter 
case, the band-overlap condition ( l a )  no longer holds, and 
there is only one band. This leads to intraband break- 
down5." in a magnetic field, which makes no contribution to 
the macroscopic characteristics of a metal (see Refs. 3, 4) 
and will not be considered further in the present paper. 

To conclude this discussion of possible types of spectra 
having a small band gap, we wish to emphasize that the situ- 
ation analyzed in (3)  above depends markedly on the magni- 
tude ofE (the location of the chemical potential for the given 
metal), with three topologically different cases for the E- 
dependence. Thus, one obtains a combined electronic and 
topological transition of the Lifshitz type3 with a so-called 
conical point, which makes this situation interesting for the 
study of magnetic breakdown of conduction electrons as a 
function of external pressure or changes in the concentration 
of an alloy. Note that in an application to MB, NedorezovI9 
has considered such an approach to studying the effects of a 
conical point on the magnetic susceptibility of a metal under 
Lifshitz transition conditions. We shall not investigate the 
E-dependence in the present paper, and for fixed E, case (3)  
reduces completely to the types of spectra considered under 
case ( 2 ) ( p,- and p, -curves). 

h 

Solutions of the system ( 10) for the matrix R (pip') are 
derived in the Appendix. 

3. We now consider CE motion in a magnetic field 
H = (0, 0, H). In the quasiclassical approximation, these 
move along trajectories governed by ( 1 ), formed by the in- 
tersection of a constant-energy surface with a plane perpen- 
dicular to H. Conduction electrons with the same band in- 
dex m and different spin indices p will in general follow 
slightly different trajectories, since when H #O, Zeeman 
splitting of the "spin" levels takes place: 

where gm (p)  is the p-dependent g-factor of the conduction 
 electron^,^.".'^ and pB is the Bohr magneton. Spin-orbit 
coupling gives rise to a difference between the CE g-factor 
and its value for a free electron. In the weak SOC approxima- 
tion, we have 6" 

As a rule, A, ( l -  10-3-10-2 eV. 
Far from regions of magnetic breakdown, we can ne- 

glect interband transitions and use results from the quasi- 
classical theory of metals.'.I8 To a first approximation in x ,  
the quasiclassical wave function of a conduction electron in 
the mP-representation takes the form (in this equation, we 
have used results from Ref. 18 and the appropriate expres- 
sion from Ref. 4) 

where P, , p, , andp, are respectively the conserved projec- 
tions of the generalized momentum (P  = p - (e/c)A) and 
"spin"; A = (Hy,O,O) is the vector potential; V:"' = a&,/ 
ap, is thex-component of velocity on the trajectory ( 1 ); c, 
is an arbitrary constant factor; 

is a solution of Eq. ( 1 ) ; and y ",, is the "spin" contribution to 
the phase of the quasiclassical function, which can be written 
in the form 

Pu 

The upper sign corresponds top = T, and the lower top = 1. 
The integrals in Eqs. ( 17) and ( 18a) are evaluated along the 
classical trajectories ( 1 ), and X, is a "spin" function of the 
type ( 3 ) : ~ ~  =Ax? + M Y .  

It is well that when a CE follows the trajec- 
tory ( 1 ), averaging of the g-factor takes place: the g-factor 
corresponding to an orbit with given E and p, is 
grm' = grm) ( p, ,E) .  Making the substitution g+g, in 
( 18a), we find after some straightforward manipulation 

where t, = t, ( p,, , p, ,E) is the time along a trajectory 
with conserved m andp. In deriving ( 18b), we have used the 
classical equations of motion of a conduction electron5: 

Note that Eq. ( 18b) is fully consistent with the result of Ref. 
18. 

When SOC is neglected far from MB regions [A (p) ZE, 

outside these regions], g, +go and X, +x: in ( 17) and 
(18b). 

Within MB regions, the trajectories of conduction elec- 
trons approach one another rather closely ( p,,, 5 GA/&,), 
and A(p) (E, .  Note that for all of the spectral types consid- 
ered [(13),  (15), (15a) and Figs. la-lc], the classical tra- 
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jectories ( 1 ) with p = const are, over the segment of closest 
approach, different branches of a single hyperbola (bearing 
in mind that p takes on two values, we obtain the situation 
depicted in Fig. 2). We also point out that the most interest- 
ing and frequently encountered situation is that of an M- 
plane (Fig. la)  [see also the discussion preceding Eq. ( 13) I .  
In that case, a fairly thick sheet (in p, ) of trajectories is 
formed in the MB region, giving a siginificant probability of 
magnetic breakdown (see Ref. 4 and below). For the spectra 
depicted in Figs. lb and lc, we obtain narrow sheets of CE 
orbits that are effective for MB, since as the secant plane 
p, = const recedes from the symmetry axis, the probability 
of MB decreases, due to the rapid increase inp,,, ( p, ) (see 
Ref. 4 and below). The thickness of the narrow sheets, which 
depends on the magnetic field strength, is always less than 
the transverse size of the thick sheets, which is independent 
of the field strength for any reasonable field H.3.4 

We next analyze M-plane spectra in more detail. For 
other spectral types, the change in the form of thes-matrix is 
discussed at the end of Sec. 3 [in conjunction with Eq. (3  1 ) 1. 

When H #O, it is necessary to construct an effective 
Hamiltonian in the MB region, which governs CE dynamics 
in the non-quasiclassical region (with characteristic size 
APy 4 G; see Fig. 2),  where interband transitions of conduc- 
tion electrons are important. The method of constructing 
such a Hamiltonian formulated in Ref. 4 may be easily gen- 
eralized to the case in which spin-orbit coupling is taken into 
account. One must then match the eigenfunctions of this 
Hamiltonian to the quasiclassical functions ( 17) and obtain 
the scattering matrix 3 relating the coefficients c, on the 
two sides of the MB region (Fig. 2) : 

Without loss of generality, we assume here that the M-plane 
meets the plane p, =p, along the line Py =py = 0, and 
that the angle between H and the M-plane is 8. The plus and 
minus signs in ( 19) are chosen in accordance with the sign of 
SPY =py -p,, =p,. 

In the MB region, the square root in the dispersion rela- 
tion ( 13) cannot be neglected, and the functions ( 17) are 
not applicable. As shown in Ref. 4, however, the smallness of 
x and make it possible to generalize the correspondence 
p r in~ ip l e~ -~  to the case of magnetic breakdown. To do so, we 
must turn to the system of equations which governs the spec- 
trum near the M-plane, which in the present case is obtained 
from ( 10) by replacing p' by p,, matrix elements with re- 

FIG. 2. Schematic diagram of segments of quasiclassical trajectories ( 1 ) 
near a magnetic breakdown region. The band index m and spin direction 
are given next to the arrows indicating the direction of CE motion. 

spect to V-Sp by those with respect to Vn 6pn and R,,,.,. 
by fi,.,. . Here the Dm, (p) are the expansion coefficients of 
the Bloch factors ( 3 )  in eigenfunctions of the Hamiltonian3 

&' ((pM) = e - ~ ~ ~ r / ~ $ e i ~ x t / f i  

Note that the functions,Bmp (p)  are in fact smooth functions 
ofp, , inasmuch as thep, -axis lies in the M-plane. 

According to the correspondence principle, we obtain 
the Schroedinger equation for H # 0, up to terms of order x, 
by making the substitution p + P  + (e/c)A in this system. 
The equations thus obtained govern the motion of a conduc- 
tion electron in a magnetic breakdown region for constant 
magnetic field H. We can immediately extract from,Bmp (p)  
a'rapidly varying exponential factor, leaving the smoothly 
varying amplitudes pmp ( py ) : 

wherefj, is determined by the second equality in (20). We 
have also made use of the assertion, which is proved in Ref. 
4, that the two branches of Eq. ( 1 ) are independent. 

Thus, in an MB region, the Schroedinger equation re- 
duces to a system of four first-order differential equations 
(two in Ref. 4) for the pmp ( py ): 

where 

A=&, (3 -ez (<I, -F= (p,, 0, pZo), C,=C,(;;), 
D,=D, (p) , Vx=deMldp,, 

eM=[ei(F)+ez(F) 112, 5 , = ~ d ~ ~ ( p ) c o s  0, 

The plus and minus signs are chosen in accordance with 
(11). 

As our estimates indicate, i I m )  remains much smaller 
than & even for fields H-Ha = i 2 / 4 p B ~ , ,  in which the 
probability of MB is of order unityz4 
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Theg-factor should then be much less than lo3-lo4, which is 
true even for the "needle" electrons in Zn [gn - 100 (Ref. 
15)]. In the following calculations, we neglect Aim'. 

Let us introduce the new functions Fi (x)  (i = 1,2,3,4) : 

P2,, are obtained by replacing T by 1 in (22); x = (c/ 
em) L/2py I cy / Vx 1 'I2. Omitting the lower signs in (21 ) (the 
results are the same in either case), we obtain the following 
set of equations: 

where 
a= (BIZ)  (c /ehH)'" I V,C,I-'", a=D,/C,. 

Notice that when E = 0, the equations in (23) separate 
into two independent systems for the two Ce spin directions. 
These systems of two equations are similar to Eqs. (A2) of 
Ref. 4, but are not identical." 

Eliminating F3 from (23a) and (23b), and F, from 
(23c) and (23d), we obtain 

Eliminating F,, we can then represent the resulting fourth- 
order differential equation in the form 

6 3  ( v )  =O,- (2%) 

where 

Y = px, B = ( 1 + Z2) li2, and the differential operator 

the choice of sign preceding the i being irrelevant. 
I 

The general equation (25a) is a superposition of para- 
bolic cylinder functions DL ( v )  : 

Fi(~)=kiyi(v)+kzyz(v)+k3~3(v)+k~yr(~), (26a 
where the ki are arbitrary constants; 

~ t , a = a - w z ~ - t [ *  ( l + i ) v l ,  y 3 , , = 9 ) - ~ 1 / 2 B [ * ( l + i ) ~ ] ,  

y,,, is the solution of the homogeneous equation correspond- 
ing to (25b), and y,,, is the solution of Eq. (25a) (Ref. 20) .3' 

We find the other Fi from (23) and (24), taking advantage 
of the properties of the parabolic cylinder functionsz0: 

In matching the functions ( 17) and (26), we make use 
of the following propositions, generalized to the SOC case, 
which are proved in Ref. 4 for the "spinless" problem. 

The region of applicability of the quasiclassical expres- 
sions ( 17), ISP, 1 9 ( e M / c )  'I2, and the region in which the 
quantum equations (2 1 ) are valid, \SPY ( 4 G, overlap. With- 
in the overlap rcgion, Y, and om,, may be related via the 
unitary matrix R to order x :  

m'p' 

(27) 
The plus or minus sign depends on the sign of P,, and the 
behavior ofpimp' (P, ) in RmP,,,,, and Y, is determined by 
Eq. ( 17a). Note that in the interval in question, we can disre- 
gard, to the indicated accuracy, the contribution from CE 
spin both to the phase of Ymp, i.e., we can put ySmp = 0 in 
( 17), and to Rm.p.,mp : p!/+" (Py ) +plm' (P, ). 

Over the indicated range, in the chosen coordinate sys- 
tem, 

2-'/a 0 2-"'fi-'sign P, 2-% EP-1 s ign 

0 2-'/a z f 2 - 1 " ~ ~ - 1 s i g n  P ,  22-"'~'1 sign p, 
-2-*/'fi-l sign P ,  ~ 2 - " ' ~ f i - '  sigrl P ,  2-'/2 0 
- 2 - l i * i j i ~ - l s i g n ~ ,  ~2- ' / ' f1 - '  sign P, 0 2-'/~ 

I 
where the choice of signs corresponds to ( 1 1 ) (see the Ap- where 
pendix as well). 

Employing this matrix R, the asymptotic form of the ~ = [ ~ + = + a r ~ l .  n  Ho 
functionsFi(x) asx-. - w (Ref.20),andEqs. (13), (17), 
(17a), (20), (22), and (261, we can use Eq. (27) to express 
the coefficients ki in terms of the c;; '. The asymptotic be- Ho Ho -- ~ n - - ] s i g n ~ e ~ ~ ) - e ~ ~ )  I. 
havior of the Fi for x- + a, (Ref. 20) and the same equa- n H  n H  

tions give the relationship between the c,(,,; and k, . Elimi- 
Ho = 

cnA2 
nating the k,, we obtain in final form the unitary fourth-rank ( J = e - H o / 2 H ,  0 2 + t 2 =  1, 

4efijj j V x V : ; ( 2 t ~ ~ ~  0 I ' 
s-matrix with no restrictions on the magnitude of Z: 

0 (2%) 
Te-i.\ and r ( x )  is the gamma function.20 Notice that all elements 

-alp f Ma,@ .teiA in (29) and (29a) are expressed in terms of the CE disper- 
T Z o / f i  0 .teiA (29) sion relation for H = 0 in the M-plane. - 
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Thus, taking spin-orbit coupling into consideration 
leads to a probability of MB with spin flip 

which shows the exponential dependence on the reciprocal 
of the magnetic field characteristic of MB It is 
interesting to note that the probability for a CE to remain in 
its own band, 72 = 1 - exp( - H,/H), appears formally the 
same as in Ref. 4. But the field H, has itself been renormal- 
ized: taking SOC into account reduces H, compared to its 
former value H :  at 7i = 0 (see the second footnote) : 

Spin-orbit coupling therefore results in a reduction in the 
field strength H a t  which MB becomes important, or from 
another point of view, since is usually determined from 
MB experiments,2p321592' SOC makes MB possible in metals 
with a larger band gap A than would otherwise be the case. 

It is easily seen from (29) that for Z = 0 (no SOC), the 
matrix (29) separates into two independent second-rank 
matrices for both CE spin directions. By virtue of the minor 
correction (see the second footnote), both of these matrices 
are the same as those determined in Ref. 4. 

Note that for the spectra diagrammed in Figs. lb  and 
lc, the s-matrix (29) retains the same form, and only the 
form of H, changes. For the spectrum with a degenerate 
point (Fig. lb) ,  SOC results in the same renormalization 
known from Refs. 3 and 4 for H : [Eq. (3.2.13) of Ref. 31 : 

where q = H/H; ( p,), is the z-component of the conical 
degenerate point of the constant-energy surface with energy 
E; A(E,q) is a dimensionless quantity of order unity, which 
depends essentially on the geometry of the cone [the param- 
eters A, in ( 15a) ] and q (the explicit form of A is given in 
Ref. 4).  

For the spectrum shown in Fig. lc, a term of order A2/ 
eWV, is added to the right-hand side of Eq. (31), and 
Po-PA. 

4. We now investigate the CE spectrum under coherent 
breakdown conditions. The small size of the MB regions 
[these are of order (A/&,) G for a breakdown probability of 
order unity] enables us to treat them as points, and we refer 
to them as MB vertices.339 Figure 3 shows a schematic dia- 
gram of an MB vertex (compare this with Fig. 2 ) .  There is a 
non-zero probability for a conduction electron moving along 
any quasiclassical trajectory toward an MB vertex to be 
found after breakdown on three of the four segments of qua- 
siclassical trajectories leaving the MB vertex, including 
those having a different band index and spin direction. Such 
"scattering" occurs in accordance with the structure of the s- 
matrix (29). 

The quasiclassical segments associated with MB ver- 
tices form an MB configuration which can be quite compli- 
~ a t e d . ~  We are dealing with twice as many segments as in 
Ref. 3, since two of the previous MB configurations with 
different spins are combined into one, given that w,, #O. 

Since the wave-function phase accumulated by conduc- 
tion electrons over identical parts of the MB configuration is 

FIG. 3. An MB vertex ( 1 4  are incoming segments of quasiclassical tra- 
jectories, 1 '4 '  are outgoing). 

the same, multiple scattering from MB vertices produces an 
interference pattern, giving rise to a unique MB spectrum for 
the conduction electrons. This is known as coherent magnet- 
ic b reakd~wn,~  in which collisions fail to disrupt the MB 
spectrum (w, > w, where w = max{a,,, , a,, I ;  a,,, is the 
rate of electron-impurity scattering, and a,, is the rate of 
small-angle scattering). 

Note that for a,, > w, >a,,, collisions destroy this co- 
herence, the MB spectrum is disrupted (conduction elec- 
trons jump randomly from orbit to orbit), and stochastic 
MB  ensue^.^ 

The mathematical tools developed in Ref. 3 to analyze 
MB configurations and construct dispersion relations do not 
constrain the form of the s-matrix or its rank. We therefore 
first present certain equations which generalize the results 
obtained in that paper. Following the same terminology, we 
assign different indices i, j to inequivalent segments with 
quasiclassical motion. In general, CE motion in an MB con- 
figuration is described by a stationary wave function 

which is a superposition of quasiclassical wave functions Y, 
for different segments; {mp) = {mp)(i); and Nis the num- 
ber of segments in a closed MB configuration (for an open 
MB configuration, N is the number of inequivalent seg- 
ments). The dependence of the MB vertices on the elements 
of the s-matrix is contained in the amplitudes ci, which satis- 
fy the system of linear equations 

Yj(E, p,) =yj+Rnj+ (Aj+Ar)/2. (33) 

Here y, (E, pp, ) = S, / f i  + y j" + 6, is the classical phase of 
the wave function (17) accumulated over the jth segment 
between two successive MB scatterings; S, (E, p, ) is the in- 
crement in the transverse action 

with spin not taken into account; y; is the spin contribution 
to the phase of ( 17); in Eq. ( 18), we must make the replace- 
ment t ,  (E, p, ) -+ T, (E, p, ); 6, = + 71/2 is the sum of all 
phase jumps occurring over the jth segment at the classical 
turning  point^^.^.'^ (note that y was not taken into consi- 
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deration in Ref. 3); Jis the number of the segment entering 
the MB vertex from which segment j emerges, with m( j) 
= m ( 7); R = cG, P, / e m ,  n, = 0 for closed MB configura- 

tions; n, = 0 for open MB configurations if j is an interior 
segment, and n, = sign(dP, /dP, ) f ~ r  segments which cross 
the boundary of an elementary cell3; V 0  is a unitary matrix of 
rank N, in which only three elements per column (two in 
Ref. 3 1 ) are non-zero: 

and these elements occur in rows with the same indices as 
those of the segments connected to segment j by a common 
MB vertex; d"' is the s-matrix, in which all A = 0. 

The condition for the system (33) to be solvable leads to 
the dispersion relation 

In general, D(?) is a finite trigonometric polynomial in yi, 
whose coefficients depend solely on the MB probabilities 
(2, ?, and Z2).  

The MB spectrum is determined from the solution of 
the transcendental equation (34); for a closed MB configu- 
ration, we have a discrete set of Landau levels, modified by 
MB, and for an open MB configuration, we have a set of 
magnetic bands. 

We now apply the foregoing procedure to the analysis 
of a simple MB configuration (Fig. 4) .  In the limiting case of 
no SOC (a = 0),  this degenerates into two independent fig- 
ure-eights, which were analyzed in Ref. 3 (Fig. 4a in Ref. 3). 
For our double figure-eight we have i = 1-4, with 1,2 corre- 
sponding to CE motion in the first band, 3,4 to motion in the 
second band, odd parity being spin up ( T ), even parity being 
spin down ( 1. ), and ni = 0. The dispersion equation (34) 
reduces to the form 

yl--yz+yS-y4 -yl+y2+y3-y& $ o2 
+cos 

2 
. + cos 

2 ) ,+a2 

In the limit Z = 0, Eq. (35) can be factored: 

yl+'f3 DO($ = (COS - yi-73 ) 
2 

- 'tcos- 
2 

If we assume that y = 0 here, then every factor in (35a) is 
identical with the function D for a simple figure-eight [Eq. 
(3.2.30) in Ref. 31. 

We wish to emphasize an important property of MB: 
there exist two quasiclassical limits (depending on the mag- 
nitude of H) ,  with d? = 0. 

FIG. 4. Closed MB configuration ( i  = 1-4 is the segment index). 

1 ) a = 0, T = 1 (H<Ho)  : no magnetic breakdown. 
Conduction electrons move in orbits with no change in i, and 
Eq. (35) can be factored as 

It is easy to obtain from (36) the usual Lifshitz-Onsager 
quantization conditions with spin splitting taken into ac- 
~ o u n t , ~ . ' ~  and for each of the quasiclassical trajectories, 

where Si (E, p, ) is the cross-sectional area of the constant- 
energy surface in the m-band (m = m (i) ,  s, = s,, $ = s,);  
m:" = eHTi/27c = ( d ~ / d ~ )  i /2a is the cyclotron mass of 
a conduction electron on segment i(mf = mf , m: = rn: ); gi 
is the CE g-factor on segment i(g, = g, = gL1'(E, p,  ), 
g3 = g, = gr2' (E, p, )). The definition ( 16) of the g-factor is 
consistent with that in Refs. 6-8, 11, 12, 19, and 22-24, but it 
differs from 2 in Refs. 5 and 18. The relationship between 
them is = gm, /m. 

2)  a = 1, T = O(H)H,): total breakdown. Almost all 
conduction electrons on the constant-energy surface move 
without "noticing" band gaps. The main difference between 
this and Ref. 3 is the possibility, due to the fact that = 0, of 
a CE spin flip for every "encounter" with an MB vertex 
(30): 

By analogy with (36a), making use of (37), we can write out 
the modified Lifshitz-Onsager magnetic breakdown condi- 
tion for new orbits: 

- - - - (n+S) ,  2nehH 
S, f rp, H gm," - 

C 
(37a) 

where m:"' = mf + rnf ; S, = 3, + S, is the total area of the 
figure-eight (Fig. 4), disregarding spin splitting; and the g- 
factor of the new orbit 
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is expressed in terms of the characteristics (gi , rn; ) of the 
segments and the SOC parameter 5. 

Notice that we obtain new information even when - 
a = 0, namely a formula for g,, , the g-factor averaged over 
the new orbits: 

It was pointed out in Refs. 3,4, and 9 that in an interme- 
diate case of well-developed MB (>T~#O, H- Ho), the en- 
ergy En (E,p, ) becomes a quasirandom function ofp, . This 
is due to the fact that the phase Si / f i  and its derivatives are in 
general incommensurate. We can obviously make the same 
statement about g(E, p, ) when 22 #O. Thus, the g-factors 
of an MB configuration will in general be spread over an 
interval 

min {g (E ,  p,))GgGn~ax { g ( E ,  p,) 1. (39) 

This should lead, for example, to broadening of the CE para- 
magnetic resonance (CEPR) line under conditions of well- 
developed MB.22-24 

5. To conclude, we can say that introducing spin-orbit 
coupling and a "spin" contribution to the phase of the quasi- 
classical function ( 17) leads to a number of interesting con- 
sequences. There is a nonvanishing probability of conduc- 
tion electrons spin flip during MB [Eq. (30) 1. Because of 
SOC, the MB field H, is reduced, making it possible to reap- 
praise and augment existing data on band-gap sizes derived 
from MB e ~ p e r i m e n t s ~ ~ ' ~ ' ~ . ~ '  in . metals in which SOC signifi- 
cantly affects the CE spectrum (especially when A is essen- 
tially a spin-orbit gap). 

Under stochastic MB conditions with CEPR, small MB 
regions emerge as additional scattering centers, broadening 
the CEPR lines from the hollows of the Fermi surface which 
are associated with MB.22,23 Such broadening can also take 
place with coherent MB because of the wide spread in the g- 
factors of orbits with differing p, which fall within an MB 
sheet (39). Thus, in Zn, MB associated with "needle" and 
"monster" conduction electrons broadens the CEPR mon- 
ster  line^,^^.^^ with the result that the signal from the mon- 
ster CE cannot be detected e~perirnentally.~~ In Mg, another 
hexagonal metal, MB can account for the characteristic de- 
pendence on the direction of H: the line width from a mon- 
ster CE is well described by22 

AH = AH,,, + A H M B  esp ( -H;~ - ' ' /H  cos 0 ) ,  

where AH,, is the CEPR "magnetic breakdown" line 
width, and AH,,, is the residual line width. Estimates of 
AH,,, and AHMB (Ref. 22) are consistent with the results of 
CEPR experiments in Mg (Refs. 23, 24). 

Interference between quasiclassical CE states of differ- 
ent spin during coherent MB should also show up, for exam- 
ple, in the de Haas-van Alphen effect.' 

The author is sincerely grateful to M. I. Kaganov and 
B. I. Kochelaev for the formulation of this problem, and for 
their advice and unfailing attention, and to A. A. Slutskin for 
fruitful discussions. 

APPENDIX 

The spectrum (12) is doubly degenerate, with E,, 
- - E,, = E, , which in general leads to a degree of arbitrari- 

ness in the determination of the fundamental system of equa- 

tions ( 10) for R,,,,,. (pip'). In order to eliminate this am- 
biguity, we require first that when D = 0, these solutions 
transform into the appropriate solutions of the analogous 
problem in Ref. 4, as described in the new augmented basis of 
wave functions incorporatin4 CE spin (3) ,  and secondly, 
that when 6p-0, the matrix R become diagonal, which fol- 
lows from its defi?lition (7) .  The latter equation also implies 
the unitarity of R. 

Substituting E = E,, from ( 12) into ( lo ) ,  we obtain 
the following fundamental system of solutions to ( l o ) ,  
which satisfies the foregoing conditions: 

where 

The choice of plus or minus signs corresponds to ( 1 1 ) . From 
the system ( l o ) ,  it is straightforward to find R ,,,,.,. (p /p l )  
for E = E ~ ,  from (12). 

"To make the estimates interpretable, we can represent the Bloch func- 
tions as orthogonal plane waves or associated plane w a v e ~ l ~ . ' ~ ;  6'") is 
then replaced by the SOC energy for the corresponding atomic level in 
the metal comprising the crystal.' 

"The quantity a in Ref .  4 is twice as large, increasing H,, ( the MB field) by 
a factor o f  four. The corrected value o f  H,, is consistent with other work 
in MB t h e ~ r y . ~ , ' . ' ~  

3JThe Wronskian is W ( {  y , ) )  = 2 r [ r ( i a 2 / 2 D )  r ( ia2 /2P + 1 )  ] ' # O ,  as 
it should be for the basic set o f  equations. 
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