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Equations describing the thermodynamics of an integrable ( 1 + 1 )-dimensional model of 
fermions, the interaction of which is attractive in one channel and repulsive in the other, are 
derived. The excitation spectrum of the system consists of Abelian and non-Abelian goldstone 
bosons and excitations whose energy is separated by a gap from the ground state. The latter are 
parafermions; an expression for their statistics is obtained. The asymptotic forms of certain 
correlation functions of the theory are found. 

INTRODUCTION 

In the present paper we give the exact solution of a mod- 
el of one-dimensional fermions with orbital degeneracy and 
interaction of the Hund-coupling type. Both these factors 
should play an important role in the formation of the spec- 
trum of the electronic excitations in such quasi-one-dimen- 
sional compounds as, e.g., polyynes-materials containing 
carbon-atom chains =C=C= ... (Ref. 1 ). In these materi- 
als two electrons of the outer shell of the carbon atom are in 
strongly hybridized s-p, states and form a valence band, 
while the other two electrons, in thep, andp, states, form a 
conduction band lying above the valence band. Hund cou- 
pling facilitates the formation of an S = 1 spin state of the 
electrons, while hopping between sites hinders this. Both 
these processes, which are important for the formation of the 
spectrum, are taken into account in the following exactly 
solvable model: 

The Hamiltonian is symmetric under the replacement N-t M 
and the simultaneous replacement c-+ - c. Without loss of 
generality we can assume c > 0. After this, N and M are no 
longer on the same footing, The Hamiltonian ( 1 ) is invar- 
iant under the action of the tensor group product SU(N) 
XSU(M). In the above-mentioned case of the polyynes, 
N = M = 2 .  

An analogous model, invariant, instead, under the ten- 
sor group product O(2N) X O(M), was formulated in Ref. 2 
to describe the behavior of a gapless semiconductor in a 
strong magnetic field. In this case, Nis the number of valleys 
of the spectrum and M is proportional to the magnetic field. 

The model ( 1 ) has applications in quantum field theo- 
ry. In the limit c 4  1 and M-t co it is equivalent to the model 
of the principal chiral field on the group SU(N). This fact 
was used in the derivation of the exact solution of the chiral- 

responding to Abelian and non-Abelian goldstone fields, 
and a sector of gap excitations. This decoupling of the differ- 
ent degrees of freedom makes it possible to obtain a number 
of quantitative results pertaining to the Green's functions 
and to the statistics of the excitations. 

The presence of a non-Abelian goldstone mode in the 
spectrum of the model ( 1 ) is an important feature that dis- 
tinguishes the model from all the one-dimensional integrable 
models that have been considered hitherto. We assume that 
such a mode is present in any theory which is invariant under 
a tensor product of groups and in which one of the channels 
is attractive while the other is repulsive. As will be seen be- 
low, in our case the non-Abelian goldstone field possesses 
the symmetry of the group SU(M). According to Witten,4 
the action of such a field can be written in the form of the 
Wess-Zumino action: 

where f2 is the three-dimensional hemisphere whose bound- 
ary is the two-dimensional space (x,t). The value of the inte- 
gral over this hemisphere is determined by the value of the 
field on the boundary: g(x,t,r = 0)  rg (x , t ) ,  since the inte- 
grand is the Jacobian of the transformation from the coordi- 
nates of the three-dimensional space to the group coordi- 
nates. Therefore, the model (2)  corresponds to a 
two-dimensional theory. The action (2)  is symmetric under 
left and right translations on the group SU(M) : 

g+gV,  g+Ug ( V ,  U = S U ( M )  ). 

This symmetry is a consequence of the mutual independence 
of excitations with left-handed and right-handed helicities; 
the latter follows from the definition of a goldstone mode. 

The model (2) possesses conformal symmetry.' In 
principle, this property makes it possible to calculate all the 
correlation functions. The two-frequency correlators of con- 
formal theories decay as powers of the arguments at T = 0 

field modeL3 < O ( x ,  t )  0 (0, 0 )  )= (x+ iuFt )  -A (x-iuFt)-'. 
The limit c g  1 is the most interesting one from a phys- 

ical point of view, since in this case the excitation spectrum is The power exponents A and are called conformal di- 
broken down into several independent sectors-sectors cor- mensions. The complete set of these dimensions is deter- 
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mined by the central charge C of the conformal theory. Ac- 
cording to the data of Ref. 5, for the model (2) we have 

The physical meaning of the central charge becomes clear if 
we take into account the fact that the specific heat of the 
conformal theory is proportional to it6: 

(L is the length of the system.) 
Thus, the central charge indicates the number of de- 

grees of freedom per unit cell of momentum space (Lp/2n). 
The fact that the central charge (3)  is not an integer shows 
that a certain boundary condition is imposed on the free 
fields in the theory under consideration (on this question, 
see, e.g., Ref. 7).  In the original theory ( 1 ) the correspond- 
ing number of degrees of freedom is C, = MN. The Abelian 
goldstone field takes one degree of freedom, and the non- 
Abelian goldstone takes C, degrees of freedom. The number 
of degrees of freedom that remain for the gap excitations is 

The nonintegral nature of C, indicates that certain re- 
strictions are also imposed on the gap-sector excitations. 
These lead, in particular, to a very curious formula describ- 
ing the statistics of these excitations: 

n (E)  = [1+0-' exp (&IT) I-', 

Thus, only the Abelian particles are particles in the usual 
sense. 

The plan of the paper is as follows. In Sec. 1 we derive by 
the Bethe-ansatz method the equations determining the 
spectrum of the model ( 1 ). In Sec. 2  we discuss the proper- 
ties of the ground state. In Sec. 3 we analyze the thermody- 
namic equations in the limit in which the bare coupling con- 
stant is small (c<  1 ). In the Conclusion we discuss the 
behavior of certain Green's functions of the theory. 

1. EXACT SOLUTION 

The model ( I ) ,  as shown in Ref. 8, admits an exact 
solution by the Bethe-ansatz method. The two-particle S- 
matrix of the model has the form 

h 

where ?', is the permutation operator acting on the indices 
a, and P, is the permutation operator acting on the indices 
m. 

The S-matrix (7) satisfies the Yang-Baxter equation, 
and, consequently, the Hamiltonian ( 1 ) is fully integrable. 
The Bethe equations have the form 

j= I ,  ..., M-I, ( 8 ~ )  

where e, ( x )  = ( x  - i n / 2 ) / ( x  f i n / 2 ) .  
The energy of the system is 

where No is the number of particles. The number of particles 
of a given "color" is 

n .=m. ~-~-rnj. 

the number of particles of a given "flavor" is 

Ap=lP-,-Zp, 

and L is the size of the system. 
We shall consider Eqs. (8),  (9) in the thermodynamic 

limit, when the number of excitations of all kinds is ltirge. 
The rapidities can form complexes. Namely, the sets of rapi- 
dities 

SP) (0 )  (1) 
(1) 

ha,  , . . - 9  hplp9 La* 9 .  - .  t a a ( p - o r p  

(p can take values from 1 to N) form bound states: 

The rapidities A y' that do not appear in the complexes ( 10) 
also form bound states, as also do the rapidities pbk): 

The quantities y are exponentially small in the number of 
excitations. 

Omitting the details, we write the integral equations for 
the particle densities: 

E 
y- = ,f 8:) (A) p. (A) M. 

The symbol * denotes the convolution 
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+ m  

f * g  (h) = j f (A-hl)g (A') dhl. 

The Fourier transforms of the kernels are 

a,(@) =exp (-4 o 1/2), 
s ( 0 )  = (2 ch 012)-I, 

C,rn(~) =6n, m-s (~ )  (L, m - t + L ,  m + t )  r 

Anrn(o)=cth(lol/2) ( ~ ~ n - ~ l ( ~ ) - - a ~ + ~ ( o ) ) ,  
Grim= (I+a~)-'*Anm, 

ep(0) (A) =c2p (Az- (p2-1)/12) -pppZ. 

In Eqs. ( 12)-( 15) p, are the densities of the centers of 
the complexes ( lo), a tilde indicates densities of holes, a:' 
are the distribution functions of strings of length n and color 
a (n = 1,2, ...; a = 1 ,..., N - 1 ), and 2;"' are the densities of 
the centers of the strings i n p  ( n  = 1,2 ,... ; p  = 1 ,..., M - 1). 

The transition to the equations for the free energy is 
carried out in the standard manner9: 

-T ln ( I+  exp {E , (~ ) /T ) )+A"~+C~B 
*T ln (l+exp {-E~'"'/T))+U~*T ln (1 

+exp{-E~/T)) =+n(ha+,--h,), (17) 

where h and H are the corresponding "magnetic" fields. 

2. THE GROUND STATE; THE GELL-MANN-LOW FUNCTION 

For T=O and Hp =XP = O  in Eqs. (16)-(19) the 
quantities E~ =< and xin' (n = 1 ,..., N; p = 1 ,..., M - 1) do 
not vanish. The equations for these functions have the form 

where 

By inverting the kernels in Eq. (21) and substituting 
the result into Eq. (20), we obtain 

where g(A) is the energy of the Abelian goldstone field. 
Near A = + Q the spectrun of this mode is linear: 

In order to derive Eq. (23) we shall consider, together 
with Eq. (22) for the energy, the equation for the density: 

Q 

P (A) + SS'(A-A') p (A') ~ A ' = N C J ~ ~ .  
-0 

(24) 

The momentum of an excitation is 
A 

PtA) =Po+2np (Q)6A, f (A) =GA(dfldAIQ). (25) 

From this we find 

This is the phase velocity of the charge-density wave, i.e., of 
the Abelian goldstone field. In the theory it plays the role of 
the velocity of light. Below we shall see that there exist exci- 
tations with the dispersion law E = ( P ~ c * ~  + A?)' '~,  where 

ni Aj=Ao sin - , 
N 

We shall find the dependence A(c). This will enable us to 
determine the Gell-Mann-Low function O(c) : 

ea 

For Q> 1 (small c),  

N-M PP n N 
Q + - l n ~ = -  2n c ( p F = ~ ) ,  

LNM 
Ao=c (const+O (1lQ) ) exp (-2nQIN) (28) 

and, accordingly, theb-function is 

which is the perturbation-theory result. 
For Q< 1 (large c),  

Ao=const c+O ( I ) ,  

p (c) =-c+o (1). 

3. THE RELATIVISTIC LIMIT 

As already stated in the Introduction, in the limit of 
small coupling constant c<  1 (which corresponds to Q> 1 in 
the thermodynamic equations (22) and (24)] there exists a 
region of temperatures (as will be seen from the following, 
the region ~ g c ' l * ~ , )  in which the energies of the excita- 
tions are divided into three independent groups. We now 
prove this. 

We rewrite the integral equations ( 16)-( 18) by invert- 
* * 

ing the matrices A and C in them: 

where the Fourier transform of the kernel is 
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o Mo 
sl::' (0 )  -2 ~th%h{(M 2 - max ( p i  q )  ) -)sb{min 2 (p, q) W} 2 / sh - 2 . 

The functions E, (p = 1, ..., N - 1 ) are present only in 
the first N - 1 equations of the system (3 1).  For (A(  <Q 
(only this region is important for the determination of the 
functions E~ ) we shall prove that we can consider these first 
N - 1 equations separately from the others. In fact, of the 
other xJm' (m>N), onlttheenergy xiN' is present in the first 
equations (the matrix C acts only within the limits of the 
nearest neighbors!). We shall estimate the effect of the term 

with x:N) from its value for T-0. In this case, from (31 ) we 
have 

Consequently, for (A ( < Q, where the functions E, 

(p = 1, ..., N - 1 ) have a minimum (see the figure), we have 
xjN) - - E ~ ,  and the influence of the latter functions in Eqs. 
(3 1) with p < N  - 1 can be neglected. 

For (A1 >Q, it follows from (32) that the functions 
xjN) - - exp( - 2a(  A ( / M )  are exponentially small, 
whereas E~ -EF (p # N), and in this case, in the system (3 1 ), 
we must retain in the right-hand side only the term with 
E~ ' c .  Therefore, we can write separately the equations for 
the functions x:) for ( A  I < Q and for (A( 9 Q. The intermedi- 
ate region will not give a contribution to the free energy, 
since in this region we have E, , - xiN) -.zF and 

1 1 e.n*- "6 d ~ /  [ 1 e2mA'Mp (A) di;] . v = -  
2n d A 

The validity of these relations implies that the excita- 
tion spectrum of the theory described by Eqs. (34) is linear: 
~ ( p )  = u(p( . It can be shown that, to within terms of order 
c/pF, u = c*. 

Equations (34) and (35) describe the thermodynamics 
in the sector of the non-Abelian goldstone field. The field 
theory corresponding to this goldstone meson is conformally 
invariant. Its central charge can be calculated from the spe- 
cific heat (4) .  

In the Appendix it is shown that 
C ,  = N(M2 - 1) / (N + M), and, consequently, the non- 
Abelian Goldstone mode can be described by the Wess-Zu- 
mino Lagrangian (2) .  

We now turn to the series of massive excitations. Mak- 
ing use of Eq. (3 1 ) , we rewrite Eq. ( 16) in the form 

where 
T ln ( I  i- exp { -xdn ' l~ ) )  -dkr' *Cnm* T ln(1 + exp {xdrn) /~) )  

( M )  D=I-di,, 
=ddfl' *s*T ln(I+e-Gn'T) If a, 

( (AJxQ) ;  n, m = l , .  . . , N - I ;  p, q=l,  . . . ,  M-I. We shall invert the kernel DGNN in Eq. (36) withp = N, and 
(33) substitute the resulting expression for Tln ( 1 + e - ) into 

the remaining equations. We obtain 
Since %(A) = x (  - A) it is sufficient to write the equation 
for A- + CU: s,*T ln(1 + exp (CIT) ) =T ln(1-k exp (eP/T) ) - ~ * d i ~ ~ )  

'pp(") (A) -xp("') (A+Q), 

T ln ( I  + exp {-'pin) (A)/T) ) 

- ,&::' *Cn"+ T ln (1 + exp {d;' (A) IT)) 

*T ln (1 + exp (-EJT) ) -an*T ln ( I  exp(-ep' IT)  ) -s 

*dj;"' +T ln(1 + e ~ ~ ( x r ' ~ ) l ~ ) ) ,  

(37)  
=-2M-' sin (nplM) A exp (-2nAlM) 6nN, 

lim 'p~"'ln= H,, 
7,-m 

0 

A=2n 1 e 2 ~ A / *  % (A+Q) d h .  
-2Q (34) 

By comparing Eqs. (34) and Eqs. (14) we see that for A 1 A( > Q, wherep, = 0 (p # N) , the following remarkable re- t 

lations are fulfilled: 

I a&) (A) xin) (A) = -- / 
Znv ah I n ( ' p ~ '  ( A ) ) ,  

in)  I 1 ' q r i (A)  1 ( i - n ( q ~ )  (A) )), 2,  (A)=-  
Znu 

(35) FIG. 1. Diagram classifying Eqs. ( 16)-( 18). Schematic dependence of 
the energy on the rapidity for different branches ofexcitations. Only those 

where energies which do not vanish as T-0 are shown in the figure. 
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where 

In the derivation of Eq. (37) we make use of the relation 
( N )  - dpq - (l+az) - ' * . ( G p q - G N N - ' * G p N * G N 0 ) .  

In the left-hand side, for Q, 1 we can make the substitution 

The integrand goes over to '+' in the limit T-, 0. Under 
what conditions can we neglect the temperature dependence 
in Eq. (38 )? We make an estimate of the temperature correc- 
tion: 

The temperature correction is small for 

In this case the equations determining the free energy of 
the system can be written as follows: 

lim 8:) /n=H, 
n-.- 

Equations (39)-(42) coincide with the thermodynam- 
ic equations of the model of relativistic fermions transform- 
ing according to the irreducible representation of the group 
SU(N) with the highest weight A = (M,O, ..., 0) (Ref. 3).  In 

the limit M +  co these equations go over into the equation for 
an SU(N)-chiral field. 

Equation (6) for the statistics of the gap excitations, 
mentioned in the Introduction, can be obtained from the 
low-temperature expansion of the part of the free energy 
( 39) corresponding to these excitations. 

We shall calculate the first [in exp( - A,/T) ] iteration 
of the functions .zp (A) .  For t 4 A I [we recall that the magni- 
tudes of the gaps A, are given by formula (26) 1, in Eqs. (41 ) 
and (42) we can omit, with exponential accuracy in 1/T, the 
left-hand side. The equations are transformed from integral 
to algebraic equations. Their solutions are 

(pS1) H/2T] 
T 

p = l , .  . . , N-I; l=l ,  2,. . . , 

Substituting the expressions (43) into Eq. (40), we find 

2nk 
8, (A) =Al  ch - - Tln 

sh[NH/2T] sin[nN/(N+M) ] 
N sh [H/2T] sin [nl (N+M) ] 

We substitute this expression into Eq. (39); this yields 
Eq. (6).  Of course, the question arises of the correctness of 
this derivation, since Eq. (6)  contains not only the first ex- 
ponential but also an entire series in exp( - Aj/T). How- 
ever, it can be shownI0 that the next terms of the low-tem- 
perature expansion of the functions E,, will give corrections 
that are small in (T/A) 'I2 to the coefficients in this series. 

The low-temperature expansion has served us only as a 
means for the derivation of Eq. (6), which has, of course, a 
wider meaning. 

CONCLUSION 

Thus, if the coupling constant is small, there are three 
energy scales in the theory: E,, &,c'I2, and 

A o = ~ a ~ M / N  exp (-2nlcN) 

Above energies - ~ , c " ~  the goldstone fields become 
independent. The energies of the remaining excitations are 
separated from the ground state by gaps 

Aj=Ao sin (njlN) , 

and these excitations have parafermion statistics. 
As already stated in the preceding section, the equa- 

tions describing the gap sector of the model ( l ) are equiva- 
lent to the equations derived for the model of relativistic 
fermions transforming according to a particular, highest- 
weight representation of the group SU(N) (Ref. 3). This 
model is simplest in the case N = M = 2, which is, more- 
over, the most interesting from a physical point of view. In 
this case, the gap sector is described by a three-component 
Majorana (real) fermion field X, . The Lagrangian of the 
model is 
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The model (44) is supersymmetric. ' ' Nevertheless, its 
physical excitations are not bosons and fermions, but para- 
fermions [see formula (6) with N = M = 21. 

Because the degrees of freedom decouple, we can make 
a number of assertions about the behavior of the correlation 
functions of the theory. It is logical to assume that the field 
rCt,, "factors" into a product of three independent fields: 

where q, is a scalar field and 0 ,, is that field of the Wess- 
Zumino model with k = N on the group S U M )  that trans- 
forms according to the fundamental representation of this 
group. The dimensions of the fields and their correlation 
functions in the Wess-Zumino model are known.s 

We shall assume that the field O,, has the following 
dimensions from the groups of dimensions of the Wess-Zu- 
mino model: 

The field 0 (2) exp(i&(z) ) forms a field with the confor- 
mal dimension 

The correlator of the right-handed components of the field 
*am is 

Concerning the Green's function (O,, (x,t)O ,*, (0,O) ) 
we can say the following. Forp; ' 4 121 &A; ' this correlator 
depends only on z and its dimension is the same as that of the 
primary field of the Wess-Zumino model with k = M on the 
group SU(N), which transforms according to the funda- 
mental representation of this group. This means that its di- 
mension is given by Eq. (46), in which it is necessary to 
replace M by N. Since the dimension A, obtained in this way 
satisfies the relation 2(A + A,) = 1, the correlator (48) for 
I z I  4 A; ' has the usual form of a correlator of free Fermi 
fields: 

Next, for ut $ A; ', we can assume that by analogy with the 
familiar result for massive particles the equation 

( o , ( x ,  t ) 0 , *  ( 0 , O )  - ( l / A , , ~ ~ t ) ~  exp ( - v , t A o - ~ ~ A o / 2 u ~ t )  

holds, where d is an unknown index. 
The strong-coupling region completely determines the 

behavior of the correlation function of the order parameter: 
Om,, = phLna. Because of the presence of the goldstone 
fields, < Om, > = 0 holds, but the leading correlators of the 
order parameter are nonzero. The field Om, is a matrix 
transforming according to the fundamental representation 
of the group U(M). Therefore, its dimension A = is given 
by Eq. (47). Thus, 

Consequently, the Fourier transform of the polariza- 
tion operator of the electrons has a singularity at p - 2pF : 

which should be manifested, e.g., in experiments on the ab- 
sorption of ultrasound. 

The author is grateful to S. A. Brazovskii, who ac- 
quainted him with the experimental situation, and to P. B. 
Wiegmann for numerous discussions. 

APPENDIX 

We shall prove that the specific heat in the theory de- 
fined by Eqs. (34) coincides with the specific heat of the 
Wess-Zumino model (2). The specific heat of a conformally 
invariant theory is uniquely related to the central charge 
(36) of the theory, and, for the Wess-Zumino model, is 
knownS and is given by Eq. (3 ) . 

For an integrable theory with a linear spectrum the re- 
lations (35) are always valid. Substituting them into the gen- 
eral formula for the entropy 

we obtain 

where 

The thermodynamic equations for the Wess-Zumino model 
can be obtained using the results of Ref. 3: 

For the right-handed particles (A B 1 ), for T 4  m, we 
can set E~ = - w . Then the system (A2) decomposes into 
two independent parts: n < M and n > M. The first part (n < 
M) coincides with Eqs. (34), while the second makes no 
contribution to the specific heat (A2), since we have 
E? = E?. For the left-handed particles ( - A )  1 ), for 
T 4  m, we can set E, = - w , and energies with n > 0 make 
a contribution to the specific heat. The equations for these 
again coincide with Eqs. (34). 
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