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An analytic solution is derived for the two-dimensional problem of the nonlinear screening of a 
system of strong point charges which repel mobile carriers. The problem is reduced to one of 
determining the shapes of the boundaries of the regions from which the carriers are repelled. It is 
solved by methods of the theory of functions of a complex variable. The results can be used to 
calculate the potential of a system of charged dislocations in a semiconductor and for calculations 
of interactions in such a system. 

1. In solid state physics it is often necessary to solve a 
nonlinear screening equation 

where po(r)  is an external charge density, and p ( p )  is an 
induced charge density. The functional dependence p (p) is 
described by a "jelly" model in which there is a positive 
smeared background and a mobile electron fluid. 

In the linearized formulation of the problem we would 
have p = - 4 ~ ( d p / d p ) ,  = ,p,  and the problem could be 
solved for an arbitrary function po( r ) .  The length scale of 
the screening here is the Debye length r ,  = ( - 4&p/ 
ap) -It2. 

If the charges introduced are large enough, the screen- 
ing becomes nonlinear. In a state of a stable thermodynamic 
equilibrium, the equation has a unique solution.' 

If po is negative, the screening results from a complete 
repulsion of electrons from the regions surrounding the 
charges. In other words, the density p ( p )  is constant within 
these regions, where it is equal to the charge density of the 
background; outside these regions, the potential is constant. 
If the Debye length r, is much smaller than the size of these 
regions, we can ignore the variation of the potential ouside 
such regions. We then would have the following formulation 
of the problem: We are to find that shape of a region contain- 
ing a uniformly distributed positive charge and given 
sources of negative charge which causes the electric field to 
vanish at the boundary. Since the problem is nonlinear, we 
cannot use a superposition principle. 

The potential distribution becomes independent of the 
parameters of the electron gas, in particular, the chemical 
potential and temperature of the gas. Furthermore, this ap- 
proach turns out to be valid not only for an ideal electron gas 
but also for a nonideal one, even if it is of a quantum nature, 
provided that the length scale of the nonlocal coupling of the 
electron density with the potential is shorter than the size of 
the space-charge region. 

A problem of this form has arisen on several occasions 
in semiconductor physics. Because of its nonlinearity, how- 
ever, it has been successfully solved only in very simple 
cases. In particular, it has been solved in the one-dimension- 
a1 case for a Schottky layer,2 in the cylindrically symmetric 
case for a solitary charged disl~cation,~ and in the spherical- 
ly symmetric case in a calculation on the optimal fluctuation 
in a heavily doped semicond~ctor.~ 

It is found that in the two-dimensional case the problem 
has several exact solutions. In Ref. 5 we derived a solution 
for a point source with a potential p = 29 In r + dr/? ( a  
rectilinear edge dislocation). In the present paper we find a 
solution for an arbitrary finite system of point sources 

k 

pa (r) = qt6 (r-ri) . 
i= l  

The result reduces to a system of algebraic equations with a 
number of unknowns equal to twice the number of point 
sources. 

From the formal standpoint this model is suitable for 
describing the screening of strong point sources in a two- 
dimensional single-component gas with logarithmic interac- 
tion between particles. 

A practical example of a system to which the results 
apply is a set of negatively charged parallel dislocations 
which are interacting electrostatically with electrons in an n- 
type semiconductor. Since there is a strain interaction in ad- 
dition to the electrostatic interaction, the strain interaction 
must be evaluated. For screw dislocations in an isotropic 
material, there is no such interaction. For an edge disloca- 
tion it is found to be weak under the condition Ab/ 
2rr0 & ne2/&, where A is the strain-energy constant, b is the 
Burgers vector, n is the licear charge density at the disloca- 
tion axis, E is the dielectric constant, and ro is the typical 
radius of the cylindrical space-charge region around the dis- 
location axis. In a semiconductor with donors of a single 
type, this screening model is applicable in the two limiting 
cases in which the magnitude of the potential in the space- 
charge region, ne2/&, satisfies the conditions kT& ne2/&&Ei 
and ne2/&> Ei , where E, is the depth of the donor level. In 
the first case, the screening results from repulsion of mobile 
electrons, and we therefore have r,, = (n/?rN) 'I2, where Nis 
the density of electrons in the band. In the second case, all 
the donors are striped, and we have ro = (n/?rN, ) ' I 2 ,  where 
Ni is the density of donors. 

2. We introduce the complex electric field t9 = Ex 
- iE, and the coordinate z = x + iy. The field set up by the 

point sources and by the uniformally distributed back- 
ground is described by 
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where the integration is carried out over the area occupied 
by the background, with a charge density a> 0; thez, are the 
positions of the charges; and q, > 0. The shape of the region is 
determined by the condition g (2) = 0 at points z at the 
boundary of the region. For a fixed integration region, 
expression (2) determines an analytic continuation of the 
function $ (z) into the exterior of the space-charge region. If 
the field $ vanishes at the boundary and at infinity, then it 
vanished everywhere outside the space-charge region. In the 
equation determining the boundary of the region 8 (2) = 0, 
we can thus assume that z also lies outside the space-charge 
region every where. 

Using Stokes' law in complex form, we can transform 
the area integral in (2)  into an integral along the boundary 
of the region. The equation Z? (z) = 0 takes the form 

dtt ;!z=z&y 1=1 

where 7 is the complex conjugate of t ,  and the point z is as- 
sumed to lie outside the space-charge region. We traverse the 
boundary I- in the direction which keeps the corresponding 
region on our left. 

We restrict the discussion to the case of a singly con- 
nected space-charge region. We consider the conformal 
mapping of the region of interest into a unit circle which 
results from the function z = w ( f ) ,  I f  1 < 1. We assume that 
the function w ( f )  is the ratio of two polynomials. In order to 
use the Cauchy theorem, we need to analytically continue 
the function w (6) into the circle. This continuation is car- 

- 
ried out by means of the equation w ( f )  = Z (  l / f ) ,  where 
the function Z ( t )  differs from w ( t )  in that the coefficients of 
the polynomials have been replaced by their complex conju- 
gates. The equation for the unknown function o ( f )  becomes 

b 

We wish to evaluate the electric field Z? in the space- 
charge region. In order to eliminate the singularity in inte- 
gral ( 2 ) ,  we exclude a small neighborhood of the point z: 
Iz'  - Z I  <6. In the limit 6 -0, the integral over this neighbor- 
hood vanishes. The remaining area integral transforms into 
a sum of contour integrals: 

k 

o $ d L o ' ( 6 )  a ( 1 / 5 )  dtt 
a(z) =- , z - o ( b )  j = l  

As a result we find 

where f ( z )  is a root of the equation w (5)  = z. The potential 
is given by 

3. Let us assume that the point z = 0 lies inside the 
space-charge region. We can always arrange this situation by 
moving the origin of coordinates. The function w(f)  can 
then be sought in the form 

since w is analytic inside the circle, we have Icj 1 I 1 for all j. 
The function iS( l / f )  has poles at the points 6 = 1/G. From 
Eq. (4) we have the equations 

co (l/Cj) =zj ,  o' (115,) Res z ( < j )  =qjlno.  (7)  

From them we finally find the system of equations 

where m = 1, . . ., k. Solving the problem thus reduces to 
finding the quantities c,, f, . 

The shape of the contour is specified parametrically: 
z = w(eiP ) for O<p<27~. If the contour is to be a boundary, 
it must not have any self-intersections. This condition filters 
out some extraneous solutions of system (8) ,  since the solu- 
tion of the problem is unique. It can be seen from (8)  that 
the quantities f, are determined to within a general phase 
factor ei" , 9 = const. 

The function (6 )  maps the point f = 0 into z = 0. If we 
do not require the point 0 to remain fixed in the course of the 
mapping, then we need to add some constant R ,  which lies 
inside the space-charge region, to the right side of (6) .  Cor- 
respondingly, we need to subtract R from the right sides of 
the first of Eqs. (7 )  or (8) .  

Adding a constant leaves an invariant region. Specifi- 
cally, under the linear-fraction transformation 

where 

which maps the circle I f  / < 1 into the cricle 1 wl < 1, the arbi- 
trary constant R drops out of Eqs. (6) and (8).  The latter 
take their original form with respect to the renormalized 
constants c, and 6. 

Equations (8)  do not always have solutions. An ab- 
sence of solutions is evidence that the region becomes multi- 
ply connected. If the space-charge regions breaks up into 
several singly connected regions (without "holes"), the 
problem must be solved independently for each of these re- 
gions; only those sources which lie inside the corresponding 
space-charge region are to be taken into consideration. A 
solution cannot be found in the case of multiply connected 
regions. 

It follows from electrical neutrality that the total area 
occupied by the space charge is determined by the total 
charge of the sources and is independent of their positions. 

4. As an example we consider the screening of one and 
two sources. For a charge q at the point z, we find 
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The substitution 6 = eiq determines a circle centered at the 
point zo with a radius ro = (q/?~u)  I/'. This radius naturally 
corresponds to the radius for which the total charge in the 
circle is equal to the charge of the source. 

Let us consider the case of two identical sources at the 
points x = f a/2 with charges q. If a > 2ro, the region 
breaks up into two unconnected circles. In the case a<2r0 we 
have 

z=o  ( b )  = 2 b ~ b / ( 1 ; ~ - b ~ ) ,  b= [u+ (uZ- l ) '" ] '" ,  
8 ( z )  =2no [Z--2bcb ( z )  1 (1-b2L2 ( 2 )  ) 1, 

c=a (u2-1)  "2/2, U= ( 2 r 0 / a )  '. (9)  

The region determined by (9)  is dumbbell-shaped. 
Using expression (9 ) for g, we can find the force of the 

electrostatic interaction of two charged dislocations separat- 
ed by a distance a<2r0 (at greater distances, the dislocations 
do not interact at all). Calculating the field near the point 
z = a/2, we find the fofce to be 

The repulsive force decreases to zero in proportion to 
a - 2r0 in the limit a -+ 2r0. 

5. Let us assume that a small test charge is added to the 
system in the space-charge region. The potential produced 
by this test charge can be found by assuming that the bound- 
ary of the region is fixed, and that the boundary condition 
q, = 0 holds on it. These assumptions mean that the bound- 
ary is acting as a grounded metal e le~t rode .~  The reason is 
that the electron density is so high that the Debye length is 
shorter than all the length scales in the system. 

To prove this assertion, we set the field variation SZ? (z) 
caused by the insertion of a test charge Sq equal to zero at all 
points outside the space-charge region: 

If we transform the area integral into a contour integral by 
means of the substitution d8S = dldh, where dh is the devi- 
ation of a point of the contour along the normal, and dl  is an 
element of length along the boundary, we find that the latter 
equation is the same as the equation for the surface charge 
density u8h on a grounded metal electrode with shape corre- 
sponding to the unperturbed contour. 

If the problem with initial charges has been solved, so 
that the function a(<) which maps the boundary of the re- 
gion into a circle, has been found, the solution of the per- 
turbed problem can be expressed directly in terms of this 
function: ( = 2 1 - ) (  - ) 1, where 
~ ( 6 )  = z. 

6. In a problem with a finite number of sources, a com- 
plete (not exponential) screening of the field occurs at large 
distances. What happens if point sources are distributed 
with a given density c over the entire plane? If the density is 
low, ?rc< < 1, space-charge regions usually surround isolat- 
ed point charges or small groups of charges. The shapes of 
the regions can be calculated without consideration of the 
other charges. The screening remains complete. If the den- 
sity is high, ?rc< -B, ,  an infinite cluster of electrically neu- 
tral regions disappears. 

Above the percolation threshold, the system constitutes 
a set of uncoupled neutral regions, so the the field of a test 
charge extends over arbitrarily large distances, falling off 
exponentially with distance. At the point of the percolation 
transition the complete screening gives way to exponential 
screening at large distances. This change apparently implies 
a corresponding behavior of the potential correlation at 
large distances. 

The method developed in this study can be used to solve 
other problems involving nonlinear screening. In particular, 
it is possible to find the potential set up by a system of uni- 
formly charged straight line segments positioned on a com- 
mon line or that set up by a corresponding system of metal 
electrodes with given potentials. 
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