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The interaction of fluxons and breathers with point inhomogeneities in distributed Josephson 
junctions is studied by a Hamiltonian formalism. The conditions for the pinning of a breather at a 
microshort or a microresistance are determined. The conditions for the decay of a breather at an 
Abrikosov vortex are also determined. The critical currents for the detachment of a pair of 
solitons from an Abrikosov vortex are calculated. 

1. INTRODUCTION Various perturbation-theory approaches have been de- 

The quanta of magnetic flux-fluxons-moving in dis- 
tributed Josephson junctions are known to be described by 
soliton solutions of the sine-Gordon equation, which can be 
written in the form of a Hamiltonian system for the variables 
p and p,. Modified sine-Gordon equations describe junc- 
tions with inhomogeneities which give rise to corresponding 
increments in the Hamiltonian. In particular, a distributed 
Josephson junction with a microshort-a local region of a 
high superconducting current, with dimensions much 
smaller than the Josephson penetration depth of the magnet- 
ic field-are described by the equation' 

or by the Hamiltonian density 

where 

HP=pb (x) ( l -eos  cp) . ( 3 )  

Here and below, the coordinate x, along which the solitons 
are propagating, is expressed in units of the Josephson pene- 
tration depth of the magnetic field, the time t is expressed in 
units of the reciprocal of the Josephson plasma frequency, 
and the indices x and t mean differentiation with respect to 
the corresponding variables. 

A microresistance-a local thickening of a contact, 
which is a region of a lowered superconducting current-is 
described by an analogous expression with p < 0 (Ref. 2). 

Another interesting example is an Abrikosov vortex 
which is pinned in a superconductor parallel to the plane of 
the junction and perpendicular to the x axis. For this exam- 
ple, the increment in the Hamiltonian density is3 

HP=qG,(x) cp (x, t )  (4)  

and is the same, in the corresponding units, as the energy of 
an Abrikosov vortex in the mangetic field of a soliton in the 
London approximation. The equation describing the junc- 
tion takes the form 

v e l ~ p e d ~ * ~ , ~  for studying the interaction of solitons with mi- 
croinhomogeneities because of the outlook for possible tech- 
nical applications of distributed Josephson junctions. It has 
been shown that p + and p - solitons are repelled from a 
microshort and attracted to a microresistance. An Abriko- 
sov vortex has a selective effect: If the polarities of the vortex 
and soliton are the same, they attract each other, but if the 
polarities are different they repel each other. In a study of the 
perturbations of breather and multisoliton solutions, how- 
ever, these methods become excessively cumbersome and in 
some cases totally inapplicable. 

In this paper we propose an approach for studying 
modified sine-Gordon equations based on the use of the ca- 
nonical variables introduced in Ref. 6.  We assume that the 
phase distribution p(x,O) in the distributed Josephson junc- 
tion initially corresponds to some multisoliton solution. 
Transforming from the velocities vi and phases Xi of the 
solitons and also from the velocities vi, the frequencies 
cos v,, the oscillation phases Oi, and the displacement 
phases Xi of the breathers to the canonical variablesp, , q, 
in this solution, we can describe the evolution of the system 
by a simple set of Hamilton's equations. We ignore the effect 
of the continuum (Swihart waves), as we are justified in 
doing in the case of small perturbations or low ve l~c i t ies . ' .~~~ 

The interaction of current vortices with inhomogene- 
ities of the contact gives rise to some new steady states. Tech- 
niques involving the sweeping of a weak laser beam over a 
distributed Josephson junction have recently been devel- 
oped' to observe these new states experimentally. In the 
present paper, two such states are predicted: a breather 
pinned by a microresistance and a pair of like fluxons pinned 
by an Abrikosov vortex. 

The dynamics of breathers is also of much interest. 
Breathers can appear in a junction from Swihart waves un- 
der the influence of the displacement current. Their decay 
gives rise to fluxons of different polarities, which become 
unipolar upon reflection from the edge of the junction. In the 
process, a magnetic field may build up in the junction, in the 
absence of an external field. This effect can be observed by 
recording voltage-current characteristics8; it would be seen 
as a jump from one zero-field step to another. In Sec. 3 it is 
shown that the decay of a breather may occur not only under 
the influence of a displacement current5 but also as a result of 
an interaction with an Abrikosov vortex at a constant dis- 
placement current or in the absence of such a current. 
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Akoh et aL9 recently proposed a method for observing 
picosecond processes in distributed Josephson junctions in 
"real time" by means of a stroboscopic converter using JO- 
sephson elements. This method can be used to see how well 
the theoretical equations describe the actual motion of flux- 
ons and breathers. 

2. INTERACTION OF A BREATHER WlTH A MICROSHORT (OR 
MICRORESISTANCE) 

The energy of the interaction of a breather with a micro- 
short (or microresistance) is given in canonical variables by 

tg (pl/16) sin q, ch q, * 

" (P' [ tg2(pl/16)sin2 ql+ch2 pz 1 ( 5  

In the limit q, + UJ this expression contributes nothing, tell- 
ing us that there is no interaction at large range. 

Writing Hamilton's equations for the total energy of a 
breather, and then transforming to the original variables, we 
find the system of equations 

vt='lZpW sin(20) tg2 v ch2 z, 
0,= (1-192) -Ib cos v+pW sin2 0 COS-~V tg v ch2 Z, 

vt='/2pW(1-v2)sinz 0 tg2 v sh(2z), z ~ = u ( I - v ~ ) - ' ~  sin v 

(6) 
where 

z=;X(I-vz)-" sin v, 

which describes the dynamics of a breather in the presence of 
a microshort (or microresistance). It follows from the first 
pair of equations that 8 always increases monotonically over 
time, so there are no singular points in any (7, v) plane of the 
phase space of the system. A breather will not decay into 
solitons (a state with v = v/2) in collisions with a micro- 
short (or microresistance). The reason is that the interac- 
tion, although depending on the distance between the micro- 
short (or microresistance) and the soliton, is unaffected by 
the polarity of the latter. 

Steady breather states correspond to singular points in 
(v,z) planes. Since the derivatives v, and v, are --p, since the 

FIG. 1. Effective interaction potentials of a breather with a microshort 
(solid line) and with a microresistance (dashed line). a-w < 3-'I2; b- 
0 > 3 - l I 2 ,  

derivative z, is -v, and since the latter derivative is also 
small in comparison with r, -cos v near an equilibrium 
point, we find the following simple system of equations, tak- 
ing z and v to be constant in a first approximation, and aver- 
aging Eqs. (6)  over the rapidly oscillating parameter 8: 

zt=v(l-vz)-'h sin v. (7)  

This system of equations determines an equilibrium point. 
To analyze the stability of these states it is useful to consider 
a diagram of the average value of 8 over the energy (Fig. 1 ). 

If there is a microshort at the coordinate origin, the 
origin is a point of marginally stable equilibrium for breath- 
ers with frequency 

although the solitons bound in a breather would separately 
be repelled from it. This state may be thought of as lying 
symmetrically with respect to a pair of solitons which attract 
each other and which repel the center. The minimum energy 
of the finite motion and the height of the potential barrier 
are, respectively, 

They depend on the breather frequency, which determines 
the strength of the coupling of the solitons. As the frequency 
decreases, the distance between solitons becomes so small 
that they can no longer lie on different sides of the micro- 
short; the depth of the potential well approaches zero; and 
there are no steady states for a breather with o > 3-'I2. 

Under the condition p < 0 (Fig. 1 ) there are evidently 
always stable equilibrium positions, since solitons are at- 
tracted to a microresistance. For a strongly bound pair in a 
breather, this point is the origin of coordinates; as the bind- 
ing energy decreases ( o  < 3-  ' I2)  it would consist of the 
points 

3. DECAY OF A BREATHER INTO SOLITONS IN AN 
INTERACTION WlTH AN ABRIKOSOV VORTEX 

By analogy with the arguments above, we express the 
energy of the interaction of a breather with an Abrikosov 
vortex in canonical variables: 

Using (8), we can easily write Hamilton's equations, but we 
will not reproduce those lengthy equations here. We offer 
only a qualitative analysis. 

At small values of 7, which correspond to a real distrib- 
uted Josephson junction, as was shown in Ref. 3, we have 
u, -0, and z, - 1 to lowest order. A variation in z shifts the 
singular points in the ( 8 , ~ )  plane, but it does not result in 
their disappearance or the creation of new ones. There are no 
states in which the breather does not move. 

732 Sov. Phys. JETP 66 (4), October 1987 E. V. Gurovich and V. G. Mikhalev 732 



where 

FIG. 2. Phase trajectories of the parameters v and 0 of a breather interact- 
ing with an Abrikosov vortex. 

Let us examine the topological structure of the (8,v) 
plane in the phase space of the system (Fig. 2). At values 
cos v) 7 we find, in the zeroth approximation in 7, 

Going to the first order, we find small oscillations of the 
trajectories, so there are no singular points in this part of the 
phase space. A breather does not decay into fluxons. For 
cos v 4 ~  the system reduces to the equations 

sin B/cos v=const. 

All the trajectories of the solutions of these equations termi- 
nate at the points Y = r/2, 8 = r(mod 2 r ) ,  which deter- 
mine the time of the breather decay. 

The two ranges of values of the parameter v and, corre- 
spondingly, the two types of trajectories are separated by a 
separatrix, on which the conditions cos v-ql/' holds, as is 
obvious from simple considerations. The energy of the inter- 
action of a breather with an Abrikosov vortex is on the order 
of 7, while the binding energy of the solitons in a breather is 
16( 1 - sin Y) . The separatrix has a minimum at 8- r .  All 
the trajectories lying above it correspond to breathers which 
decay into solitons in an interaction with an Abrikosov vor- 
tex. Retaining in the equation for 8 terms of up to second 
order in 7 inclusively, we find the coordinates of the saddle 
point: 

8,=3n/2, cos v,=4qE (1-v2)-" s h  z. 

From the separatrix equation we easily see that at a 
fixed frequency the probability for the decay of a breather 
with a relatively high velocity is itself relatively high, and we 
can determine the frequency region in which splitting is im- 
possible: 

o> (rlv12)'" 

4. INTERACTION OF A PAIR OF SOLITONS WITH 

MICROINHOMOGENEITIES 

The two-soliton solution is given explicitly in terms of 
canonical variables in Ref. 6, among other places. Going 
through some lengthy but straightforward calculations simi- 
lar to those presented above, we find the energy of the inter- 
action of two solitons with an Abrikosov vortex from this 
explicit expression: 

A stable equilibrium corresponds to a symmetric arrange- 
ment of fluxons with respect to the Abrikosov vortex, which 
has polarity opposite that of the fluxons. Setting q, = qz, we 
thus find from Hamilton's equations that the distance 
between immobile fluxons is 2 ln (7/4), and the critical val- 
ue of the uniformly distributed displacement current, which 
detaches a single fluxon, in v2/8r. For a fluxon pair 
p + - p - a state with a single soliton at infinity and with 
another at the Abrikosov vortex is the most preferred state 
from the energy standpoint. 

In an interaction of a pair of fluxons with a microresis- 
tance, no pinning will occur, since the corresponding term in 
the energy, 

vanishes in the case of a symmetric arrangement of fluxons. 
This result agrees with that found in Ref. 2 by a bifurcation 
perturbation theory, but we see that it is unrelated to the 
small value of the parameter p. 

5. CONCLUSION 

This study has yielded several results: 
1) An Abrikosov vortex may lead to splitting of a 

breather. At a given frequency, the decay probability in- 
creases with increasing velocity. Breathers with w > (VY/ 

2) ' I 2  do not split. 
2) The presence of a microresistance does not lead to 

the decay of a breather, but it is capable of pinning the 
breather to itself at w>3-'" or at a distance 
w arch{[ ( 1 - wZ)/2wZ] 112)f r~m itself at other frequencies. 

3. A microshort does not split a breather, but it does set 
the stage for a metastable state of equilibrium for frequencies 
w > 3-'I2. A breather can be extracted from such a state by 
applying a uniformly distributed replacement current. For 
other frequencies, there are no stationary points. 

4) An Abrikosov vortex, in contrast with a microresis- 
tance, is capable of pinning two solitons to itself; the solitons 
would be positioned symmetrically with respect to the vor- 
tex, at a distance of 2 ln(7/4) from each other. This stable, 
steady-state configuration exists at displacement current 
densities from 0 to v2/8r; in the interval from q2/8r to 72r ,  
states with only a single fluxon are stable; at higher current 
densities, pinning to an Abrikosov vortex is totally impossi- 
ble.' 

All of these effects can be observed experimentally by 
the techniques mentioned in Sec. 1. The locally distributed 
replacement current which was studied experimentally in 
Ref. 9 is also capable of splitting breathers. 
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