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For processes of macroscopic electrodynamics such as the reflection and refraction of waves or 
the propagation of a surface wave the difference between the properties of some arbitrary thin 
surface layer and those of the rest of the material can be described phenomenologically by 
introducing a surface permittivity. The properties of the surface permittivity and its effect on 
surface waves are studied. The results show that the existence of a surface layer with properties 
different from those of the rest of the material gives rise to surface waves which would not occur at 
a pure surface. The dispersion relation for such waves is studied for the case of an anisotropic 
surface layer. 

1. INTRODUCTION 

In many situations the properties of a surface layer are 
quite different from those of the material in the interior of a 
material. As examples we might cite the reconstruction of 
the surface of a single crystal and the layer of adsorbed atoms 
on a surface. The difference between the properties of a sur- 
face and the bulk properties of a material also influences 
macroscopic electrodynamic processes such as the reflection 
of light or the propagation of surface electromagnetic waves. 

In certain cases it is possible to carry out a systematic 
analysis of surface properties at the microscopic level.' The 
complexity of that approach, however, necessitates the use 
of additional assumptions, which narrow the range of appli- 
cability of the results. Sivukhin2 has shown for several sim- 
ple models that in the reflection of light the presence of a thin 
transition layer can be dealt with by introducing corrections 
in the boundary conditions. 

For processes of macroscopic electrodynamics, it is not 
necessary to take microscopic approach to the description of 
the surface. We would expect that a phenomenological de- 
scription of the dielectric properties of a surface, like a phe- 
nomenological description of bulk properties, by means of a 
permittivity would prove useful in macroscopic electrody- 
namics. For a thin surface layer with a thickness S small in 
comparison with the wavelength, all the specific surface 
properties may be related to a surface current. The coeffi- 
cient of the proportionality between this current and the 
field is a phenomenological characteristic of the dielectric 
properties of the surface of a material. Below we develop this 
approach for describing a surface, and we study the effect of 
a surface permittivity on the properties of surface electro- 
magnetic waves. 

2. SURFACE CURRENT 

If a transition layer has a finite width, the position of the 
interface is fixed unambiguously by the choice of conditions 

where V,, V2, and Vare the volume of the first medium, the 
volume of the second medium, and the total volume; n:" and 
nL2' are the electron number densities in the first and second 
media; and N, is the total number of electrons in the system. 

Relation ( 1 ) presupposes that the properties of the ma- 
terial remain absolutely constant all the way to the interface. 
If there are variations in the properties of the material near 
the interface, the actual microcurrent density will deviate 
from ( 1 ) by an amount which we denote by Sj. This quantity 
obviously vanishes far from the interface. 

The surface current J (R,  w) is related to Sj (R, z, w) by 

J(R, w) = J dz(6j (R, z, o )  ), ( 3  

where the angle brackets mean an average over an area 
which physically is infinitely small in the z = 0 plane. Note 
that the surface current J does not depend onz; in particular, 
it does not change when the two media are interchanged. 

The existence of a surface layer has the consequence 
that this current and the associated surface charge should be 
incorporated in the boundary conditions at the z = 0 inter- 
face: 

1 
Q (R, O )  = - dz(div 6j (R, Z, o )  ) = - 

to 

The surface charge is related exclusively to the tangential 
component of J, since Sj (R, z, W )  vanishes outside the sur- 
face layer. As a result, the normal component of the surface 
current does not appear in the boundary conditions: 

An interface between two nonmagnetic media with per- 4at 
mittivities E::) (0) and E::) ( w )  lies in the z = 0 plane. A field [n,Hi-H,] =-Jt ,  c [n,E,-E,]=O, 
induces a microcurrent of volume density 

(n,  D,-D,) =4xQ, (n, Hi-H,) =O ( 5  
o 

ji(R, z, o )  = (6:' (o )  0 (z) +E? (o )e  (-2) -fji,) 
4nz (either directly or through the surface current). 

It follows that for a phenomenological description of 
X E,  (R, z, a ) ,  ( ) the dielectric properties of a surface it is sufficient to intro- 

in the material, where B(z) = 1 at z > 0, B(z) = 0 at z < 0, duce the coefficient of proportionality between the tangen- 
R = r - n(nr),  and n is the unit normal to the surface. tial component of the surface current and the field. 
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3. SURFACE PERMITTIVITY IN THE CASE OF AN ISOTROPIC 
SURFACE LAYER 

We begin with the case in which the surface layer is 
isotropic. In this case we can introduce the relation 

m 

J (R, t) = J drf ( r )  E (R,  1-7). (6)  
0 

This relation reflects the causal relationship between the 
field and the current, and it presupposes that this relation- 
ship is local. Taking Fourier transforms, we write 

where 
m 

4ni E (o)  = - j drf ( r )  erp ( i w )  
0 0  

is an analog of the permittivity which we might call the "sur- 
face permittivity." 

We wish to stress that there is a fundamental distinction 
between this quantity and the surface impedance of a metal, 
which is a concept used in the optics of metah3 A surface 
impedance is determined entirely by the bulk characteristics 
of the material, while the surface permittivity is introduced 
in order to describe certain other properties of the material, 
which are not described by bulk characteristics. A surface 
permittivity is independent of the bulk permittivities of the 
two media. The surface permittivity should be thought of as 
a phenomenological characteristic of a material, which is to 
be determined in an independent experiment (or calculated 
from a microscopic theory). 

We will analyze the properties of {(a) by analogy with 
the analysis of Landau and Lifshitz3 of the properties of the 
permittivity ~ ( w  ) . It follows from ( 8) that {(a)  is a com- 
plex function of the frequency: 

4n 
E 1 ( 0 )  = E l ( - - 0 )  = - - drf (r)sin or,  (10) 

( " 0  

4n 
Erl(w) =-g"(-o) = -- J drf (r)cos or. 

( " 0  

The properties of the static permittivity are related to 
the convergence of the integral 

a 

If x vanishes the surface layer is nonconducting, while if x is 
equal to a constant we would be dealing with a conducting 
surface layer. 

Let us examine {(a) as a function of the complex argu- 
ment w = of + iw". It follows from (8) that in the case 
w" > 0 the integral (8)  always converges (except at the point 
o = 0 if x is nonzero). This statement means that {(a) has 
no singular points in the upper w half-plane (except for a 
pole at w = 0 if x is nonzero). At frequencies higher than 
atomic frequencies, on the other hand, where the field inter- 
acts with bound electrons as it would with free electrons, we 
have {(w) -w-,. 

Repeating the arguments which Landau and Lifshitz 

present3 in the derivation of dispersion relations for the bulk 
permittivity, we easily find dispersion relations for {(w): 

It follows that the function {(a)  may not be real at all fre- 
quencies, but only in a certain frequency interval. 

For example, let us assume { " (w) = 0 on the interval 
w, <w <w,. We then find from (13) and (14) 

1 du 
E1(o)=- - 

n Ju-a  
E / / ( u )  +L J*g//(o) 

n o  u-o 

2 udu 
= -j - 

n , uZ-w2 E"(u). 

We have omitted the principal-value symbol here since the 
point u = w lies in the interval in which we have { " (u )  = 0 
outside the integration region. If the region of real values of 
{(a) is quite wide, then in this region, in the interval 

we can assume 

where 

It follows that if the frequency w, defined in ( 17) falls in the 
interval w, (w, (0, than {(w) goes through zero at w = a , .  

4. SURFACE PERMITTIVITY FOR AN ANISOTROPIC 
SURFACE LAYER 

In general, the surface current will depend on the values 
of the fields in the two media at the interface between them 
(Z = 0).  It is convenient to treat the surface current as a 
function not of the fields but of linear combinations of the 
fields: 

Without any loss of generality we can assume 
J = J ( F ,  + F,; F, - F,). As we mentioned earlier, the sur- 
face current does not change if the two media are inter- 
changed. Consequently, J can depend on only (F ,  - F,)'. It 
follows that to first order in the field J depends on only 
F, + F,. The field dependence of the tangential component 
of the surface current can be written in its most general form 
as follows: 

6) 
Jit(R, o )  =-Ei,(o) {Fi.(R, o)+F,a(R, a ) ) ,  (19) 

8nz 
where 6, (w) is the surface permittivity. Here the Latin in- 
dices are to be understood as running over the values x ,  y, z; 
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while the Greek indices run over the values x ,  y. For the 
z = 0 interface we can thus put ( 19) in the form 

The components of the permittivity tensor, la,, de- 
scribe the rather exotic case in which the normal component 
of the field excites a tangential surface current in a thin sur- 
face layer. 

It is convenient to direct the x and y axes along the 
principal axes of the two-dimensional tensor gap. In this 
coordinate system, the tensor laB is diagonal. We denote its 
diagonal components by 

The boundary conditions ( 5 ) then become 

Eix(R, a )  =Em(R,  o ) ,  Eiu(R, o )  =Ezu(R, m ) ,  

iw d i o  d 
~ , ( l + - e . , - ) E ~ . ( ~ , o ) + e ~ ( ~  2 dx, - T E a = d r , ) ~ a ( ~ , a )  

5. EFFECT OF THE SURFACE PERMITTIVITY ON SURFACE 
ELECTROMAGNETIC WAVES 

Let us examine surface electromagnetic waves at the 
z = 0 interface between a nonmagnetic isotropic medium 
and a nonmagnetic cubic crystal. A surface wave can propa- 
gate along such an interface. We seek the field in this wave in 
the usual form [here and in (27), the upper sign corresponds 
to the first medium, and the lower to the second] 

Etl2) esp { i q R ( F )  ~ , , ~ , z - i o t ) ,  exp { i q R ( F ) y , ( , , z - i o t ) .  

Substitution of the fields, written in this form, into the wave 
equations for the first and second media leads to 

~ 1 ( ~ ) = 1 q ~ ~ + q , 2 - -  ( o / ~ ) ~ e ~ ( ~ )  ( a ) ]  Ih ,  (26) 

where y,,,, are positive real quantities. Consequently the 
following equality must hold: 

Im q2=Im 0 2 ~ 1 / ~ Z = I m  o2eZ/c2 .  

This equality is satisfied for real values of E ,  and E, at arbi- 
trary frequencies: if E ,  and E,  are complex, it is satisfied only 

at certain values of the frequencies. Since the fields in the two 
media are transverse, we can write 

i ~ , E i ( z ) ~ + i q ~ E i ( z ) ~ = *  ~1(z)El(z ,r ,  

We restrict the discussion to the case la, = 0, 
For fields of this type, the boundary conditions (22)- 

(25) become 

From (27) and (28) we find 

Using Maxwell's equation 

and (27), we find 

Substituting (32) and (33) into (29), we can express all the 
quantities in the latter equation in terms of E,, and H,, : 

where 8 is the angle which lies between the vector q  and they 
axis in thex, y plane, so that we have q, = q  sin 8, and q, = q  
cos 8. Multiplying (30) by iq , ,  multiplying (31) by iq,, 
adding the results, and using (27), (28) and (33), we easily 
find 

The condition under which system of equations (34), (35) 
can be solved is the condition that the determinant of this 
system vanishes: 
( e , y z + ~ 2 y i + ~ y , y 2 - q y l y ,  cos 20) [ Y I + Y Z - E ( ~ ~ ~ ) ~ - ~ Y ~ Y ~  COS 203 

=q2y ,y ,  (ole) sin2 20. 
(36) 

This equation relates q and w; i.e., it is a dispersion relation 
for surface waves in the case in which there is a thin, aniso- 
tropic, surface transition layer. 

6. ANALYSIS OFTHE DISPERSION RELATION 

A characteristic feature of the dispersion relation (36) 
is its dependence on the angle 8, i.e., on the wave propaga- 
tion direction. By analogy with the optics of crystals, waves 
with direction-dependent dispersion relations might natu- 
rally be called "extraordinary surface waves." 

In the case v =  0, i.e., in the case of a transition layer 
with an isotropic surface, the system of equations (34), (35) 
splits into two independent equations: 

( ~ i y 2 + ~ z y i + E y i y z ) E , d ,  (37) 

(y1+y2-Ew2/cz)  H2,=0. (38) 
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For the case of a plane macroscopic transition layer 
between media, with a thickness shorter than the wave- 
length, it is again possible to derive equations analogous to 
(37), (38) (Ref. 4). In this case, however, the derivation 
leans heavily on the assumption that there are two parallel 
interfaces which bound the transition layer down to dis- 
tances small in comparison with the wavelength. An addi- 
tional assumption of this sort is not physically justified, and 
it seriously restricts the range of applicability of the analysis. 
In problems involving the reflection of light, taking this ap- 
proach for very thin layers leads to results at odds with ex- 
~e r imen t .~  

Equations (37), (38) determine surface waves in the 
case of a surface-isotropic transition layer for an arbitrary 
value of the surface permittivity. The qualitative effect of the 
transition layer in this case is that there can be surface waves 
for which the electric field is transverse with respect to the 
propagation direction: 

Such waves would not be possible in the absence of a surface 
layer, because y, and y, would be positive. The existence of 
such waves in the particular case of a macroscopic thin tran- 
sition layer with a permittivity 

was observed in Ref. 6. It follows from (39) that such waves 
exist in the general case of an arbitrary thin transition layer. 

If a surface wave is propagating along the principal axes 
of the tensor faS,  i.e., along the x or y axis, and we have 
8 = ~ / 2  or 8 = 0, then the system (34), (35) again splits 
into two independent equations: 

(the upper sign corresponds to 8 = 0, and the lower sign to 
8 = T/2). 

We now consider the case in which { and r ]  can be as- 
sumed to be small quantities, i.e., the case in which the prop- 
erties of the surface layer differ only slightly from the prop- 
erties of the material in the interior. In this case we can 
restrict the discussion to the approximation linear in f and 7. 

We accordingly ignore the term proportional to r]2 on 
the right side of Eq. (36), finding 

{TI+Y?- (o/cj2E-q~lya COS 28) {~iyzf ezyi+Eyiy, 
-qYlya cos 2 8 1 ~ 0 .  (43) 

This result means that at small values of f and r] there are 
again two solutions. One of them corresponds to the case 

and for it we have H,, = 0 by virtue of (34). The second 
solution corresponds to the equation 

and for it we have E,, = 0 by virtue of (35). 
The properties of surface waves satisfying (45) are re- 

lated to the structure of the surface layer. If this layer has 
properties differing from those of the bulk material, then 
such waves exist; if there is no difference in properties, such 
waves do not exist. 

7. SURFACE WAVES IN A CASE OF AN INHOMOGENEOUS 
THIN SURFACE LAYER 

The properties of a thin surface layer may vary along 
the surface. In that case the surface permittivity should de- 
pend on the coordinates of the point on the interface, so we 
should replace ( 1) by the equality (we are again putting the 
interface in the z = 0 plane) 

o 
J (R, 0 )  = --- E (R, o )  Et (R, a ) .  

4ni (46) 

Such behavior might be caused in particular by a situation in 
which a surface layer witki altered properties has a varying 
thickness (which remains small in comparison with the 
wavelength of the field). A similar situation would arise in a 
case in which the distribution of atoms adsorbed on a surface 
varied along the surface. Another particular case of this be- 
havior would arise if there were a nonplanar surface 
z = z0(x, y )  between two homogeneous media and if the di- 
mensions of excursions from the z = 0 plane along the nor- 
mal to the surface, Izo(x, y )  1, remained small in comparison 
with the length scale of the field variations in the direction 
normal to the surface. In this particular case we would have 

E(R, o ) = ( e 2 - ~ 1 ) ~ o ( x ,  y ) .  (47) 

How would the properties of surface waves change in 
the case of a thin, inhomogeneous surface layer of a material 
with unchanged properties? If the surface properties depend 
on the x and y coordinates the problem is no longer uniform 
as a function of x and y. We can thus no longer assume that 
the field of the surface wave behaves as a plane wave along 
the x and y directions (this assumption was made in Sec. 5). 
Variation as a function of x and y bends the waves and con- 
verts a plane wave into a packet of waves. We therefore seek 
the electric field of the surface wave as a superposition of 
waves 

Ei,z, (r, 1 )  = S d2gE,(2, (q) exy { i q R + ~ , ( ~ ,  ( 4 )  Z-iot}, (48) 

(I. t )=  S d 2 ~ ~ l l a l q  ery{$~Fy, , , ,  (g).z-iot). (49) 

Substituting fields of this type into the boundary conditions 
(5),  we find boundary conditions on the expansion coeffi- 
cients El,,, (q)  and HI(,,  (q) :  

where 

E (I. 0 )  = (2n) -' J dzRE (R, o )  erp (-ilR) . (54) 

It is not difficult to see that for the field expansion coeffi- 
cients E,,,, (q)  and H,,,, (q)  the transversality conditions 
(27) and (33) hold [Eqs. (33) express the tangential com- 
ponents of the electric field in terms of the normal compo- 
nents of E and HI. 

Taking the vector product of (52) and iq and using 
(27), we easily find 
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which we can use to eliminate E ,, ( q )  from ( 5  1 ) . Replacing 
q  by q  - 1, we can express B,, ( q  - 1) and E,, ( q  - 1 )  in 
( 3 3 )  in terms ofH,, ( q  - 1 )  and E,, ( q  - 1 ) .  As a result we 
can replace ( 5  1 ) by 

I s l y Z ( q )  +szyi  ( q )  lEzr  ( q )  +yi ( q )  

Taking the vector product of ( 5 3 )  and iq and then taking the 
scalar product with n, we find, using ( 2 7 ) ,  

Now eliminating H , ,  with the help of ( 5 0 ) ,  and eliminating 
E ,, and E ,, with the help of ( 3 3 ) ,  we find 

Equations ( 5 6 )  and ( 5 7 )  can be used to find the functional 
dependences H,, ( q )  and E,, ( q ) .  The other field compo- 
nents can be found easily from the results, with the help of 
( 3 3 ) ,  the corresponding relations for H,,  and H,,, , and the 
boundary conditions (50) - (54) .  

8. SURFACE LAYER VARYING IN ONE DIRECTION 

Let us consider the case in which the surface permittivi- 
ty depends only on the single coordinate x  (and is indepen- 
dent ofy). In this case we can write 

E (1) = E  ( L )  6 ( 4 , ) .  ( 5 8 )  

We consider a surface wave which is propagating along the x  
axis, so that in (48) and ( 4 9 )  we have 

In this case Eqs. ( 5 6 )  and ( 5 7 )  can be written 

i.e., Eqs. ( 5 6 ) ,  ( 5 7 ) ,  which constitute a system of coupled 
equations, split into two independent equations. It follows 
that in this case there exist two independent solutions, one 
with E,, = E ,, = 0  and one with H,, = H , ,  = 0 .  

We now assume that { ( x , w )  varies substantially over 
distances far greater than the wavelength. This assumption 
means that f ( I , )  is nonzero only at values of 1, much 
smaller than q,.  In this particular case we can expand 
H,, (q ,  - I ,  ) in powers of I, and retain only the first terms 
of the expansion. 

Equation ( 6 0 )  then becomes 

where 

0 d l  , x= j (b ) .  ( 6 2 )  

Integrating (61 ), we find H,, ( 9 ) ;  then taking Fourier trans- 
forms we find 

where H, is a constant of integration, and 
4 

The integral is dominated by values of q  for which @ is a 
small quantity. The minimum of @ corresponds to the condi- 
tion 

which is the same as ( 3 9 )  at z = 0.  
Denoting the root of this equation by z = Q ( z ) ,  we see 

that ( 6 3 )  is dominated by values of q  close to Q. Since large- 
scale variations alter q  by only a small amount, we can as- 
sume that for the effective values of q  the inequality 
I q  - Q  I 4 Q  holds. In this case we can expand @ ( q ,  z )  in 
( 6 3 )  in powers of q  - Q: 

An 'elementary integration of ( 6 3 )  using ( 6 6 )  leads to 

x exp{--@ (Q ,  z )  +iQx-iot). ( 6 7 )  

In the case of a surface layer with large-scale variations in 
one dimension, a surface wave propagating along the x axis 
therefore constitutes a wave packet whose width depends on 
both the properties of the variations and the properties of the 
two media. 

Expression ( 6 7 )  holds in the case in which the condi- 
tions q2 > E ~ W ' / C ~  and &,w2/c2 hold for the effective compo- 
nents of the packet. The latter conditions are satisfied if the 
following inequalities hold: 

If these inequalities do not hold, components with imaginary 
values of y,  and y2 will appear in the packet. Such compo- 
nents would correspond to internal waves propagating away 
from the surface. In other words, they would correspond to a 
leakage of energy from surface waves to internal waves and 

729 Sov. Phys. JETP 66 (4), October 1987 M. I. Ryazanov 729 



to a pronounced damping of the surface waves. 
At small values of x ,  an expansion of H,, (qx - I ,  ) in I ,  

which retains no terms higher than linear terms is inade- 
quate; expansion terms quadratic in I ,  would have to be tak- 
en into account. 

9. DISCUSSION OF RESULTS 

An advantage of describing the properties of a surface 
layer in terms of a surface permittivity is that there are no 
model-dependent assumptions. It is thus possible to unam- 
biguously relate the results found in the study of a surface by 
different electrodynamic methods. We wish to stress that the 
introduction of a surface permittivity permits a rigorous de- 
scription of surface waves at a frequency w for which the 
relation ~ , ( w )  = E,(w) holds. In this case, ordinary surface 
waves simply do not exist, and they could arise only by virtue 
of the presence of a surface layer with altered properties. 

Such surface waves (which might be called "degenerate 
surface waves") are particularly convenient for studying a 
surface since they are very sensitive to the properties of the 
surface layer. For a surface-isotropic and homogeneous 
transition layer, the conditions for the existence of degener- 
ate surface waves can be derived easily from (34) and (35 ) : 

In the case 6 > 0, E > 0, there can be degenerate surface waves 
for which the following hold: 

In the case& < 0, there can be waves for which the following 
hold: 

A surface permittivity could be used to describe the dielec- 
tric properties of a plane in which defects accumulate in a 
crystal. Crystals that form in nonstoichimetric systems of 
various materials usually have planar defects.' The dielec- 
tric properties of a crystal vary near such a plane. This vari- 
ation can be described by an additional surface current and 
thus by a surface permittivity. Degenerate surface waves can 
propagate along such planar defects. 

We conclude with an estimate of the magnitude of the 
surface permittivity. For frequencies higher than the atomic 
frequencies, the microcurrent 'volume density is known to be 
related to the field by 

j (r, a) =E (r, o) (ienoZolmo), 

where no is the number of atoms per unit volume, and Z, is 
the atomic number. The number of electrons in a case in 
which an atom of the material is replaced by an impurity 
atom with a charge Z varies by an amount A Z  = Z - Zo. 
For a monolayer of impurity atoms on a surface we would 
have 

where b is the interatomic distance, and 

Hence 

Near a resonance for an impurity atom, but far from a 
resonance for the host material, an additional factor of (w/ 
Aw) arises: 

(the deviation from the resonant frequency, Aw, is greater 
than the linewidth). 

We now note that the customary boundary conditions, 
(5),  are found in the limit (S/A) -0. From Maxwell's equa- 
tion 

curl, H= (4nIc) Gj,-i(o/c) Dz 

in the same approximation, we find J, = 0, by analogy with 
(5).  The physical meaning of the latter equation is obvious: 
If a nonzero J, is to appear, there must be oscillations of the 
charge along the z axis. If we denote by a the amplitude of 
these oscillations, we have S 2 a, and the limit S -0 means 
that we also have a-0; i.e., the oscillations disappear along 
with J, . Accordingly, the normal component of the surface 
current can be taken into consideration only along with fin- 
ite corrections on the order (S/A) in the boundary condi- 
tions. The boundary conditions constructed in Ref. 8, which 
explicitly contain J, ,  are physically meaningless since in 
finding them the authors went outside the range of applica- 
bility of the model which they were using [for a surface layer 
of thickness d, an expression of the type PS(z) was used for 
the polarization in Ref. 8, but this expression is incorrect at 
z 5 d, and it is specifically this region which is important to 
the construction of the boundary conditions in Ref. 81. 

I wish to thank S. L. Dudarev, D. A. Kirzhnits, and D. 
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