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An investigation is made of the orientational dynamics of an athermal nematic solution of 
semiflexible persistent macromolecules. Reptational concepts are used to derive a closed 
diffusion equation describing relaxation of the orientational distribution function. Expressions 
for the Leslie coefficient a, and a,, asymptotically exact in the limit L $1,I$ d (L is the total 
length of the molecule, I is a Kuhn segment, and d is diameter), are obtained. It is shown that: 
1 ) the effective diffusion coefficient D * for the motion of a macromolecule along its axis decreases 
on appearance of orientational order in the system; 2) the ratio a,/a, is always positive, so that 
the Couette flow of a solution should be very stable. 

I. INTRODUCTION 

The dynamic properties of nematic polymer solutions 
are currently attracting much attention from specialists. I-' 
The majority of real polymers, which become liquid crystals 
in solution, is described well by the persistent model repre- 
senting a flexible rod of diameter d, which is much less than 
the length of a Kuhn segment I, i.e., the length of a segment 
of a polymer chain in which the memory of the initial orien- 
tation is lost.4 An athermal solution of semiflexible persis- 
tent macromolecules (of total length L > 1) goes over com- 
pletely to the nematic state iP 

where q, = $~i-Ld 2~ is the volume concentration of the poly- 
mer (c is the concentration of polymer chains). 

Our aim will be to investigate theoretically some dy- 
namic properties of a nematic solution of semiflexible persis- 
tent macromolecules. 1fp)p *, then after a sufficiently long 
time the dynamics of polymer chains is of reptational nature: 
each chain is surrounded by so many neighboring chains 
that they effectively prevent shifting in the transverse direc- 
tion and the only allowed motion is sliding (reptation) of a 
macromolecule along its axis (Fig. 1 ). "' In the next section 
we shall derive the fundamental diffusion transport equation 
describing reptational dynamics of polymer chains. We shall 
use this equation in Sec. 3 to calculate the Leslie viscosity 
coefficients a, and a, (Ref. 9),  the relationship between 
which has a strong influence on the stability of flow of the 
so l~ t ion . '~  In the rest of the present section we shall describe 
some of the equilibrium properties of a liquid crystal solu- 
tion of persistent macromolecules which will be required 
later. 

The free energy F of an athermal solution of semiflexi- 
ble macromolecules5 is 

where 

is the "ideal-gas" part of the free energy (calculated per one 
Kuhn segment), which is related to the orientational order- 
ing; 

is the free energy of the steric interaction between macromo- 
lecules." In Eqs. (1.3) and (1.4) the quantity f (n )  is the 
distribution in the orientation of a unit vector n tangent to 
the polymer chain, normalized by the condition 

B(n, n') is the excluded volume of two parts of macromole- 
cules of length I and with the orientations n and n': 

B (n, n') =2l2d sin y, (1.6) 

where y is the angle between n and n'. The equilibrium distri- 
bution f (n)  minimizing the free energy satisfies the equa- 
tion 

where 

Uinl (n) = - 6Fint = cLj B (n, n') f (n') d2n' (1.8) 
6f(n) 1 

is the potential energy of a Kuhn segment aligned in the 
direction n in the average molecular field. If the external 
orienting field U,,, (n)  also acts on the macromolecules, 
then the molecular field U,,, (n)  in Eq. ( 1.7) should be re- 
placed with the total field: 

The orientational ordering of this system is described by 
the order parameter 

s =I P2 (60s O)f (n) d2n, (1.10) 

where 0 is the angle between n and the director u of the 
nematic. In the nematic phase with q, = q, * the order param- 
eter is s = 0.49 (Ref. 5). 

2. KINETIC EQUATION 

In a nonequilibrium state the various parts of a macro- 
molecuIe may be oriented on the average in various degrees 
so that the distribution function of the orientations f (nJx;t) 
for a set of regions located at a distancex from the end of the 
chain should be introduced2' separately for each x. The nor- 
malization condition, and the relationship between this 
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FIG. 1.  a)  Diagram showing the only allowed large-scale motion of a 
macromolecule, which is reptational along its axis (the points identify 
surrounding polymers). b) Change in the conformation of a macromole- 
cule in a short time t ( A ,  ABB, is the initial conformation, and A,ABB, is 
the conformation at a moment t; the length of the segment AA , is y ,  and 
that of AA, is y, ) 

function and the function f (nit) introduced earlier are as 
follows: 

L 

f ( n l t ) = ~ - '  Jdxf(nlz; t). (2.2) 
0 

We shall first consider the case when a macromolecule 
is not affected by any orienting field at all, i.e., when 
U(n) = 0. Then, the reptational dynamics of macromole- 
cules is described by the following simple diffusion equa- 
tions: 

subject to the boundary conditions 

where 

is the diffusion coefficient for the reptational motion (?ls is 
the viscosity of the solvent ). The conditions (2.4) and (2.5) 
follow from the fact that the conformations of very short end 
regions are intentionally made to satisfy an equilibrium dis- 
tribution. 

The time in which a chain transverses (along its axis) a 
distance of the order of the Kuhn segment 1 is T, = 1 */D. On 
the other hand, the maximum orientational relaxation time 
of the system is8 

We can easily show that, irrespective of the initial state of the 
system, in a time t&rO the orientational functions f (nl0;t) 
and f (n1L;t) of the end parts of the macromolecules relax to 
an almost isotropic distribution.' In other words, after a time 
t) r0 not only the conformational, but also the orientational 
distributions of the end parts reach equilibrium, i.e., they 

become isotropic in the absence of an orienting field. There- 
fore, if we are interested in quantities for which the charac- 
teristic time t- T,,, is much longer than T, (these quantities 
include, for example, the viscosity ), then the boundary con- 
ditions (2.4) and (2.5) may be replaced with 

We shall now consider the general situation when ma- 
cromolecules are subject to an orienting field described by 
Eq. ( 1.9). Clearly, the order of magnitude of characteristic 
time r0 of the orientational relaxation of the end parts does 
not alter if U(n) - 1. Consequently, after a times t-T,,, 
)rO the boundary conditions can, by analogy with Eq. 
(2.8), be written in the form 

where the function f,, (n)  is the solution of the equation 
[compare with Eq. ( 1.9) 1 

6Fo/6f(n) +U (n) =O. (2.10) 

A macromolecule moves along its axis under the action 
of two forces: a random force h ,  ( t )  which obeys 

(h,(t) >=O,  ( h , ( t )  h,(t')>=ZD-'6 (t-t'), (2.11) 

as well as a regular force 

where n, and n, are the orientations of the beginning and 
end of a chain. The displacement of a macromolecule along 
its axis Ax in a short time At is given by 

Ax=D(hl+hz) At. (2.13) 

It follows from the definition of the regular force of Eq. 
(2.12) that its autocorrelation is nonzero and, therefore, the 
process of reptation in the presence of a field U(n) becomes 
non-Markovian. Consequently, in general, Eq. (2.3) ceases 
to be valid. However, it is clear that the correlation between 
the chain displacements is retained only for a time of order 
TO, SO that in the intervals At) T, the reptational process 
remains purely diffusive: 

where D * is the renormalized diffusion coefficient. There- 
fore, at times t ) rO Eq. (2.3) remains valid if we replace the 
coefficient D with D * such that 

The effective coefficient D * is calculated in the Appendix in 
the limit of a weak field U up to second order. If we assume 
that the orienting field has the form 

U ( n )  = const P, (nu), const << 1, 

then using Eqs. (A15), (2. lo),  and ( 1.10) we can simplify 
Eq. (A14) and find the dependence of D * on the order pa- 
rameter: 

~ ' = ~ { l - - ~ / ~ s ~ + ~ ( j S w "  jj. s+O. (2.15) 

Using similarity concepts," we can easily show that in the 
opposite limiting case of a very strong field and, consequent- 
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ly, a high degree of orientational order (s- 1 ) the coefficient 
D * tends to the constant value 

where /2 < 1 is a numerical constant. Therefore, the depend- 
ence of D * on s has the form shown schematically in Fig. 2. 

3. LESLIE COEFFICIENTS a 2  AND as 

We shall consider a slowly flowing nematic solution 
subjected to a weak external orienting field U,,, (n). We 
shall assume that the velocity of hydrodynamic flow v at a 
point r is 

The motion of macromolecules under these conditions is de- 
scribed as follows: an external field U,,, does not affect the 
form of the kinetic equation (2.14) and its influence on the 
boundary conditions of Eq. (2.9) is included formally by the 
relationships ( 1.9) and (2.10). On the other hand, the pres- 
ence of hydrodynamic flow requires modification of the 
transport equation (2.14). The action of the flow over a 
short time At reduces to a small affine deformation of the 
contour of a macromolecule in accordance with the law 

As a result, some parts of the macromolecule become ex- 
tended and others are compressed, so that on the average its 
length may change. Clearly, the length of the macromole- 
cule should relax very rapidly to its initial value (see Ref. 7). 
Bearing in mind this relaxation process, the change in the 
distribution function due to hydrodynamic flow over a time 
At is 

Af=GAt ,  

where 

&io=gagng-na (gg,nBn,), (nang)= J f,, (n) nan, d". (3.4) 

Equation (3.3) is derived on the assumption that the initial 
distribution of the orientations of all the parts of macromole- 
cules differs little from f,, . The first term in Eq. (3.3) de- 
scribes the change in the function f due to rotation of the 
segments of the chain, the sec'ond describes the effect of the 
changes in the length terms of the segments, and the third is 
due to the process of relaxation of the length of a macromole- 
cule as a whole. 

We can therefore see that the action of hydrodynamic 
flow gives rise to an additional term G on the right-hand side 
of Eq. (2.14) : 

FIG. 2. Dependence of the effective diffusion coefficient D * on the order 
parameters. 

Equations (3.5) and (3.3), subject to the boundary condi- 
tions (2.9) and (2. lo), describe completely the orienta- 
tional dynamics of semiflexible macromolecules. 

It follows from the linear macroscopic theory of Ref. 6 
that the moment of an external field acting per unit volume 
of the system should be (square brackets denote vector prod- 
ucts) 

I?= [uh] , (3.6) 

where u is the director of the nematic and the "force" h is 
related to the gradient of the flow velocity: 

where a,  and a,  are the Leslie viscosity coefficients. On the 
same time, the following "microscopic" expression obvious- 
ly holds: 

cL r= --j 1 f (n )  [nV,,U..,(n)ld2n. (3.8) 

In this equation the field U,,, can be replaced with the 
total field U, since the moment of the internal forces due to 
the molecular field U,,, should be identically equal to zero. 
We therefore have 

cL 
I?= --j f(n) [nV.U(n)Id2n. 

I 
(3.9) 

The steady-solution of Eqs. (2.9) and (3.5) can be written 

where f,, (n) is described by Eq. (2.10). The average distri- 
bution function is therefore 

Substituting Eq. (3.10) into Eq. (3.9) and bearing in mind 
that in the equilibrium state the moment of the force acting 
on macromolecules vanishes identically on the average, i.e., 

we obtain 

Thefunctionsf,, (n) and U(n) inEqs. (3.3) and (3.11) can 
be replaced, in the linear approximation, with the functions 
f, (nsu) and Uo (n.u) respectively, which characterize the 
state of complete equilibrium in the absence of any external 
forces. Comparing now Eq. (3.1 1)  with Eqs. (3.6) and 
(3.7), we obtain after simple transformations the following 
results: 

u3 = x f o  (z) (1-2) 'Uoff (z) dz, (3.13) 
- i 

wherez = n.u and K = (cL /41)L 2/12D *. The relationship 
between the functions Uo and fa follows from Eq. (2.10): 
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FIG. 3. Dependence of the reduced viscosities a ,  and a ,  on the order 
parameter. 

We can find the how the coefficients a, and a, depend 
on the order parameters using a family of test functions of 
the form 

where "const" represents a normalization constant and is 
a parameter. The dependence of the reduced viscosities 6 ,  
= a, /x and i?, = a, /x on s, calculated with the aid of Eqs. 
(3.12)-(3.15) and (1.10), is shown in Fig. 3. 

Note that both coefficients a, and a, are negative for 
any value of s, so that their ratio is always positive. This 
means that in Couette flow the director of the nematic could 
have a steady-state orientation at an angle of 0, to the flow 
direction (without allowance for boundary effects) lo: 

tg2 eL=a3/aZ. 

The dependence of 0, on s is shown in Fig. 4. In a liquid 
crystal phase associated with an isotropic phase (i.e., if s 
= 0.49), the angle is 0, = 20". An increase in the order 

parameter (accompanied by an increase in the concentra- 
tion of the solution) reduces considerably the value of 0,; in 
the limit s - 1, we find that 0, - 0. 

CONCLUSIONS 

We have studied the reptational dynamics of long per- 
sistent molecules in a nematic solution. The results obtained 
are exact in the asymptotic limit L 5 I, I>d, i.e., in the case of 
semiflexible polymer chains. The final expressions (3.12) 
and (3.13), which relate the viscosity coefficients to the 
equilibrium properties of a solution, are generally valid not 
only in the case of persistent chains, but also for any semi- 

FIG. 4. Dependence of the Leslie angle 8, on the order parameter. 

FIG. 5. Dependences of the ratio a , /a ,  on the order parameter s for 
different values of L / I :  1) L / I  = 0; 2 )  L / I <  1; 3 )  L /I = ( L  / I )  .; 4 )  
L/l% 1 .  

flexible macromolecules with an arbitrary flexibility mecha- 
nism. The only "nonequilibrium" characteristic which de- 
pends strongly on the polymer structure (in particular, on 
the flexibility mechanism) is the effective diffusion coeffi- 
cient D * . 

We found that the ratio of the Leslie coefficients a,/a, 
for persistent macromolecules is always positive. This result 
is very different from that obtained for a nematic solution of 
extremely rigid chain molecules (I> L >d) .  l 2 , I 3  In the latter 
case it was found that the ratio a,/a, becomes negative even 
for ~ 2 0 . 5 3  (Ref. 12), as shown in Fig. 5 (curve 1).  It is 
known from Ref. 14 that if a,/a, < 0, then the Couette flow 
becomes unstable even at very low Reynolds numbers (see 
also Ref. 12). It is therefore interesting to determine the sign 
of the ratio a,/a, in the case when L-I, which represents 
the case intermediate between the two limits L 4 I and L B I 
already considered (this intermediate case is the one usually 
encountered in experiments). 

Application of similarity concepts (see Ref. 10) makes 
it possible to show that if the degree of orientational order is 
very high (s-. 1 ) , then the intermediate case L -I is equiva- 
lent to the case of semiflexible macromolecules (L > 1). Con- 
sequently, in the limit s- 1 the ratio a3/a2 should be posi- 
tive irrespective of the value of L/1. Figure 5 shows 
qualitatively the resulting dependence of a,/a, on s for dif- 
ferent values of L /I. If L /I is small (rod-shaped macromole- 
cules), then a,/a, is positive for s <s l  -0.55 or s > s, and 
negative for s,  < s <s,, where s, is close to unity. On the 
other hand, in the case of sufficiently large values of L /I the 
ratio a, /a2 is always positive. Consequently, there should 
be a critical value (L /I), at which there is a transition be- 
tween these two regimes (curve 3 in Fig. 5) .  

APPENDIX 

Equation (2.13) can be rewritten in the form 

The effective diffusion coefficient is clearly 
m 
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We shall consider the correlation function 

(f (O)h,(t)). (A31 

If we change the sign oft, the first factor in Eq. (A3) changes 
its sign, whereas the second remains unaltered because of the 
definition given by Eq. (2.12). Hence, we have the following 
symmetry relationship: 

Substituting Eq. ( A l )  into Eq. (A4) and using the trivial 
relationship 

we obtain 

Substituting Eqs. (AS), (A6), and (2.11 ) into Eq. (A2), we 
obtain the expression 

rn 

from which it follows directly that the coefficient D * is much 
smaller than the unrenormalized coefficient D. 

We shall calculate the correlation function in Eq. (A7) 
to second order in U. Without limiting the generality of the 
treatment, we can assume that 

J ~(n )d?n=o .  (A81 

Using the definition (2.12), we find that 

( h z ( 0 ) h , ( t ) ) = 2 j Q ( n , n ' l i ) U ( n ) U ( n ' ) # r ~ d 2 n ' ,  (A91 

where Q(n,nf It) is the density of the probability that the end 
of a chain has the orientation n initially and the orientation 
n' at a time t; the coefficient 2 in front of the integral is due to 
the fact that a chain has two independent ends. The function 
Q has to be calculated in the zeroth order, i.e., on the as- 
sumption that U = 0. We note in this connection that the 
change in the conformation of a long semiflexible macromo- 
lecule near one of its ends in a time t - r0 4 r,,, amounts to 
replacement of the end part of lengthy, with a new part of 
lengthy, (Fig. lb, where the displacement of the macromo- 
lecule along its axis is y, - y, ). The probability distribution 
for the quantities y, and y, is8 

P(yll yz(t)=(4n)-'"(Dt)-"y exp(-y2/4Dt), (A101 

where y = y, + y,. We therefore have 

where K(n,nlly) is the conditional probability that the end 
of a free persistent chain of lengthy has the orientation n' if 
the beginning of the chain is oriented along n. The function K 
satisfies the equations 

Substituting Eq. ( A l l )  into Eq. (A9), and also Eq. 
(A9) into Eq. (A7), we obtain the following expression 
after some transformations: 

D ' = D { I - 2  rp,i (n) d2n). 

where the function po is the solution of the system of equa- 
tions 

which has a unique solution on the basis of Eq. (A8). 

"Here and in what follows the temperature is assumed to be T = 1 and 
d 2n represents an element of a solid angle divided by 4r.  

"Here and in what follows we shall consider only a system which is spa- 
tially homogeneous. 
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