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Two- and three-dimensional electron vortices are studied, in which the curl of the canonical 
electron momentum is frozen in an electron fluid moving through a stationary uniform ion 
background. Conditions are found under which such traveling vortices can exist, and families of 
analytical solutions for traveling helicon vortices are constructed in two and three dimensions. 
The existence of an infinite-dimensional set of stable generalized 2D vortices is proved for the case 
in which the magnetic field has three nonzero components but depends on just two Cartesian 
coordinates. Plane helicon waves of finite amplitude are shown to be exact solutions of the 
electron MHD equations. A purely electron instability of such waves is shown to exist for 
arbitrary amplitudes. 

INTRODUCTION 

According to current ideas, strong plasma turbulence is 
characterized by the appearance of weakly interacting stable 
structures-solitons, discontinuities (in the case of col- 
lapse), and vortices. The difficulties in the theory of vortex 
turbulence are associated with the essential multidimension- 
ality of vortex motion and the variability of vortex structure. 

In order to distinguish the qualitatively different types 
of behavior in two- and three-dimensional objects, we will 
use the term "vortices" for localized traveling solutions 
which transport trapped particles over long distances with- 
out permitting their "own" fluid to mix with the surround- 
ing flow. The other type of localized propagating solutions 
we will call solitons. The latter can occur only in systems 
which are nonlinear and dispersive. For vortices dispersion 
does not play an essential role. This classification under- 
scores the importance of vortices in plasma transport pro- 
cesses. For stationary localized solutions the difference 
between vortices and solitons is less important, although 
there is still a difference in the way material moves. 

In the present paper we will discuss vortex motion in a 
cold electron fluid (thus neglecting finite-Larmor-radius ef- 
fects), assuming that the background ions are uniform and 
stationary. Such effects are important in systems in which 
there is substantial electron drift motion across the magnetic 
field (Hall effect), e.g., z-pinches,' plasma erosion switch- 
es,' and in some circumstances laser-produced coronas. 

It is well known that if we neglect thermal corrections 
the magnetohydrodynamic equations for each species of the 
plasma reduce to the statement that the curl of the canonical 
momentum pa = mava + (ea/c)A of that component is 
"frozen in" to the corresponding flow velocity v,, i.e., 

8 curl paldt=rot [v, curl p a ] .  

(Cross products and dot products are indicated in displayed 
equations by enclosing the two vectors being multiplied in 
square brackets and parentheses, respectively.) In electron 
magnetohydrodynamics (EMHD) we have v, 
= - (c/4ane)curl H, where n = const is the plasma den- 
sity, and Eq. ( 1) can be written in the form 

dQldt=curl [ Q  curl HI, Q--H-AH, (2)  

where the spatial coordinates have been nondimensionalized 
using c/w,, as a scale length (here w,, = (4n-ne2/m) is 
the plasma frequency], the magnetic field H has been scaled 
with some arbitrary H,, and the time t with the the inverse 
gyrofrequency mc/eH, . 

Formally speaking, the present paper is devoted entire- 
ly to an investigation of the properties of the solutions of the 
EMHD equation (2).  In Sec. 1 we study the general features 
of propagating solutions of Eq. (2) .  Our interest in such 
objects arises mainly from their importance in particle and 
heat transport processes, especially in the case of vortices. 
We show that in the absence of an external magnetic field 
only vortex solutions are possible, for which the frozen-in 
quantity fl -- H - AH vanishes identically in the region of 
free flow outside the separatrix, indicating that such vortices 
are localized exponentially within a region of order unity (of 
order c/wp, in dimensional units). In Sec. 2 we demonstrate 
the existence of such vortices by explicitly constructing a 
three-parameter family of localized solutions with spherical 
separatrices. These solutions are related to the spherical 
Hill's vortex3 in ideal fluids, though they are considerably 
more complicated. 

We obtain necessary conditions for the existence of so- 
lutions in the presence of a uniform external magnetic field. 
In particular, it is found that three-dimensional solitons are 
possible only for propagation at an angle with respect to the 
external magnetic field. 

Since the opportunities for doing anything analytically 
are very limited in the three-dimensional case, particularly 
in regard to the question of stability, the theory of electron 
vortices up until now has treated two-dimensional flows in 
the ( x ,  y )  plane with the the magnetic field directed parallel 
to the z axis and no quantities depending on z (Refs. 4, 5). 
This geometry is degenerate for two reasons: it is two-dimen- 
sional (a /az = O), and the helicon frequency of the pertur- 
bations vanishes, since there is no variation parallel to the 
magnetic field. 

A possible next step in the direction of a three-dimen- 
sional theory, including stability, is the study of two-dimen- 
sional systems generalized in such a way that the magnetic 
field and the current density have all three components but 
depend on only two spatial coordinates. In Sec. 3 the equa- 
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tions of generalized two-dimensional EMHD are derived 
and traveling vortex solutions are obtained from them. It is 
natural to call these helicon vortices, just as in the three- 
dimensional case. 

Section 4 is devoted to the question of the stability of 
vortices and electron motions described by Eq. (2)  and its 
implications for flows with length scales 1 )  1 (in dimension- 
al variables, 1 )  c/op, ). In this limit the electron inertia can 
be neglected and the frozen-in quantity is the magnetic field 
itself: 

aHIBt=curl [H curl HI. ( 3 )  

We look at stability by analyzing the integrals of motion, 
which for Eq. (2)  are the energy, 

1 1 w =, 5 (Hz+ (curl A)') d3r = HR d3r, (4 )  

the canonical momentum, 

1 P = - j  (ACcurl ~ ) d ' r = - J  [rR]d3r, (5)  
2 

the canonical angular momentum, 

M = -) [r,A f curl H]d3r = 1) [r, [ a ]  ]d3r, 
3 (6)  

and the conserved frozen-in integrals, which are the fluxes of 
the frozen-in quantity fl within the tubes generated by dis- 
placing any closed contour in the streaming direction with 
the electron velocity. In the limit where the electron inertia 
vanishes, fl is replaced by H in Eqs. (4)-(6). 

The best way to find stable vortices is by using the meth- 
od of A r n ~ l ' d , ~  first employed in ideal hydrodynamics, but 
carried over to EMHD practically without modification. 
(Ideal hydrodynamics is a special case of EMHD; in the 
limit I<  1 Eq. (2)  goes over to the equation for the conserva- 
tion of vorticity.) The method is essentially a study of the 
energy (4)  at a conditional extremum for fixed values of the 
frozen-in conserved quantities. Examination of a narrow 
class of variations 

fin= curl [En], div z=0. (7) 

which conserve an infinite number of the frozen-in integrals, 
increases the chances of obtaining a conditional extremum 
W, giving rise to a large (infinite-dimensional) set of stable 

We have been able to prove three-dimensional stability 
in EMHD only with zero electron inertia (Eq. ( 3 )  1 and an 
arbitrary constant field H = (0, 0, Hz ( x ,  y )  ), which, how- 
ever, is marginally stable against perturbations with 
a /dz = 0. Arnol'd's method works better in applications to 
the generalized two-dimensional geometry, where we have 
found a broad class of stable circular flows resembling a 
pinch, as well as monopoles and traveling dipoles. 

In Sec. 5 we discuss several aspects of degeneracy in 
EMHD. In contrast with ideal fluids, Eq. (2)  admits nontri- 
vial linear waves superposed on a uniform external field H,. 
Linearizing Eq. (2) about H, yields the dispersion relation 
for helicons, 

Since the nonlinearity in the frozen-in equation has a rota- 
tional character, it drops out in the one-dimensional case 

and the exact solution is the same as the linearized one. This 
means that plane helicon waves of finite amplitude satisfying 
the dispersion relation (8)  are exact solutions of Eq. (2).  
This was pointed out previously7 for the special case klJH,. 
It is found that these waves are unstable against two- and 
three-dimensional perturbations (for infinitesimal pertur- 
bations this follows from the form of the dispersion relation 
(8) ,  which allows three-wave decay processes). This means 
that in the nonlinear stage of the instability the solution can 
evolve into a two- or three-dimensional object. 

1. GENERAL PROPERTIES OF LOCALIZED PROPAGATING 
SOLUTIONS 

We consider three-dimensional solutions of Eq. (2)  
propagating with some velocity u, i.e., H = H ( r  - ut), 
a /at = - u-V. For such solutions Eq. (2)  takes the form 
curl [fix (u + curl H ) ]  = 0, whence we obtain 

[R, u+ curl Hl=Vv. (9)  

We assume that the magnetic field is localized as a result of 
the convergence of the energy integral (4).  This means that 
H has to fall off at infinity faster than r - 3'2. It follows from 
(9)  that p ( r )  -+0 as r+ W .  The geometrical meaning of Eq. 
(9)  is that the streamlines of the divergenceless fields fl and 
u + curlH lie on a level surface of p ( r ) ,  which is constant 
along these lines. Since curl H -+ 0 as r -+ w , from any point 
on this surface outside some closed set bounded by a separa- 
trix it is possible to get to infinity along a line of the field 
u + curl H. Consequently g, = 0 at every such point (out- 
side the separatrix). Note that to within a sign the field 
u + curl H is the velocity of electrons coming in from infin- 
ity in the frame of reference moving with the localized solu- 
tion we are studying. The existence of the separatrix implies 
the existence of some "forbidden" region, where the current 
lines of external electrons cannot penetrate and which con- 
tains the current lines of trapped electrons translating to- 
gether with the solution. In this case the solution describes a 
vortex. Note the necessary condition for the existence of a 
vortex: Icurl H > u at least at one point. 

Thus outside the separatrix (for vortices) or through- 
out all of space (for solitons) we have g, = 0, whence we 
obtain fl = H - AH = 0. This means that there are no lo- 
calized three-dimensional helicon solitons (in the absence of 
a magnetic field), and vortices are exponentially localized in 
a region which extends over a distance of order unity ( d m p ,  
in dimensional variables). 

It is also noteworthy that the frozen-in quantity vanish- 
es identically outside the separatrix of the magnetic field. 
This implies that the magnetic field has a singularity near the 
separatrix, where the higher derivatives must experience a 
discontinuity. The same conclusion applies to the vortices 
moving in the external uniform magnetic field (see below). 
It follows that even though the solutions obtained by explicit 
matching (cf. Ref. 8, etc.) are not analytic, this is not a 
shortcoming of the method but a distinctive property of vor- 
tices. 

We now treat the case of localized solutions propagat- 
ing in a nonuniform external magnetic field H,. In place of 
(9)  we obtain the analogous expression 
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We first assume ullHo. In that case also e, vanishes identical- 
ly, outside a possible separatrix, whence 

Q=h cur1,H. h=Ho/u=const. (11) 

Equation ( 1 1 ) can be rewritten in the form 

(curl curl-h curl +l)H-- (pi curl -1) (pzcurl -1)H=O, 

p1,2= (h* (h2-4) ") /2. 
(12) 

The general solution of Eq. ( 11 ) is the sum of two force-free 
fields: 

H=Hi+H2; Hi=pl curl HI, Hz=p2 curl Hz. 

In the soliton case, Eq. (12) is satisfied throughout all of 
space; it follows that there can be no solitons that propagate 
parallel to an uniform external magnetic field (in this limit 
the equations are linear). We can show that the solutions of 
(12) are nonlinear (these are discussed in Sec. 5) by multi- 
plying ( 12) by exp(zlr*r) and integrating over all of space, 
which yields lil 1 = k + k -'>2; consequently,p, andp, are 
real. The force-free fields H ,  and H, themselves have either 
infinite or vanishing energy.4 

In the vortex case the Fourier method fails and the con- 
dition \A 122 need not hold. For lil I < 2 the complex force- 
free fields may still be localized (JHt2d3r  = 0, O<J 
( ReH,,, ) 'd 'r < w ) . In this case, since p , and p2 are com- 
plex conjugate, the sum H = H, + Hz may still be chosen 
real. Thus the necessary condition for the existence of vorti- 
ces propagating parallel to the external magnetic field is 
u > H, /2 (in dimensional variables, u > H, / ( 16rmn ) I/'). 

In Sec. 2 we show that this condition is also sufficient. 
For solutions propagating at an angle to the external 

magnetic field (uXH, #O), the function e, in Eq. ( 10) is not 
localized and there are no topological limitations on the exis- 
tence of helicon vortices and solitons. 

2. THREE-DIMENSIONAL TRAVELING VORTICES 

In this section we derive a solution describing a toroidal 
vortex propagating parallel to a constant magnetic field. In 
this way we will prove the existence of three-dimensional 
traveling vortices in EMHD and verify the conclusions of 
the preceding section "experimentally," i.e., for a specific 
example. 

The solution is axisymmetric, so the magnetic field can 
be represented in the form 

H=r-'[V$(r, z, t) ,  ep]+r-lf(r, Z, t)e, ,  

where r, p, z are cylindrical coordinates and e, is the unit 
vector in the azimuthal direction. Substituting this expres- 
sion in (2) we obtain two scalar equations: 

d($-A$) /dt=O, 
dr-2(f-Af)ldt=r1[V(r-ZA$), V($-A$)],, 

dldt=a/at+r-I [ Vf, V I,, A=r(a/ar)ri(a/ar) +a"az2. ( 13) 

For a vortex propagating parallel to the z axis we have 

It follows from Eqs. ( 13) that 

where F and P ar.: arbitrary functions. To construct solu- 
tions we employ a method widely used recently for finding 
vortex  solution^.^ We choose functions Fand Pin such a way 
that Eqs. (14) are linear inside and outside the sphere 
R = R,. We find solutions inside and outside the sphere and 
then join them, imposing the condition that the functions $ 
and f be continuously differentiable and that? be constant 
on R = R, (the functions F and P can have jumps only on 
surfaces of constant? ) . Let 

Then for R > R, 

These equations have the solution 

where k, and k, are the corresponding roots with positive 
real part, and (r/25)1/2K312({) is the modified spherical 
Bessel function of the second kind. For b2<4, the roots k, 
and k, would be purely imaginary, so we must have b2 < 4. 
Since k, = k: andx(f *) = x*( f )  hold, fand $must bereal 
functions. The function X vanishes exponentially at infinity, 
so we have f+0  and $-+ - bu?/2. For r +  w the magnetic 
field satisfies Hz = d$/rddr = H,, so we must have 
Ho= - b ~ .  

For R < R, we have 

where j, ( f )  = (r /2f)  " 2 ~ 3 1 2 ( f )  is the spherical Bessel 
function of the first kind. 

It is possible to join the solutions ( 15) and ( 16) for 
given R,, b, and c by setting u = - H, /b and choosing the 
constants Re A, Im A, D l ,  D, , and d so that all the matching 
conditions are satisfied. We will not write down the resulting 
solutions here because they are so messy. It should be noted 
that 1 b I = I H, /u 1 < 2, in complete agreement with the con- 
clusions of Sec. 1, and that b can be chosen arbitrarily subject 
to this restriction. For the special case b = 0 the solution 
describes vortices with H, = 0. In this case outside R = R, 
we have a$ = $ and af =f, i.e., H = AH. 

since?= const = 0 in these solutions for R = R,, the 
functions ~ f i  and consequently a$ are continuous. Thus 
the magnetic field and current density associated with the 
vortices are continuous, but there is a jump in the second 
derivatives of the magnetic field. 

Vortices propagating obliquely to the magnetic field are 
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not axisymmetric, which renders the task of finding analyti- 
cal solutions practically hopeless. 

3. TWO-DIMENSIONAL HELICON VORTICES 

The case of magnetic field configurations with all three 
components, depending on just two of the three spatial co- 
ordinates, is intermediate between three-dimensional and 
conventional two-dimensional geometries. This geometry, 
which we refer to as "generalized two-dimensional," also 
admits stable vortex solutions, the class of which is larger 
than in the ordinary two-dimensional case.5 In this section 
we derive a set of generalized two-dimensional EMHD equa- 
tions from (2) under the assumption that /az = 0 and find 
the corresponding traveling helicon waves. 

In this limit the magnetic field can be written in the 
form 

where a and h are the z-components of the vector potential 
and the magnetic field strength. Substituting (17) in (2),  we 
obtain the system of equations 

d0/dt+(h, 0) =0, 0=a-Aa, 

where A is the Laplacian operator and where for conciseness 
we have written (A, B) =e,*VA xVB. With the idea in mind 
of studying two-dimensional stability (Sec. 4), we write the 
integrals of motion for the system ( 18): 

W2= ( I / , )  5 (ha-o0) d% 

where F i s  an arbitrary function. 
We can investigate the general properties of two-dimen- 

sional traveling solutions just as in the three-dimensional 
case. Avoiding detailed discussions, we merely note that the 
situation in two dimensions is analogous to that in three, 
with the exception that when an external magnetic field is 
present, localized states can propagate only parallel to it. It 
follows that two-dimensional helicon solitons can not exist. 
Below we prove the existence of vortices by constructing a 
specific family of solutions. 

It follows from ( 18) that a vortex propagating in the x- 
direction with velocity u satisfies 

We can obtain a solution to these equations by the same 
method as in the previous section. Letting F and P be differ- 
ent linear functions inside and outside the circle r = r,, 
when there is no external magnetic field we find a dipole 
solution in the form 

(c,r-'1, (k,r) 4- c,r-'I, (k,r) +c,) y ,  r<ro 
a = {  

clr-'K, (r) y ,  r>ro ' 

It is necessary to supplement this solution with a system of 
algebraic equations for the parameters c,, d,, k, found by 
matching the functions a and h and their derivatives at 
r = r,. The result is a three-parameter family of two-dimen- 
sional traveling helicon vortices. As in the three-dimension- 
al case, outside the separatrix r = r, the "generalized vorti- 
cities" 0 and w vanish identically. 

Similarly, we can also construct a vortex solution in the 
presence of a uniform external magnetic field for u > H,  /2. 
As in the three-dimensional case, the magnetic field and cur- 
rent density are continuous in traveling dipole vortices. 

4. STABILITY OF EMHD VORTICES AND FLOWS 

The linear stability of current configurations against 
helicon perturbations was first treated in Ref. 9. The most 
suitable technique for proving stability is by studying their 
integrals of motion. According to a theorem of Lyapunov, a 
sufficient condition for stability of a system is the existence 
of a conditional absolute extremum of any integral of the 
motion when an arbitrary number of other integrals of the 
motion are maintained constant. In the method of Arnol'd6 
all the frozen-in integrals are fixed. The method is conven- 
ient because the most general variation of the field can be 
written explicitly in the form of a series 6fl + S 2 a  + . . ., 
where the first variation is given by Eq. (7)  and the others 
are defined by 

GNP=curl [g. 6"-'Q]/N. 

To investigate the extremum it is enough in practice to calcu- 
late the first two terms of the series. 

In analogy to the ideal fluid case,6 the first variation of 
the energy integral (4) vanishes for steady flows satisfying 
curl ( a x c u r l  H) = 0, as may easily be seen through inte- 
gration by parts. Thus for the Hamiltonian to be extremal it 
suffices that the second variation S2 Wbe positive or negative 
definite. We treat the stability of Eqs. (2 )  and (3)  separate- 
ly. 

Stability of EMHD flows without the effect of electron inertia 

We consider a perturbation of the Hamiltonian 
w = 4 JH 'd 3r together with an arbitrary three-dimensional 
field variation of the form 

6H= curl [ZH] , 62fI=i/z curl [@HI, div g=0; (23) 

In the general case expression (24) is nondefinite, but for an 
arbitrary time-independent field 

we have 

6'w=('/,) J [ (HV)ElZd%30, (26) 

where equality is attained only in the case a g/dz=O, i.e., for 
two-dimensional perturbations. Equilibrium is irrelevant 
for these, since any field of the form (25) is an equilibrium 
field if one neglects electron inertia. Taking into account the 
z-dependence implies that helicons transporting a positive 
value of the energy are excited. Thus electron flows with 
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straight parallel magnetic field lines are stable in three di- 
mensions if they give rise to a minimum of the energy for 
fixed values of the frozen-in integrals. We emphasize that 
this result applies to electron flows for which the scale 
lengths in both the initial and perturbed flows are large. 

We now consider the case of generalized two-dimen- 
sional geometry under exactly the same assumptions, i.e., 
the system of equations arising from ( 18) for I <  1: 

aa/dt+ ( h ,  a )  =0, ah/&+ (a, A a )  =O. (27) 

The following quantities are conserved by Eqs. (27): 

P I  = j hr  d2r, rn, = j  hr2 h r ,  

i, = F ( a )  d2r,  j ,  = hF  (a) d2r. (30) 

It is not difficult to find the general form of the variation 
that conserves all the frozen-in integrals (30). This is ac- 
complished most simply starting from the three-dimensional 
variation (23), if we choose an infinitesimal displacement 
consistent with 6' g/az = 0, analogous to ( 17) : 

Then 

6 a = ( a ,  a ) ,  6 h = ( a ,  h)+(P, a ) ,  

s2a=(a ,  6 a ) / 2 .  6'h= [ (a,  6 h )  +(p, 6 a ) ]  12. (31) 

Using ( 3 1 ) in analogy with (24) we calculate the second 
variation') of the energy (28) for a steady flow satisfying 
(h,a) = (a,Aa) = 0: 

It is noteworthy that the quantity h drops out of (32), i.e., 
the extremal properties of the Hamiltonian w ,  over the class 
of frozen-in flows depend only on a(x, y) .  

We mention several consequences of (32) : 
1. An obvious sufficient criterion for two-dimensional 

stability is that the gradients of a and ha  point in the same 
direction (it follows from time independence that they must 
be parallel). This is not a neckssary condition. 

2. We consider the case of circular stationary vortices, 
a = a ( r )  and h = h(r) .  For such flows (32) goes over to 

Fourier-expanding the periodic (in p) function a ( r , ~ ) ,  we 
have 

which shows that (33) is positive definite. Consequently any 
stationary circular vortex solution a = a (r) ,  h = h ( r )  of 
Eqs. (27) is stable, since it minimizes the energy at fixed 
values of the frozen-in integrals. 

3. The one-dimensional case a = a ( r ) ,  h = h(r )  de- 
scribes a set of plane sheared magnetic surfaces perpendicu- 
lar to the x axis: H = (0, - a l (x) ,  h (x)  ). Since the two- 
dimensional [i.e., (x, y )  ] stability does not depend on h, it is 
identical with that of the field (0, - a l (x) ,  0),  which by 
(26) is three-dimensionally stable. By the same reasoning, 
this configuration is (x, z)-stable. This evidently constitutes 
an example of three-dimensional stability of a field with 
straight field lines (including those in which shear is pres- 
ent ) derived from Eq. ( 3 ) . 

Thus generalized two-dimensional EMHD admits an 
infinite-dimensional class of stable stationary vortices. The 
circular stable vortices are "parametrized" by the two func- 
tions a ( r )  and h(r) .  

The existence of stable stationary monopole vortices 
implies that stable traveling dipole vortices also exist. This 
can be shown by taking account of momentum conservation, 
as was done by Filippov and Yan'kov.' 

Stability of EMHD flows including the effect of electron 
inertia 

This problem is substantially harder. The difficulty is 
associated at least with the fact that even in the ideal-fluid 
limit of Eq. (2)  not one stable localized three-dimensional 
flow is known. We discuss the two-dimensional stability of 
Eqs. ( 18). Similarly to (3  1 ), the field variations that con- 
serve the frozen-in integrals (2)  take the form 

s @ = ( a , @ ) ,  6 0 = ( a ,  o )+(p,o) .  

In fact the stability theorem can be proved in this case with- 
out recourse to the variational method. Expressing the field 
a as a superposition of line vortices by transforming with the 
modified Bessel function of the second kind, 

a ( r )  = ( 2 n )  -' J 0 ( r ' )  KO ( 1 r-rf 1 ) d 2 r f ,  

we bring the energy integral ( 19) into the form 

Let us considerz-pinch-like flows with h = 0, perturbed 
in such a way that none of the frozen-in integrals change. If 
all the I, integrals defined in (20) are invariant, then the 
allowed changes in 8 reduce to incompressible deformations 
of the regions corresponding to different values of 8. For 
such variations the first term in (34), being zero, can only 
grow, while the second can be interpreted as the energy of 
interaction of 8 "charges" with a monotonic interaction po- 
tential K O(r). From this we conclude, in analogy to the re- 
sult of Filippov and Yan'kov,' that circular flows with 
a = a ( r )  and h = 0 are two-dimensionally stable if the quan- 
tity 

10 ( r )  1 = 1 u ( r )  -a" ( r )  -ar ( r )  /rl 

decreases monotonically. Note that, in contrast to ordinary 
two-dimensional EMHD with a -0 (Ref. 5 ), these stable 
flows are obtained for fixed values of the frozen-in integrals 
along with an energy minimum, not a maximum. 

The topic of two-dimensional helicon instability may be 
of independent practical interest, since numerical solution of 
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the linearized problem'0 shows that three-dimensional 
(k, #O)  stability follows from two-dimensional (k, = 0)  
stability for current configurations of the z-pinch type. 

Returning to the three-dimensional stability problem, 
we remark that when electron inertia is included in the treat- 
ment not all fields of the form H = (0, 0, h (x,y) ) are station- 
ary, but only those for which (h,Ah) = 0. Among these are 
the circular vortices. If the quantity Iw ( r )  I decreases mono- 
tonically they are (x, y)-stable, maximizing the energy.' If 
the diameter of the vortex satisfies I>  1, then, as we have 
seen, it minimizes the energy with respect to three-dimen- 
sional perturbations when we neglect inertial corrections. 
Hence inclusion of even a small nonvanishing electron iner- 
tia changes the relative extremum given by (26) into a sad- 
dle point, and these two-dimensional perturbations can be- 
come unstable against three-dimensional perturbations 
inclined at a small angle ( - I  - ' for 1% 1 ) with respect to the 
magnetic field. 

5. FINITE-AMPLITUDE HELICON WAVES 

In this section we discuss the behavior of plane helicon 
waves propagating in a uniform magnetic field H,. Such 
waves are exact solutions of Eq. (2)  and may therefore have 
any amplitude. We discuss several degenerate cases for 
which the waves do not interact, and consider their stability. 

If we include the uniform magnetic field H,, Eq. (2)  
may be rewritten as follows: 

0 (H-AH) /at+ ( H ,  V )  curl If-curl [II-AH, curl HI.  

(35) 

The solutions of the linearized form of (35) are plane heli- 
con waves, the dispersion relation of which is given by (8) .  If 
the magnetic field is a function of only one spatial variable, 
then the nonlinearity in (35) vanishes and the exact equa- 
tion reduces to the linearized one. This shows that linear 
helicon waves propagating rectilinearly, or any combination 
of such waves propagating parallel to one another, consti- 
tutes an exact solution of Eq. (2).  

From the linear part of (35) it can be seen that for a 
helicon with wave vector k we have 

w ( k )  (1-!-k2) 
curl H = - H = skH. 

(kH0) 
where s is the sign on the right hand side of (8) .  By utilizing 
this property we can identify one more case in which plane 
waves do not interact with one another even though (35) is 
nonlinear. If we superpose helicons having identical values 
ofs and of the wavenumber k (the absolute value of the wave 
vector), then the sum, like the individual waves, satisfies 
curl H = sk H, and the nonlinearity in (35) vanishes. To this 
we can moreover add waves with the same value of s, whose 
wavenumber is equal to l/k. If we denote the field of the 
waves with wavenumber k by H I  and the field of those with 
wavenumber l/k by H, , then we have 

and it follows that the waves do not interact. This degener- 
acy turns out to be useful for investigating the stability of 
such waves. 

In investigating the stability of the helicons we start by 
assuming that the wave amplitude is small in comparison 
with H,. According to perturbation theory, we have in this 
case a three-wave decay instability. ' I  Analysis of the disper- 
sion relation (8)  reveals that for any helicon (w,,k,), we 
can find two others, ( a , ,  k, ) and (w,, k, ), such that the 
decay conditions 

0 ~ = 0 , + 0 ~ ,  ko=ki+kz, IuoI>I 0 1 1 ,  1021, 

are satisfied, i.e., a small-amplitude helicon is unstable 
against decay. Note that the matrix element of the interac- 
tion, 

(where the z axis is perpendicular to the plane of k,, k , ,  k, 
and we have s = 1 ) vanishes in the degenerate case consid- 
ered above. 

Now suppose that the wave amplitude is not small. 
Consider the set of waves k, and k, that are nearly degener- 
ate with respect to the initial wave. In this case the waves 
interact weakly (not because the amplitudes are small, but 
because we are close to the degeneracy), and using perturba- 
tion theory we can obtain exactly the same results as in the 
small-amplitude case." In order to convince oneself that 
close to the degeneracy k, and k, can be found which satisfy 
the decay condition, it suffices to consider the case in which 
&, k, , and k, comprise an almost-equilateral triangle whose 
plane is perpendicular to that of the vectors H, and k,. 

Thus helicons of arbitrary amplitude derived from Eq. 
(2)  are unstable. For waves of finite amplitude (H- H, ) the 
maximum growth rate is on the order of the frequency. 

When these instabilities evolve, objects of higher di- 
mension can develop, e.g., helical solitons. Plane waves can- 
not decay into vortices because the topology of fi is con- 
served due to freezing-in; in a plane helicon the lines of the R 
field are unentangled spirals, while in a vortex within the 
separatrix lines of fi are constrained to lie on closed surfaces 
of constant q, (cf. Eq. (9)  1, which, in the general case, are 
toroidal.I2 

CONCLUSION 

We have thus considered several particular solutions of 
the EMHD equation in a uniform plasma, which claim a role 
in strong helicon turbulence. We have found solutions de- 
scribing two- and three-dimensional traveling vortices with 
and without an external magnetic field. The existence of 
three-dimensional helicon solitons propagating at an angle 
to the external magnetic field remains an open question. 

The qualitative method developed in Sec. 1 for analyz- 
ing localized traveling-wave solutions has proven useful in 
determining the necessary conditions for the existence of 
such solutions (Secs. 1 and 2 show that these conditions are 
also close to sufficient) and in classifying them into vortices 
and solitons. Other systems described by a vector freezing-in 
equation can be treated similarly. 

The results of Sec. 4 show that by virtue of the existence 
of a finite number of conserved quantities, the EMHD equa- 
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tion admits an infinite-dimensional class of stable stationary 
vortex solutions. However, it is not possible in practice to 
prove that traveling vortices (a  category with important ap- 
plications), are stable, especially in three dimensions. 

The purely electron instability of finite-amplitude heli- 
con waves found in Sec. 5 may turn out to be important in 
problems of ponderomotive'3 and ionizational l4 helicon self- 
focusing. 

"In calculating this quantity we used the formula for integration by parts, 
l (a ,b)cd  'r = la(b,c)d2r,andtheJocobiidentity ((a,b),c) + ((b,c),a) 
+ ( (c,a),b) GO. The infinitesimal displacement quantities a and P are 

assumed to vanish sufficiently rapidly at infinity. 
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