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The motion of two-level atoms in the field of two traveling light waves is studied for the case of 
atom-field interaction times much longer than the radiative relaxation times. It is shown that the 
dynamics ofthe atoms is described by the Fokker-Planck equation, whose coefficients (the 
radiative force and the momentum diffusion tensor) are functions of the atomic velocity and 
position. It is shown that, in a field of arbitrary form, the radiative force and diffusion tensor can 
be represented as series containing both spatially homogeneous and oscillating terms. The 
contributions of the nonlinear multiresonance atom-field interaction processes to the radiative 
force are investigated. The resulting theory is used to find the time required for atoms to become 
localized at the nodes or antinodes of a low-intensity standing wave. The relations connecting the 
radiative force for a field of two plane waves to the forces acting on an atom in a running plane 
wave, a standing plane wave, and a Gaussian beam are determined. 

1. INTRODUCTION 

The development of methods of controlling the motion 
of atoms with the aid of the resonant laser radiation pressure 
has recently stimulated the formulation of the theoretical 
principles of the stochastic dynamics of atoms in a resonant 
light field. Here and below we use the term "stochastic dy- 
namics" to describe the motion of atoms for atom-field inter- 
action times much longer that the radiative relaxation times 
for the atomic levels. For such times the radiative force on 
the atom is always responsible for changes in its resonant- 
radiation field, while the fluctuations of the momentum of 
the atom are responsible for the diffusion of the atom in 
momentum space. 

Thus far, stochastic dynamics has been studied most 
fully in the light-field configurations of traveling and stand- 
ing waves. These field configurations have played an impor- 
tant role in the investigation of a number of kinetic effects, 
on the basis of which there have been developed such new 
methods of controlling atomic motion as velocity mono- 
chromatization of atomic ensembles, the focusing and defo- 
cusing of atomic beams, and longitudinal and transverse ra- 
diative cooling of atomic beams to temperatures two to three 
orders of magnitude smaller than the temperature of liquid 
helium. ' 

But the one-dimensional light-field models thus far in- 
vestigated (traveling and standing waves) are found to be 
inadequate for the analysis of such methods, presently under 
study, of controlling atomic motion as collimation and com- 
pression of atomic In these methods light fields 
containing noncollinear waves are used. Accordingly, of im- 
portance in investigations of the stochastic dynamics of 
atoms is the behavior of the atomic motion under conditions 
when the interaction with the field depends not on one com- 
ponent of the velocity, as in the case of the one-dimensional 
field, but on the total atomic velocity vector. The solution to 
the present problem naturally cannot be obtained through a 
direct generalization of the theory in the case of the one- 
dimensional field, since because of the saturation effect, the 
contributions of the individual waves to the change in the 
momentum of the atom are not additive. 

The main aim of the present paper is to investigate the 

stochastic dynamics of atoms in a light field produced by two 
plane waves propagating in arbitrary directions. The results 
of the investigation show that the stochastic dynamics of an 
atom in the field of the plane waves is determined by the 
atomic-velocity-vector-dependent multiresonance nonlin- 
ear atom-field interaction processes. 

Besides this objective, the study of the motion of an 
atom in the field of two plane waves is of interest for the 
establishment of the relation between the forces acting on an 
atom in such physically important light-field configurations 
as a plane traveling wave, a plane standing wave, and a light 
ray. As is well known, in a plane traveling wave the radiative 
force, which has the meaning of a light pressure force, does 
not depend on the location of the center of mass of the 
a t ~ m . ~ - ~  On the other hand, in the case of a plane standing 
wave the expression for the radiative force contains, besides 
a spatially homogeneous term, terms that oscillate at the 
wavelength of the field.'.' And in the case of a light ray the 
expression for the radiative force contains a spatially homo- 
geneous longitudinal component (a light pressure force) 
and an atomic-position-dependent transverse component 
(the gradient f ~ r c e ) . ~  Thus, in the field configurations in 
question the radiative force is determined by qualitatively 
different relations. At the same time all these types of fields 
can be considered to be particular cases of the field produced 
by two plane waves. Accordingly, the study of the force for 
the field consisting of two plane waves allows us to study 
how the general relation for the radiative force goes over, as 
the angle between the two plane waves is varied, into the 
relations determining the forces for the plane traveling wave, 
the plane standing wave, and the light ray. 

As an example of the application of the equation of mo- 
tion of an atom in the field of two plane waves, below we 
present for the first time (as far as we can determine from the 
literature) an estimate for the time of localization of an atom 
at a node or antinode of a weak standing wave. 

The possibility of localizing an atom in a region with 
dimensions of the order of the wavelength of the field has 
been pointed out before by L e t o k h ~ v . ~  The first indirect ex- 
perimental proof of the localization of atoms at the nodes or 
antinodes of a standing wave was recently published by 
Prentiss and Ezekeil.1° In the present paper we show that the 
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physical cause of the escape of atoms initially localized at the 
nodes or antinodes of a weak standing wave is the diffusion 
of the momenta of the atoms in the radiation field. At physi- 
cally reasonable values of the standing-wave intensity, the 
momentum diffusion limits the time of localization of the 
atoms at the nodes or antinodes of the field to a value in the 
range from 0.01 to 0.1 sec. 

2. BASIC RELATIONS 

We shall assume that a two-level atom resonantly inter- 
acts with the field of two plane running waves of the same 
frequency w and amplitude Eo, propagating in the directions 
of the unit vectors el and e, (k, = elk, k, = e,k, k = w/c): 

E=eEo cos (k , r -o t )  +eEo cos(k,r-wt). (1) 

For the two-level atom model to be applicable, we assume 
that the waves are linearly polarized in the direction of the 
unit vector e = ex, perpendicularly to the plane, yz, contain- 
ing the wave vectors k, and k,. As they axis we choose the 
line symmetrically located with respect to the vectors kl and 
k, by setting kley = k,ey = k cos p (Fig. 1 ). Let us assume 
that the lower level of the atom is the ground level, and that 
the upper level spontaneously decays to the ground level at a 
rate 2y = 4d 2wi /3#ic3, where d is the matrix element of the x 
component of the atom's dipole moment and w, is the fre- 
quency of the atomic transition. 

For the description of the motion of the atom in the field 
( 1 ) we shall use the atomic density matrix in the Wigner 
representation pap =pap (r,p,t), where a, 8 = 1, 2. The 
equations describing the evolution ofpap (r,p,t) in the stan- 
dard rotating-wave approximation, after the substitution 

p2,-+pz1 exp(-iQt+iky cos cp), Q=o-w,, 

which allows us to eliminate the explicit time dependence 
from the equations, has been made, are the following (see, 
for example, Refs. 4-6 and 8) :  

where 

g=dEo/2fi, a=sin rp, b=cos cp, 

and n is the unit vector for determining the direction of prop- 
agation of the spontaneously emitted photon. 

At the times t)  y-' of interest to us, the atomic density 
matrix, considered on a scale larger than the photon momen- 
tum fik, is a smooth function of the atomic m ~ m e n t u m . ~  

FIG. 1 .  Propagation geometry for the plane waves ( 1 )  and the two-level 
scheme of interaction of an atom with a light-wave field (b). 

Therefore, the equations (2)  can be expanded in series in 
powers of fik. Then introducing the real Wigner function 

w=pt1+p22 

and Wigner-Bloch functions 

u=pti-pzz, C = P Z ~ + P ~ Z ,  i ~ = ~ z i - ~ i z .  

which are convenient functions for the investigation, we ob- 
tain from (2) the equations 

d d a 
- w=-2hkgb cos (akz)  - s+2fikga sin (akz)  - c 
d t  aPu a PZ 

d - u=2y (w-u) -4g cos (akz)  s t . .  . , 
d t  

(3b) 

d - s = (Q-bkv,) c+4gu cos (akz)  -7s 
d t  

d  
-2Rkgb cos (akz)  - w+. . . , 

~ P V  

where 

i=z, y, z; ar+='/a, all,=azl=z/5. 

3. KINETIC EQUATION 

In the equations (3) the terms containing the momen- 
tum derivatives are, as compared to the other terms, of the 
same order as E = fik /Ap, where Ap -- My/k is the charac- 
teristic momentum range within the limits of which the atom 
interacts with the resonance radiation. Using the value of the 
spontaneous emission rate y z d  2~;/fic3, the value of the 
matrix element of the dipole moment d = er,, and the rela- 
tion between the optical transition frequency w, and the 
Bohr radius r,(w,zfi(m, r,) - I ) ,  we find that the small pa- 
rameter is of the order of 

where a is the fine structure constant, me is the electron 
mass, and M is the mass of the atom. 

In conformity with the smallness of the terms contain- 
ing the momentum derivatives, the equations (3)  go over in 
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the kinetic stage of the evolution (i.e., for t)  y-') into the 
kinetic equation describing the classical motion of the atom. 
To establish the form of the classical kinetic equation, let us 
consider the equations (3) in increasing orders in the small 
parameter E. In the zeroth approximation in E, it follows 
from (3a) that the function w satisfies the phase-density 
conservation equation: 

For the subsequent analysis of the classical limit of the 
equations (3), we shall use Bogolyubov's idea, according to 
which the rapidly relaxing (relaxation time -y-') func- 
tions h = u, c, and s should, in the kinetic stage of the evolu- 
tion, be regarded as functionals of the distribution function 
w = w(r,p,t) (see, for example, Ref. 1 1 ) . 

To lowest order in E, the functional relations are, in 
accordance with the structure of the right members of (3b)- 
(3d), linear: 

where the functions H O = U O, C O, and S O do not depend ex- 
plicitly on the time. Accordingly, to lowest order in E, the 
time derivatives in the left members of (3b)-(3d) can be 
computed with the use of (5 ) and ( 6 )  : 

Since the right members of Eqs. (3b)-(3d) contain oscillat- 
ing terms, the functions H O  can naturally be represented in 
the form of series: 

The new unknown functions h I: = u: , c:, and s: satisfy the 
following equations, which are obtained from (3b)-(3d): 

Using the solutions to the equations (8),  we can now 
find the equation for w to first order in E. Indeed, retaining in 
the right member of (3a) the terms linear in E, and using the 
representation in the form (5),  we obtain from (3a) the 
Liouville equation 

where the force is F = e, F,, + e,Fz. The force components, 
which are given by the solutions to the equations (S), are 

where 

The solutions to the equations ( 8 ) are 

cnO=-(Q-bkv,)snO/(yf iankv,), 

Here the Q, are convergent nonterminating continued frac- 
tions (m =0, + 1, + 2 , .  . .): 

with numerators 

- -2g1(2~ -k inaku,) for even n, 
Dn = ( 2g ( y  + ianku,)ll(y -1 i n~ku , )~  + (Q - b k ~ ~ ) ~ l  for odd n. 

in which 

n, = n + 1, n, = n ,  whenn iseven, 

n, = n, n, = n + 1, when n is odd, 

and G = 2g2/y2 is the saturation parameter. 
The quantities D, are given by the relations 

Thus, at t,y-', and up to first order in E, the basic w 

microscopic quantum-mechanical equations for the Wigner h=r,  e, s = [ hnOeiankZ] w. 
density matrix reduce to the Liouville equation for the classi- n=-(U 

cal distribution function w and functional relations, (5)  and Let us now continue the derivation of the classical ki- 
(7),  for the Wigner-Bloch functions netic equation. Through first order in E inclusively, the func- 

664 Sov. Phys. JETP 66 (4), October 1987 V. G. Minogin and Yu. V. RozhdestvenskiI 664 



tional relations have, in accordance with the right members 
of (3b)-(3d), the form 

where the functions H I v y  and H ' J  do not depend on the time 
and the position y. In first order in E ,  the derivatives on the 
left-hand sides of ( 3b)-( 3d) are, according to (9 1, equal to 

Let us now represent the functions HIri = H I S ,  HI.' in the 
form of the series ( 7 )  : 

Next, separating out in (3b)-(3d) the terms proportional to 
the a /api derivatives, and of first order in E, we obtain from 
these equations the system of recurrence equations 

(y+iankv,) si'".- (Q- bku,) ~ ~ ' ' ' - 2 ~  (u~?',+&:,) 

where the quantities f: and f; are given by the relations 

and the summation is over the index I, which varies from 
- co to + co. 

Finding the solution to the present system, and substi- 
tuting ( 14) into (3a), we obtain for w in second order in E 

the Fokker-Planck equation 

where the force is given by the relations (10) and the mo- 
mentum diffusion tensor is 

Znc Zns 
dXX: =-2uSX Re u2.0, dZ1 = 2a,, Im uZno, ( 

The quantities u, ( m  = 0, + 2, + 4, . . .) entering into 
(19) can be expressed in terms of the convergent infinite 
continued fractions from ( 13). After the system ( 17) has 
been solved, the quantities 

Iz l y  1 ,  sy, S; , C; , C; ( m  = + 1, f 3 . . . can also be expressed in 
terms of convergent infinite continued fractions. 

We can, continuing the process of derivation of the clas- 
sical kinetic equation, establish the fact that the function w 
satisfies the infinite (generalized) Fokker-Planck equation 

whose coefficients A :!:= are functions of the atomic center of 
mass coordinate and the velocity components vy and v, . The 
dominant contribution to the distribution function in Eq. 
(20) is made by the first two terms. The remaining terms 
make contributions that are of the order of the parameter 1/ 
yt in smallness. Thus, the ratio of the third term to the sec- 
ond is of the order of 

The same estimate follows from the central-limit theorem.I2 
Let us note here that, since the Fokker-Planck equation 

does not contain information about the internal state of the 
atom, it is equally applicable both to a single atom with sto- 
chastically prescribed position and momentum distributions 
and to an ensemble of noninteracting atoms. 

4. MULTIRESONANCE PROCESSES 

A characteristic of the coefficients of the Fokker- 
Planck equation (20) is their critical dependence on the ve- 
locity components v,, and u,. As an example, we show in 
Figs. 2 and 3 the plots of the force components F: and Ff as 
functions of the velocity component v, for different values of 
the velocity component uy . The cause of the critical oscilla- 
tory dependence of the force components on the velocity 
vector is the nonlinear multiresonance processes of interac- 
tion of the atom with the field of the two running waves. For 
small values of the saturation parameter the positions of the 
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FIG. 2. Dependence o f  the radiative-force component F j / f i k y  on the 
velocity component ku,/y, as computed in the case when the angle 
q = 15" ( a )  and 45" ( b )  for G = 100, a =  - 3y, and different values o f  
ku,/y: l ) 0 ; 2 )  -2O;and3)  -40 .  

resonances can be found on the basis of the energy conserva- 
tion law, applied to a definite interaction process. Let us, for 
definiteness, consider the interaction processes in the rest 
frame of the atom. 

The simplest interaction process is the single-resonance 
process, in which the atom is excited into the upper state by 
the field of any one of the waves. This process, according to 
the energy conservation law, occurs at velocities satisfying 
one of the conditions: 

A second-order process occurs when the atom absorbs a 
photon from one wave and returns to the initial state by 
emitting the photon into the other wave. According to the 
energy conservation law 

this process is effective when v, zO. A third-order process 
occurs at velocities satisfying one of the following condi- 
tions: 

FIG. 3. Dependence o f  the radiative-force component F:/f iky on the 
velocity component ku,/y, computed in the cases when the angle is 
q = 15" ( a )  and 45" ( b )  for G = 100, = - 3y  and different values o f  
ku,/y: 1 )  0 ;  2) - 2; 3 )  - 3; 4 )  - 4; 5 )  - 3.4; and 6 )  - 5.2. 

Similarly, we can write out the conditions under which high- 
er-order multiresonance processes occur. At large values of 
the saturation parameter the resonances undergo displace- 
ments, and their widths increase. 

In the case of unidirectional waves (p  = 0),  when the 
field ( 1 ) reduces to a plane running wave, the conditions for 
the occurrence of the processes of even order are fulfilled for 
any velocities, and all the odd-order processes occur at one 
resonance velocity, v,, = R/k. In this case the relations ( 10) 
determine the light-pressure force in the running wave.' In 
the case of waves propagating in opposite directions 
(p  = r / 2 )  the odd-order processes occur at the velocities 
kv, = R/(2n + 1 ). The relations ( 11 ) in this case give 
the force acting on the atom in the plane standing wave.798 

5. THE LIMITING CASES 

Let us consider the dependence of the radiative force 
( 10) on the angle between the wave vectors k, and k, (Fig. 
la),  having in mind the establishment of the connection 
between the general relation ( 10) and the relations for the 
radiative force in the particular cases of a traveling and a 
standing light wave, and also in the case of a light ray. 
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a. A plane traveling wave (cp=O) 

In this case a = 0, b = 1, and the series (10) reduce to 
the relations 

m 

F,=F;+ F;.., F,=o, 
n=l 

(21) 

where 

Summing the series in (2 1 ), we have 

where G, = 2 (2g/y)' is the saturation parameter for a plane 
running wave with amplitude 2Eo. 

The relation (22) coincides with the well-known 
expression for the light-pressure force acting on an atom in a 
plane traveling ~ a v e . ~ - ~  
b. A plane standing wave ( c p = ~ / 2 )  

In this case a = 1, b = 0, and the series ( 10) reduce to 
the relations 

m 

where 

and the quantities c; can be expressed in terms of the con- 
vergent infinite continued fractions ( 13). The force given by 
(23) coincides with the force found earlier in Refs. 7 and 8. 

In the case of weak saturation of the atomic transition, 
when the condition 

is fulfilled, all the multiresonance processes, except the first- 
order processes, can be neglected in (23). Then the expres- 
sion for F, reduces toI3*l4 

where G = 2(g/y)2, and we have introduced the functions 

In the limit of a large detuning ( 1 R / $ k 1 v, 1 ) the force 
(25) has, to first order in ku,/Cl, the form 

F,=F,,+F,,,=81ik2G Q'y L u z  sin2 kz  
(1+Q2/y ) 
G 

+2RkR sin 2kz. (27a) 

If, moreover, /a/ $ y, then (27a) goes over into the relation 

g2 Y F,=F,,+F,,,=16hk2 - v ,  sin2 
g2 

Q3 
kz+4hk - sin 2kz,  (2%) 

Q 

the second part of which coincides with the expression ob- 

tained in Refs. 15 and 16. The latter, in turn, coincides with 
the expression found earlier by Letokhov' on the basis of the 
classical formulas. '7,'8 

c. Light ray (Q  4 ~ / 2 )  

If g,<?r/2, then the field ( 1)  at small values of z 
( IzI <?r/ka) reduces to the field of a Gaussian light beam: 

In this case the longitudinal component F,, of the force coin- 
cides with (22). The transverse component F, of the force is 
obtained from (1 1)  with allowance for the condition 
ak IzI <?r: 

Summing the series (29), we obtain 

tiz (Q-kv,) G ,  ( z )  
-2~,~+3~,'-3c,O+. . . ) = - 

q2 l+Gi ( z )  + (Q-kv,) ? ly2 ' 

where we have introduced the beam radius q = l/ka and the 
atomic-coordinate dependent saturation parameter 

The force (30) coincides with the gradient force obtained in 
Ref. 6. 

6. THE RATE EQUATION APPROXIMATION 

In the important case of weak atomic-transition satura- 
tion, we can neglect all the multiresonance processes, except 
the first-order processes, in the coefficients of the Fokker- 
Planck equation. Formally, the approximation in question is 
valid when we can limit ourselves to considering only the 
first numerator in the nonterminating continued fractions 
determining the coefficients of the kinetic equation. For 
g, = 71/2 (the standing-wave case) the condition for the ap- 
plicability of the weak-saturation (rate equation) approxi- 
mation has been written out above in (24). In the general 
case of an arbitrary angle g, the condition of applicability of 
the weak saturation approximation is 

In this approximation the components of the force are given 
by the relations 

L-+L+ 
F , = L ~ ~ G ~ [  l+G (L-+L+) cos2 ( a k z )  

1 (Q-bkv,+aku,) L+- (Q-bkv,-aku,) L- +-- sin (2akz )  1, 
2Y l+G (L-+L+) 

(32a) 
L--L+ 

F,=ZhkyGa [ sin2 ( a k z )  
l+G (L-+L+) 

1 (8-bkv,-akv,) L-+ (Q-bkv,+akv,) L+ +- sin (2akz )  1, 
2~ I S G  (L-+L+) 

(32b) 

where 

L,= ( I +  ( Q - b k v , & a k ~ , ) ~ / y ~ ) - - ~  
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In the general case of arbitrary q, the momentum diffu- 
sion tensor, even in the weak saturation approximation, is 
given by extremely unwieldy formulas. Therefore, here we 
shall write it out only for the practically important case i?f a 
standing wave, when q, = ~i-/2, a = 1, and b = 0. In this case 

where for i = x ,  y 

d . . = a .  G 
(L-+L++p cos 2kz+v sin Zkz), 

" " 1+G(L-+L+) 

and for i = z 

dz,=arz (L-+L++p cos 2kz+v sin Zkz) 
l+G (L-+L+) 

-2d,,2" sin2 kz+d,,2" sin 2kz, 

-d,,Z' = 
G (L-+L+) +4G2L-L+ 

l+G (L-+L+)  

where R +  = R kv,, and the functions L * are given in 
(26). 

7. ESTIMATION OFTHE TIME OF LOCALIZATION OF ATOMS 
IN THE FIELD OF A STANDING LIGHT WAVE 

Let us consider as an example of the application of the 
relations obtained above the question of the time of localiza- 
tion of atoms at the nodes or antinodes of a weak standing 
light wave. We shall assume that the standing wave is orient- 
ed along the z (p  = n/2) axis, and that the detuning is nega- 
tive and large ( / R I $ k I v, I, g, y )  . In this case the atoms in the 
field of the standing wave are acted upon by the force (27b), 
the second part, F,,, , of which produces the periodic poten- 
tial 

If we place a cold atom at one of the minima of the potential 
(35 ), e.g., at the point z = 0, the atom will be localized in the 
potential well until its kinetic energy attains, as a result of 
the diffusional heating, a value equal to the depth Uo of the 
potential well (Fig. 4).  The first part F ,  of the force (27b) 

FIG. 4. Dependence of the standing-light-wave-field amplitude E, poten- 
tial U, potential force F,, , frictional force F,, and diffusion coefficient 
9, on the coordinate z of the atom for 0 <O and a low Rabi frequency g 
(4G( 1 + a'/?). 

does not in this case stabilize the atom in the vicinity of the 
bottom of the well, since the force F ,  is small in the vicinity 
of the point z = 0, and is equal to zero at the z = 0 point 
itself. 

Using the diffusional law of increase of the kinetic ener- 
gy of the atom, we find for the time of localization of the 
atom in the potential well U the expression 

z=( ( A p )  2 ) l ~ z r ,  (36) 

where ( ( A P ) ~ )  = 2MU0, and the coefficient of diffusion at 
the point z = 0 is, according to (34b), given by the formula 

From this we finally have 

Thus, the time of localization of atoms in a weak stand- 
ing wave always increases when the detuning is increased. It 
should, however, be borne in mind that the depth U, of the 
potential well decreases when the detuning is increased. In 
view of the limitation g( lR I, the maximum depth of the 
potential well is attained at g-IR]. In this case 
Uo=: 2 4  fl I =: 2fig, and the localization time is of the order of 

For example, for G=: lo8, when g z  101 - lo4, the localiza- 
tion time is 7-0.1 sec, 

Let us note that, in the case of a high-intensity standing 
wave, the radiative force (23 ) also cannot stabilize the atoms 
at the minima of the periodic potential. At low velocities the 
force (23) reduces, after the summation of the series has 
been carried out, to the relationI9 

where 
2G sin 2kz 

fo=hkQ 
l f ' P 2 / y 2 + 4 ~  cosZ kz ' 

8G sinZ kz( l+P2/y2-4G cos2 kz-8G2 cos' k z )  kv,  
f i  = A k a  - 

( l+Q2/y2+4G cosZ kz)  7 

The first part of the force (38) produces a periodic potential 
whose minima in the case when R >  0 are located at the 
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when the field on the average cools the atomic ensemble, the 

FIG. 5. Dependence of the standing-light-wave-field amplitude E, poten- 
tial U, force f,, and diffusion coefficient 28, on the coordinate z of the 
atom for R > 0 and a high Rabi frequency g (4G) 1 + n 2 / J ) .  

points kz = n r / 2  ( n  = f 1, f 3, . . .) (Fig. 5) .  But in the 
vicinity of these points the second part of the force (38) is 
always directed along the velocity of the atoms, causing, to- 
gether with diffusion, the escape of the atoms from the mini- 
ma of the periodic potential. 

8. CONCLUSION 

We note in conclusion that as the above analysis shows, 
the stochastic dynamics of atoms in a light field of any type is 
governed by the radiative force and the effect of the momen- 
tum diffusion. In the general case the radiative force and 
momentum diffusion tensor depend on the position and ve- 
locity of the atom, and can be represented by series contain- 
ing spatially homogeneous terms and terms that oscillate in 
space with periods 2n-/Ak ;, where Ak = k P - k;; k ,  and 
k, being the wave vectors of the field. 

In the case of a weak standing light wave the atoms can 
execute both finite motion at the minima of the periodic po- 
tential and free motion with periodic variation of the veloc- 
ity and coordinate. If the atom was initially localized at one 
of the minima of the periodic potential (see Fig. 4), then 
after a characteristic time T, (37) ,  it will leave the well as a 
result of the diffusional heating, and go over into the state of 
free motion. In the case of negative detuning (i.e., for R < O), 

atoms can be captured again and again at the minima of the 
potential. 

Thus, from the statistical standpoint the initial atomic 
ensemble is always divided into two in the field of a standing 
light wave. One of them is made up of cold atoms localized in 
the potential wells of the spatially periodic potential. The 
second is made up of atoms executing stochastic motion 
above the surface of the veriodic votential. These ensembles 
continuously exchange atoms. On the one hand the diffu- 
sional heating of the atomic pulses leads to the escape of the 
atoms from the potential wells, and, on the other, the cooling 
of the freely moving atoms by the standing-wave field leads 
to the continuous capture of the atoms in the potential wells. 
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