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An approach is developed to the investigation of the stability of Hamiltonian systems in a 
Wheeler-De Witt superspace (a  manifold with pseudo-Riemannian structure) on the basis of the 
Arnowitt-Deser-Misner variational principle. For inflationary solutions, describing the 
dynamics of a universe with a massive scalar field, stability criteria (decay laws for disturbances) 
are derived for each form of the scalar potential. 

1. INTRODUCTION 
The curvature of the metric hii equals (cf. also Ref. 1 ) : 

The problem of stability of cosmological solutions, be- 
ing of fundamental importance in investigations of the evo- %ijri=k (FtJtjl-Ri~hjk) 
lution of the universe, is a problem of stability in Wheeler-De 
Witt superspace with a pseudo-Riemannian (Lorentz) met- 
ric.' In this connection there arises the problem of investi- 
gating the stability of Hamiltonian systems by studying the 
global geometric properties of these spaces (another exam- 
ple is real space-time, which also exhibits a Lorentz signa- 
ture of the metric). Our approach is based on the considera- 

a .  

tion of nearby geodesics on some metric manifold which is 
the configuration space of the Hamiltonian system.2 The ap- 
peal of the geodesic method is important in principle for this 
problem, since it differs from a simple analysis of the per- 
turbed solution of the differential equation by allowing one 
to follow the genuine divergence of nearby trajectories and 
not only of separate points on them. Thus, one can see that in 
our problem two points on nearby geodesics may become 
separated, whereas the geodesics themselves may not (cf. 
Ref. 3 ) . 

A first step on this path is a representation of a model of 
the universe filled with a scalar field as a Hamiltonian system 
with a prescribed Hamiltonian. This can be achieved by 
making use of the Hilbert variational principle in the 
Arnowitt-Deser-Misner (ADM) modification (Ref. 4, cf. 
also Refs. 5, 6 ) .  

As an important application we have considered in de- 
tail the behavior of solutions of inflationary type, to which 
present-day hopes for an understanding of a number of key 
cosmological problems are tied (Refs. 7-10). Our analysis, 
which in a certain sense is a continuation of the papers in 
Ref. 11, has made it possible to derive the stability laws (de- 
cay of disturbances) for each type of scalar field. 

In considering the dynamics of geometry in the ADM 
formulation4 the 3-geometries of the initial and final Cauchy 
hypersurfaces are assumed given. The action integral is ex- 
tremal with respect to the choice of a space-time between 
these two hypersurfaces. 

In what follows we shall consider locally isotropic and 
homogeneous cosmological models with a scalar field, i.e., 
when the metric on the compact 3-manifold S depends on a 
single parameter a: 

where 
,2 = FG [ 1 h" d3x ] -: 

S 

7i = det Eij. 

with k = + 1 (whenSis a 3-sphere or a 3-sphere factored by 
a discrete group), k = 0 (when Sis  a 3-torus or any other flat 
space), or k = - 1 (whenSis a 3-hyperbolic space, factored 
with respect to a discrete group). For k = 0 we require that 
the condition J,d 3 ~ h  ' I 2  = 1 should be satisfied. 

Near the manifold S the 4-metric has the form 

Keeping in mind that the Lagrangian of the scalar field is 

the action I = I, + I4 can be written in the form (cf. Ref. 6 )  

I = J pa da+p, d x -  N C . ,  dt, 

where 

and the variation is carried out with respect to a, X ,  p a ,  p, , 
and N. Variation with respect to N  leads to the equation 
ZADM = 0. 

2. REDUCTION OF THE HAMlLTONlAN SYSTEM TO A 
GEODESIC FLOW ON A PSEUDO-RIEMANNIAN SPACE 

We have thus derived a Hamiltonian system with the 
Hamiltonian 

%?='lzgabp,pb+ V ( x )  

and the constraint equation SF = 0. 
The motion of this system is along the extremals of the 

action functional 

I = 5 pa dxa-33  (p, 2) dr  

with the subsidiary condition SF = 0. 
We introduce some notations to be used below 

(for the moment s is an arbitrary parameter). We also de- 
note the following regions on the hypersurface: 
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W+{xl  V (x )>O) ,  W - { a ]  V(x )<O) ,  ext I=y,t, 

where SI(y,,, ) = 0. We then have 
( E ,  R (u ,  E )  u )  

K =  
IIu1I2 ext 1 1  JP=~ = ext J p. axa I . z = o . ~ ~ = ~ , , , ~ ~  

= ext J g.bvaub I x(gIb ~ " . x ) = o ~  (1 ( E  is a Fermi basis, Z - = ZE is a vector separating the geo- 
desics). 

In accord with the expressions for the action I given 
above, we have 

where 

a (gabvavb, X) = i / 2 g . b ~ a ~ b + ~ ( ~ )  =o. (2)  
%*DM * {Gqab, 2''' 1 V 1 d z ,  -sign V )  , 

Assuming that g is a Riemannian metric one can write in the 
region W - where 

and, making use of Eq. ( 1 ), we have In the case k = 0 these equations simplify even further: 

G = e m p 1 ,  IVI=e3"IUJ, gcbuaub ) ' "]. ext l l  z=,, = ext I[-- 2~ (- 
-2 v 

= ext 2% J ( - ~ g , u ~ u ~ )  ds = ext J (G,uaub) Ya ds, 

where Gab = - Vg,, is also a Riemannian metric. 
We choose the parameter s so as to satisfy the condi- 

tions2 llu1)2 = Gab ua ub = 1, 

whence 

3. THE INFLATIONARY PHASE 
the extremals of the action I Now we can start investigating the inflationary solu- 

tions. Setting k = 0 below, we start from a known property 
of this phase, namely its rapid transition to flat space even 

1 ext J ( G . ~ U ~ U ~ )  ds = ext - j G.,u.u~ d g  
2 

reduce to the geodesics in the region W - ': for an initial value k #O. As was shown in Ref. 1 1, the infla- 
tionary stage can be realized for sufficiently general initial 
conditions. The following inequalities hold during this stage: 

As regards the region W ', it is obvious that a classical 
system cannot end up inside it. 

Now let g be a pseudo-Riemannian metric with signa- 
ture ( - , - , .. + , + , ..., + ) . Then for x in the region W - 
(cf. Ref. 2) we have 

We assume the potential of the scalar field in the form of a 
power function 

Sometimes, making use of Eqs. (4),  we have 

~=-3H-nx /x - -3N ,  U = - ~ U / ~ Z ,  

whence 

and we are again led to the representation (3).  For 
V =  U -  E this representation is a consequence of the 
Maupertuis action principle.' Proceeding similarly for x in 
W + we are led to the representation 

In this case the Jacobi equation takes on the form 

y- [ - ~ u / ~ ~ + ( ~ / ~ H ) ~ I Y = O ~  ( 5  
Thus, the Hamiltonian system is represented as a geo- 

desic flow on a pseudo-Riemannian manifold. In order to 
study the stability of this flow it is necessary to start from the 
Jacobi equation (Ref. 2; for details for the case under consi- 
deration see Refs. 12, 13) : 

From the Einstein equation 

8+3HZ=6U 

and the condition H ~ H  ' ,  to which the Hubble constant is 
subject, we get u+ [ a -  ('/,9+y"4) IY=O, 

where 
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I fx )  (2n) lt2/3, then 

Consequently, Eq. (5 )  has the simple form 

and for a -4 - CO, as is easily verfied by direct substitution 
(neglecting the term 2 = H is related to the condition 
H ~ H  2) ,  it has the solution Yzconst exp( + 3/2a) or 

z,=eSa I U I '" const e+"a, 

z+=const I UI'", z-=const I Ul'"e3". 

We finally have for z (in view of the fact that z- <z+ ) 

hence 
1 U' . i=-- 2 U'" x. 

Making use of the relation15 xzconst. U/U 'I2, we obtain 
from Eq. (6) (for more details, see Ref. 12) 

U" 
6'=zZ+i2 = const U + const' - = const X" + const' x2"-'. 

U" 

During the expansion ( H >  0) the potential of the sca- 
lar fieldx decreases, i.e., for any n)2,S decreases, and con- 
sequently one may say that the inflationary solutions under 
discussion are Lyapunov-stable. The equation (7) allows 
one to obtain also the law of decay of disturbances for each 
concrete form of the potential. Thus for the often discussed 
case n = 2, i.e., for U = /1X2/2 we have z=x=: - t, 

In the case under consideration the inflationary solutions are 
linearly Lyapunov-stable. For n = 4 the disturbances decay 
exponentially; the larger n, the more stable the solution is. 
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Thus, we have proposed an approach to the investiga- 
tion of Hamiltonian system on pseudo-Riemannian mani- 
folds. Making use of the ADM principle we have in this way 
studied the Wheeler-de Witt superspace. We have studied 
separately the solutions of equations of the exponentially 
inflating type, describing the dynamics of a universe filled 
with a massive scalar field. We have studied the decay of 
disturbances for fields with a power-law potential. Together 
with previous results (Refs. 8 , l l )  this shows the convincing 
character of the concept of an inflationary stage in the early 
universe. 

We express our sincere gratitude to L. P. Grishchuk, A. 
A. Dolgov, A. D. Linde, and S. G. Matinyan for useful dis- 
cussions. 
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