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A complete theory, based on the soft mode mechanism proposed by Landau [Zh. Eksp. Teor. Fiz. 
7,627 ( 1937) 1,  is developed for a liquid-crystal transition with low latent heat. Thermodynamic 
fluctuations alter substantially the results and change the form of the phase diagram. Thus, 
besides the transition from a liwid to a body-centered cube, the only transition possible without 
allowance for fluctuations, direct transitions appear from the liquid into other cubic phases and a 
one-dimensional density wave. Transitions into quasicrystalline states, particularly the 
icosahedral state, are discussed. 

1. INTRODUCTION 

Landau' investigated the transition from a liquid to a 
crystal as far back as in his 1937 studies of phase transitions 
(see also Ref. 2).  He considered, of course, a hypothetical 
weak crystallization, when a small-amplitude periodic (or 
quasiperiodic) density component 

appears in the liquid. By virtue of the isotropy, this expan- 
sion contains in the leading approximation only vectors k of 
fixed length k,, for which the coefficient of the second-order 
term in the Landau expansion has a minimum. The corre- 
sponding Landau energy is" 

@ L = T ~  I p. I "+r p k . p . , p k , + ~  1.(k.k2h3k.)pk.pkq..pkA. 

(1 )  

To be able to discard the higher orders in a theory of this 
kind, it is necessary that the amplitudes p, be small. This 
yields 

Landau's analysis of Eq. (1 )  has shown immediately 
that the absolute minimum of the energy ( 1 ) is reached for a 
set of momenta k from which it is possible to construct a 
maximum number of closed triangles (Fig. 1).  The transi- 
tion to such a state will take place, regardless of the sign ofp, 
already at r > 0, i.e., will be a first-order transition. 

The first to consider weak crystallization in greater de- 
tail were apparently Kirzhnits and Nep~mnyashchii.~ They 
have pointed out that the phases described by sets of k with 
triangles are BCC. On the other hand, they failed ta notice 
that, if A depends strongly on the momenta and T is long 
enough, absolute stability can be possessed also by phases 
without triangles, such as FCC. A transition into an FCC 
phase can occur only via the chain of first-order transitions 

The Landau energy ( 1 ) was subsequently considered 
by a number of workers (see, e.g., the review by ~ l e x a n d e r ~ )  
from the standpoint of the symmetry of phases that can re- 
sult from weak crystallization. 

Interest in weak crystallization was aroused anew by 
the theory of the cholesteric state and of the so-called blue 
phases. The first in this field was the work by Dmitriev and 

one of  US.^ We wish to single out here specially two seminal 
investigations in this field, by Kleinert and Maki6 and by 
Grebel, Hornreich, and Strickman.' It is interesting, as indi- 
cated by Kleinert and Maki, that an icosahedral quasiperio- 
dic phase can be realized in a metastable state in cholesteric 
crystals. 

Finally, recent experimental discoveries stimulated a 
burgeoning interest in quasiperiodic phases, particularly 
planar pentagonal icosahedral ones. A number of studies in 
this field, within the framework of Landau's approach, fol- 
lowed right away.'-' ' 

It  became clear long ago, however, that even though all 
the transitions described by the energy ( 1 ) are jumplike, 
thermodynamic fluctuations can influence weak crystalliza- 
tion substantially. The reason is that the order parameter of 
the theory has in fact an infinite number of component ( k  
traces a whole sphere of radius k,), and this naturally en- 
hances the role of the fluctuations (details will be given in 
Sec. 4).  The first investigation in this direction was carried 
out by one of us back in 1975.12 A transition was considered 
into the state of a density wave (the analog of a cholesteric 
helix) defined by only one vector k. According to the Lan- 
dau theory,' such a transition should be continuous in view 
of the absence of third-order terms. Allowance for the fluc- 
tuations, however, transforms it into a first-order transition, 
the absence of cubic terms notwithstanding. A correct gen- 
eral conclusion reached in Ref. 12 is that the liquid-crystal 
transition is always of first order whether or not triangles are 
present in the reciprocal lattice (Fig. 1 ) . Nothing like a com- 
plete investigation of the phase diagram, with allowance for 
fluctuation, was carried out at that time. The estimate of the 
energy of the non-one-dimensional phases contained errors 
which are corrected in the present paper. 

The phase diagram with allowance for fluctuations was 
investigated later by DyugaevI3 for the case of a pion con- 
densate. His result agrees in principle with ours in the 
strong-fluctuation limit, viz., there is one L-RCC transi- 

FIG. 1 
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tion. Dyugaev's paper is in itself quite complicated. He used 
a microscopic approach and took into account simulta- 
neously the contributions of the nucleons and pions. It is 
therefore difficult to compare his results with a phenomeno- 
logical approach such as Eq. ( 1 ) . 

We present below, for the simplest case of an interaction 
A that does not depend on the momenta, a complete analysis 
of the phase diagram, with allowance for the fluctuations, 
and follow it up with a description of metastable states (Sec. 
2) .  Although the calculations seem trivial, we present them 
in reasonable detail, since many years of experience with 
studies of this type, for example of the blue p h a ~ e , ~ . ~  show 
that the calculations made by different workers are as a rule 
not in agreement. 

Fluctuations produce two effects. The first is usual for 
any phase transition close to continuous, while the second is 
typical of the presence of a large number of order-parameter 
components. The calculations can be carried through to con- 
clusion if the crystal has a large period (in atomic units), 
k,< 1, when the system does not come at all too close to a 
singular point and the fluctuations of the first type can be 
neglected. Let us carry out the corresponding estimates. 

The Green's function in the liquid phase is obviously of 
the form 

A measure of the smallness of the usual fluctuation is the 
smallness of the diagram (Fig. 2a) at Ikj, r >  k, compared 
with A. This yields the known criterion T%A which yields, 
combined with r<A, 

h2<7<h. 

This condition is, naturally, independent of the type of phase 
transition. If it is recognized, however, that k, is finite, i.e., 
that the order parameter has an infinite number of compo- 
nents, the diagram for the self energy (Fig. 2b) at r < k, 
turns out to be anomalously large. Its contribution 
k$Ir- ' /*  becomes comparable with T at the value 
7, - (Ak ) 2 / 3  that determines the fluctuational temperature 
of the transition. Substitution of r, in preceding inequality 
yields k <A gk,. 

For the reader not interested in the details of the calcu- 
lations, we present their results. 

As already mentioned, the fluctuation problem ( 1 ) is 
initially investigated in the simplest case A(k,k2k3k,) 
= const. The theory can be made nondimensional in the 

variables 

and the problem can be analytically solved completely. The 

natural variables for the phase diagram are r and k ,  (see Fig. 
3 below). The quantity k, is a measure of the influence of the 
fluctuations: for small k, ( largep) the transition is jumplike 
and without fluctuations. As k,-* w (p -0 )  the tempera- 
ture of a first-order transition is given, naturally by the al- 
ready mentioned relation r, - (Ak 6 )2'3. 

In the absence of fluctuations (k, = 0) there are in the 
three-dimensional case three absolutely stable phases: BCC, 
(the difference between BCC, and the BCC, phase that ap- 
pears below is explained in Sec. 2),  triangular phase A 
(planar triangular lattice made up of liquid filaments), and a 
one-dimensional density wave 1. Lowering the temperature 
results in the transition cascade 

This cascade was predicted by Kleinert and Maki,6 but 
no triangular phase was considered by Grebe1 et We note 
only that a direct comparison of the blue-phase theory"' 
with our result is impossible, since an important role is 
played in the cholesteric phase by the order-parameter ne- 
matic component QaD with k = 0.5 

In the 2 0  case there is of course no BCC. The sequence 
of the transitions as the temperature is lowered is 

Naturally, the equations that describe the A- 1 transi- 
tion are independent of the dimensionality. The BBC, and A 
phases become narrower with enhancement of the fluctu- 
ations in the absolute-stability region. The BCC, phase van- 
ishes at a certain k,, followed by the triangular phase A. The 
direct transition L - 1 that survives in the case of large fluc- 
tuations can take place also i fp  = 0 ( a  finitep is essential for 
BCC and A ) .  We have here a clear manifestation of the fact 
that the fluctuations themselves are capable of making the 
transition jumplike. 

The phase diagrams plotted in the coordinates exactly 
defined by Eqs. ( 1 ), (4),  and ( 19) are shown in Fig. 3. The 

FIG. 3. Phase diagrams for 2 0  and 3 0  crystallizations. The region near 
the origin is shown separately. The dashed line is a continuation of the 
A-L curve in the 2 0  case; T' = TA ' / p 2 ,  0 = a2I3A X13p-2. FIG. 2. 

626 Sov. Phys. JETP 66 (3), September 1987 Brazovskil et a/. 626 



BCC, region is too small to be drawn in the same scale as the 
1 - L and A - L regions. The latter are shown on the princi- 
pal part of Fig. 3. This part of the phase diagram is the same 
for 2 0  and 3 0  crystallizations, and in its scale the BCC and 
the end of the 1 - L line practically coincide with the origin 
in the two-dimensional case. The inset of Fig. 3 shows this 
vicinity. The dashed line is part of the 1 + L  curve, which 
lands inside the BCC phase, in the 2 0  case. The external part 
of the 1 - L line is the same as in Fig. 3 and is independent of 
the dimensionality. 

Besides the stable phases BCC,, A, and 1 there exist in 
the il = const model metastable crystalline phases. These 
are the orthorhombic phase, which includes in principle the 
FCC, hexagonal, and tetragonal systems and BCC,. The tri- 
clinic system (and its particular cases-monoclinic, rhom- 
bohedral, and primitive cubic) is absolutely unstable. The 
model gives also a number of metastable quasiperiodic 
phases, primarily the icosahedral one. 

The phase diagram (Fig. 3) which we have obtained in 
the theory withA(k,,k,k,k,) = const contradicts the simple 
crystallization concepts, from which it is expected that the 
order in the system increases with decrease of temperature. 
In this sense, the inverse sequence L -, 1 -A - BCC would be 
natural. The cause is precisely the assumption that A is con- 
stant: as the temperature is lowered the amplitudes pk in- 
crease, the cubic terms that lead to energy gain for the crys- 
tals no longer play any role, and everything is determined by 
the value of A,,. Clearly, if A is independent of the interac- 
tion momenta its effective value is determined by a combina- 
torial factor which is minimal for a simple one-dimensional 
wave. It suffices at present to recall that in the case of weak 
crystallization we always have in general 

Allowance for the dependence ofil on the momenta, or 
more accurately on the angles between them, uncovers new 
possibilities. The analysis given in Sec. 3 shows that the 
phases that can be now absolutely stable (including also at 
low temperatures as r- - w ) are BCC, FCC, and curious- 
ly enough the simple cubic. As before, the rhombohedra1 
phase is absolutely unstable. This is an immutable property 
of weak crystallization. The icosahedron I and other types of 
quasicrystals are in principle absolutely stable. 

Of course, the dependence of il on the angles between k 
actually introduces into the theory a large number of adjust- 
ment parameters. Therefore the construction of complete 
phase diagrams, which can now be in principle arbitrary, is 
hardly instructive although not too laborious. 

We recall finally that the one-dimensional structure 1 
and the triangular A, which are stable in the simple model, 
are realized in liquid crystals, viz., 1 is the smectic phase an A 
is the so-called discotic phase. (The latter was first discussed 
as an abstract possibility by Landau14.) It is simplest to in- 
clude them in our theory as perturbations, by adding to ( 1) 
and arbitrarily weak interaction that is linear in the nematic 
tensor QaB. This yeilds directly 

The interaction with QaB transforms thus the phase 1 into 
smectic A,  and the phase A into discotic. Finite fluctuations 

make possible direct transitions from a liquid into a smectic 
or discotic. Of course, a realistic theory must allow for both 
the dependence of A on the angles and the finite character of 
the nematic tensor Qd. It is readily conceivable that this 
leads to a variegated picture that describes real situations in 
liquid crystals. 

2. SIMPLE MODELA(k,kZk,k4)=const 

We begin with the transformation of the fourth-order 
terms in ( 1 ) . Since the density is real, the set of vectors k 
consists of antiparallel pairs; each such pair, when neces- 
sary, will be labeled by Latin letters n and m ranging from 1 
to the number r of the independent vectors k. It is convenient 
to write the Fourier components of the density in the form 

pk=nk e x p  (i&), ak=a-k, %r=-%-k. 

We have three types of tetrads k,k2k,k,: 

kk-k-k, k,k,-k,-k, 

and a nontrivial tetrad (Fig. 1) constituting a three-dimen- 
sional closed quadrangle having no parallel sides. 

With the foregoing taken into account, we can express 
the Landau energy in the form (cf. Refs 6 and 7)  

where A stands for the sum of the squares of the amplitudes 
a, : 

and summation signs labeled n.t. denote sums over nontri- 
vial (i.e., having no parallel sides) closed figures (Fig. 1 ) . 

According to Ref. 12, to take the fluctuations into ac- 
count it suffices to introduce self-energy corrections (Fig. 
2b). This causes replacement of T in the expression (2)  for 
the liquid-phase Green's function by the reciprocal of the 
square of the correlation radius X, determined from the 
equation 

It is seen from (4)  that x, is a positive quantity that increases 
monotonically with T. This means that the fluctuations sta- 
bilize the liquid phase all the way to r- - W ,  when x, van- 
ishes. 

The correlation radius x- 'I2 in the crystalline phase is 
defined by a similar formula 

x=t+l  WA+uhx-'u. ( 5 )  

The expression for the energy, with allowance for the fluctu- 
ations, takes the formI2 

where F ( A  ) is determined by the relation (all the derivatives 
are taken, naturally, at a fixed temperature r or, equivalent- 
ly, at a fixed x,,) l 2  

It is more convenient to express F in  terms of x with the aid 
of (5) .  Noting that 
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we obtain directly 

Integration with respect to A from zero to A corresponds to 
integration with respect to x from x, given by (4)  to x: 

F ( A )  = F  ( x )  ='/12h-' (?cZ-xo2) f '/,a (x'"-x,'"). (8  

Expression (6) with F, x, and x, from (4),  (5) ,  and (8) 
yeilds the crystal energy reckoned from the liquid phase. 

The relative stability of the phases is determined by that 
part of the energy ( 6 )  which depends on the specific configu- 
ration of momenta k, , amplitudes a, ,  and 6 ,  for fixed A.  

We begin with the case when there are no nontrivial 
traingles or quadrangles. The structure-dependent part of 
the energy with 2r momenta ( n  = 1, . . . , r)  is then 

Its minimum is reached at r = 1: 

which corresponds to the density wave 1. All the remaining 
extrema are saddles. This means, in particular, the instabil- 
ity, mentioned in the Introduction, of the monoclinic, rhom- 
bohedral, and simple cubic lattices corresponding to the case 
r = 3 at different angles between the momenta. 

The simplest nontrivial lattice without triangles is a 
configuration of four momenta (Fig. lb) .  It defines, as will 
become clear presently, an orthorhombic (OR) crystal. The 
energy depends now on the phases 0, : 

~p (OP) = - 6 h z  an4+48ha,a,a3a4 cos (0 ,+e2-0, -0 . ) .  

We get by minimizing with respect to the phases 

y.=-6h z a,,'-48ha,o,a,a,, 

and with respect to the amplitudes 

a ,=oz=n3=ar=1/2~'h  , cp ( O P )  =-Q/ZhA2.  (10) 

It is easily verified that the state ( 10) is a local minimum. 
The density defined by four vectors (Fig. l b )  is a peri- 

odic function, since k, = k ,  + k ,  - k,. Furthermore, Fig. l 
supplemented by four vectors - k ,  has patently three two- 
fold axes, i.e., it defines an orthorhombic crystal. As always, 
there is another possible reasoning. The energy p ( 0 R )  de- 
termines eight frequencies of homogeneous oscillations. 
Five of them, corresponding to oscillations of the amplitudes 
a,  and the combination of phases 6 ,  + 0, - 6 ,  - O,, are fin- 
ite, and the remaining three phase oscillations have zero fre- 
quency, i.e., correspond to three acoustic modes. These three 
acoustic modes are the consequence of the homogeneity of 
the energy of the crystal ( 1 ), which is invariant to the phase 
change 

with an arbitrary constant vector u. If u, which obviously 
represents a displacement: r-r + u, depends little on the 

coordinates, an increment of (1) is obtained, which is ex- 
pressed in terms of the derivatives of u and is the acoustic 
energy. 

We proceed now to configurations with triangles. The 
simplest is the A lattice mentioned in the Introduction, made 
up of regularly arranged liquid filaments. There are three 
momenta k ,  and no rectangle can be formed from them: 

r p = - d h Z  a.'+llpa,a,a,  cos (0 ,+02+03) .  

Minimizing with respect to the amplitudes and phases, we 
get 

a l=n2=n3=(A/3) '" ,  cp(A) =-41 p j A ( A / 3 )  "-2hAZ.  (1  1)  

We can add to the three vectors making up the triangle a 
fourth arbitrarily oriented vector. After minimizing with re- 
spect to the phase of the triangle, the energy of such a state 
(which includes, for example, also a hexagonal crystal) 
takes the form 

One minimum of this expression coincides with ( 11 ) when 
a, = 0, and the other with (9 )  when a ,  = a ,  = a, = 0. The 
nontrivial extremum is a maximum. 

The configuration next in complexity has two triangles 
and one quadrangle (see Fig. lc) .  It is clear from the reason- 
ing above that this is again an orthorhombic crystal OR'. We 
write down directly the expression for the case of equal am- 
plitudes a,  = (A / 5 )  ' I 2  (it is a local minimum): 

To minimize with respect to the angles, it makes sense to 
introduce the two variables 

Clearly, the extremum corresponds to 8,  = e2 = 8. We 
have 

sin 0 ( 3  p/8+hA" cos 0 )  =0. 

There exist thus two phases, one OR; with 0 = 0 and x, and 
the other OR; with 

cos @=- (.i/.l) ii/81L, A' >.i I i~I18h. 

Their energies are equal to 

It  is seen from these equations that the energy of the OR; 
phase exceeds that of the triangular phase A, and the energy 
ofOR; (atA ' I 2  > 51121,u/ /8/1)  is higher than that of the one- 
dimensional phase. Therefore the two OR' phases, just as 
OR, are metastable. 

We encounter here for the first time a general tendency 
that is clear from a comparison of the energies of the OR; 
and OR; phases. At small amplitudes A the phase whose 
energy is determined by triangles is preferred: cos0 = + 1. 
At large amplitudes, conversely, the lowest energy is the 
contribution of the rectangles with cose = 0. 

We proceed now to BCC lattices. They are specified by 
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FIG. 4. 

six independent vectors k, that borderAhe faces of a tetrahe- 
dron (Fig. 4). We have here four triangles and three rectan- 
gles. We define the three independent phases e l ,  8, and 8, 
of the triangles by the equations 

The phase of the fourth triangle is, naturally, dependent: 

Our choice of phases deliberately emphasizes the symmetry 
of the tetrahedron. On rotation about a threefold axis 
wehave 1-2-3, 4-5-6 and 8,-8,, 
82+83-+8,-+82-+83. 

We write down directly the energy for equal ampli- 
tudes: 

We confine ourselves to an extremum that has certainly the 
symmetry of a cube, when all the phases 6, are equal. In this 
case 8 = 36 and 8, = 8, = 6. Then 

6'"p (sin 38fsin 8 )  f8kA'"sin 28=0. 

There are two obvious solutions with sin = 0, the phases 
BCCl and BCC,. There exists, to be sure, one more extre- 
mum 

cos 0=-4h ( A / 6 ) ' , " / p ,  

but it is readily seen that it is not a minimum. 
We write down the energies of the two BCC phases: 

Here, just as in the OR' case, the BCC, phase is preferred 
when the phases of the triangles are equal to 0 or x, and those 
of the rectangles are zero. Preferred at large amplitudes is 
BCC, with the triangle phases equal to x/2 and those of the 
rectangles to x. 

We consider, finally, one more (and actually the last) 
configuration of the momenta that make up a regular poly- 
hedron-an icosahedron, i.e., a figure having 20 triangular 
faces ( 10 threefold axes), 30 edges ( 15 twofold axes) and 12 
vertices (6 fivefold axes). The form of the isocahedron along 
a threefold axis is shown in Fig. 5. The faces and edges not 
shown are parallel to those shown. 

The icosahedron has 15 phases 6,. Out of the 10 phases 
6, of the triangles, only 9 are independent, since all 20 trian- 
gular phases are pairwise parallel and form a closed figure. 
We present by way of example two typical phases: 

FIG. 5. 

We have next 15 nontrivial quadrangles (equal to the num- 
ber of edges). Each has the form shown in Fig. Ic. The phase 
of the quadrangle determined by the edge n is the difference 
between the phases of the adjacent triangles, for example 8,- 
8, for edge 2, etc. It is easy to verify that the contribution of 
the triangles is a maximum when all the phases 0 (and 8) 
are equal to zero or x .  Clearly, this is an extremum. The 
energy of the corresponding quasicrystal I ,  takes, for equal 
amplitudes, the form 

At large A the preferred quasicrystal is again I,, for 
which the contribution of the triangles is suppressed. We 
shall not write out the corresponding unwieldy equations, 
but present only an estimate, assuming the phases of the 
triangles to be x/2, and the phases of the rectangles to be x: 

It can be seen that ~ ( 1 , )  > p(A)  and ~ ( 1 , )  > p ( l ) ,  there- 
fore the icosahedral phases are metastable. 

A survey of Eqs. (9)-( 12) shows that only the phases 1, 
A, and BCC, can be absolutely stable. The phases OR, 
BCC,, and I are definitely metastable. Comparing (9) ,  ( 1 1 ) , 
and ( 12), we readily see that the phases BCC,, A, and 1 are 
absolutely stable respectively in the regions 

To complete the theory we must calculate the energies of the 
phases 1, A, and BCC,. 

1. BCC,. Using (6)-(8) and (12), we write down the 
conditions 

at constant x, (or T )  in the form 

d @ / d ~ = ' / ~ ( l + a J . / 2 x k )  [ x -  ( 6 A ) " I  p(+Shil ]=O. 

This yields 

(16) 
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the dependence of x and A on T or x,  is given by the intersec- 
tion of the curves ( 16) and (5) .  From the equation given 
above for d@/dx it follows that the minimum energy corre- 
sponds to the larger values of x. Note that the amplitude 
corresponding to the maximum x lies in the metastable re- 
gion. 

The number of calculations needed is negligible. All can 
be carried out by using the dimensionless units indicated in 
the Introduction and by obtaining the energy as a function of 
the dimensionless temperature and fluctuation intensity. 

2. Triangular phase A. The condition d@/dx = 0 takes 
the form 

d@/dx=' ls  ( l + a h i 2 x B )  [ x -  (3A)'" I~cI-2hAl =O. 

The extremum takes place on the line 

The character of the intersection of this curve with (5)  is 
indicated in Fig. 6b. The minimum again corresponds to 
larger values of x and A 

3. Density wave 1. 

or A = x/6R. We have again the situation of Fig. 6b. 
The phase diagram is shown in Fig. 3 above. The transi- 

tion temperatures in the Landau limit are 

T ( L +  BCC, ) = ' / r j ~ 2 / h 2 z 0 . 0 8 9 ~ 2 ~  
(17) 

In the case of strong fluctuations, only the transition L -  1 is 
left, at the temperature 

The character of the phase diagram can be understood 
also qualitatively. At fixed fluctuations, the amplitude in- 
creases as the temperature is lowered, i.e., motion takes 
place over the region of the existence of the phases ( 15) from 

FIG. 6. 

the left to right away from the liquid. On the contrary, with 
increase of the fluctuations at a fixed temperature, the ampli- 
tude decreases in accordance with Eq. ( 5 ) ,  i.e., motion takes 
place along the chain ( 15) from right to left towards the 
liquid. This tendency is physically understandable, since en- 
hancement of the fluctuations stabilizes the liquid phase. All 
this taken together leads to the following general conclusion: 
when the fluctuations increase the phases of intermediate 
amplitude vanish and the ultimately surviving phase is stable 
in the large-amplitude limit. We note an amusing situation 
described in Fig. 6a for BCC, and, according to ( 13 ), for I ,. 
On the upper metastable branch, the reciprocal correlation 
radius xl" in the crystalline phase decreases with decrease 
of the temperature T (and of x,) and approaches zero, i.e., 
the point of absolute instability. In this case A is constant. 
Thus, we might be able in principle to observe a critical Orn- 
stein-Zernike opalescence in cubic and icosahedral crystals. 
For x we have the equation 

As seen from (6a), the liquid state also loses stability in this 
place, although this last circumstance is undisputedly a 
property of the theory of weak melting. 

The theory of two-dimensional crystallization in a mod- 
el with constant R is especially simple. There are naturally no 
nontrivial rectangles on a plane, and there is only one trian- 
gle. The fluctuations are given by the same equations (4)- 
(6)  and (8).  It is necessary only to replace in them the 
expression for a in (4) by another given by the diagram of 
Fig. 2b in the two-dimensional case: 

It follows from an analysis of the equations obtained above 
that only two phases, triangular A and one-dimensional 1, 
can be stable. All the remaining phases are saddles. The 
triangular phase is stable at small amplitudes, and the one- 
dimensional one at large ones; the inequality ( 15) is then 
transformed into 

The phase diagram (Fig. 3) is constructed with the aid of the 
expressions already obtained for the energy. It is necessary 
to add to ( 17) only the temperature of the L  - A transition in 
the Landau limit: 

Strong fluctuations "eat up" the triangular phase. The equa- 
tion for T ( L  - l ) remains ( l 8 ) as before. 

It is expedient to discuss the relation between the con- 
clusions of the weak-melting theory, which requires a first- 
order transition for crystallization, with the picture devel- 
oped by Halperin and Nelson (see Ref. 15) for the melting of 
a two-dimensional lattice. In this picture the lattice melts via 
two second-order transitions: from a crystal to a liquid crys- 
tal (LC) and from the liquid crystal to an isotropic liquid. 
We note first that, in contrast to three-dimensional liquid 
crystals, where the transition is always of first order, the 
L-LC transition can in the two-dimensional case be also 
continuous, if the symmetry of the liquid crystal is not lower 
than fourfold. This remark reconciles in fact the two ap- 
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proaches. If, prior to the start of the Landau mechanism for 
the soft mode at lkl = k, the liquid goes over continuously 
into an anisotropic phase, the spectrum of the soft mode in 
the latter no longer has circular symmetry. The only danger 
is from the minimum points of the spectrum, the specific 
fluctuations vanish, and the transition is determined by fluc- 
tuations that are typical of any two-dimensional continuous 
transition, including also for dislocation melting. 

3. GENERAL CASE 

The function A (klk2k,k4) now depends on the angles 
between the momenta. The three types of tetrads k,k2k,k4 
analyzed above are again produced. We retain the symbol A 
for the interaction of the parallel momenta k, k, - k, - k, . 
The interaction of the k, k, - k, - k, pair depends on the 
angle between the straight lines n and m, i.e., A = A (n,m); 
its simplest representation is 

where v is a unit vector in the k direction. The interaction 
A,,, of the nontrivial tetrads depends on two angles; its sim- 
plest representation is 

The constants in (21 ) and (22) are chosen such that the 
interaction A,., goes over into A(n,m) and il when the vec- 
tors k, are almost parallel. 

Repeating verbatim the reasoning of Ref. 12, we can 
again obtain for the free energy Eq. (6)  in which now, how- 
ever, the function F depends on all the a: and not on their 
one combination A .  For F(a: ) we have the equations 

where x,, just as in the simple case, is the reciprocal of the 
Green's function at k = k, : 

a dQ h(v, ,  v) 
z ,=r+12C A(., m)amz + Z,J 

[ x (v) I 'Ii . (24) 

Here A (v,vf ) is the interaction in the case of arbitrary pairs 
of vectors k,,v, k0vf, - kov, - kovl, not necessarily coincid- 
ing with n and m. The integral in (24) yields the contribu- 
tion of the fluctuations (diagram 2b). It contains the func- 
tion x ( v )  that yields G - ' ( ( k l  = k,,) in an arbitrary 
direction of v 

For the system of differential equations (23) to have a 
solution, the following conditions must be met: 

This is easily proved by differentiating (24) with respect to 
'22,: * 

Differentiating next (25) with respect to a: and substi- 

tuting in succession ax(v)/aL in the equation for ax, /auk, 
we obtain a series in a, symmetric with respect ton and m, as 
required. 

Thus, two operations must be performed to take the 
fluctuations into account: solve the integral equation (25), 
and then integrate the system (23). These operations can be 
performed only numerically for some specific form of 
A (n,m), for example ( 2  1 ). The result, naturally, will be sen- 
sitive to the choice of the constants A,/2,,A2, . . . , and is not 
very instructive within the framework of an abstract theory 
without applications to a specific physical problem. We con- 
fine ourselves therefore to a qualitative analysis of the phase 
diagram starting with the Landau case (a = O), and using 
next the general reasoning of Sec. 2 concerning the action of 
the fluctuations. 

Without the fluctuations, it is convenient for our pur- 
poses to express the free energy in the form 

O , = ~ T . A + ~ ~ A ~ + ~ Z  [21  (n, m) - l.]a,2am' 

We begin with the case when the nontrivial configura- 
tions of Fig. 1 are absent. The structure-dependent part of 
(26) for r vectors is given by 

$ ( r )  = 6 K (n, m) on2am2, I=2h (n, m) - h, (27) 

and with this normalization the energy $(I)  of the one-di- 
mensional wave is zero. If all the minima of A (n,m ) as func- 
tions of the angle are positive, then Eq. (27) has only one 
minimum for the one-dimensional wave, and all the remain- 
ing extrema are saddles. The situation is the same here as for 
il = const. Let now - A, be the smallest negative minimum 
il corresponding to an angle 0 between the vector pairs. 
There is only one nonfrustrated configuration that yields (at 
least a nonlocal) minimum of (27). It is made up of four 
vectors with the same angle between them (Fig. 7a). The 
end points of the vectors are then the vertices of a regular 
tetrahedron. The energy of this free quasicrystal (four free 
phases 0, ) is 

States with smaller numbers of momenta will be saddles or 
maxima. Therefore the rhombohedra1 system, as stated in 
the Introduction, remains unstable. 

Configurations with more than four momenta are frus- 
trated. At large r a system with energy (27) can be typical 
glasslike properties, but a discussion of such questions is out- 
side the scope of this article. 

The fact that A(n,m) depends only on (v,v, ) 2  makes 

FIG. 7. 
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it possible for states with P = x/2 to be minima, for it is 
precisely at /? = x/2 that there are only three vectors with 
equal angles between them (Fig. 7a becomes degenerate). 
The corresponding state is a primitive cubic (PC)  crystal. 
We present an expression for its energy in the simplest case 
(2  1 ) . Note that in this case the nontrivial extrema p # x/2 
do not exist at all. We have 

We write down in the simplest variant also the energies of the 
FCC and BCC, phases. The configuration k, that describes 
the FCC is an irreducible tetrad (Fig. 7b) with k, directed 
along the four body diagonals of a cube. All the angles P 
between the vectors are equal, with coso = - 1/3. After 
minimization with respect to the phases we have from (21 ), 
(22), and (26) 

Finally, 

It must be taken into account in the calculations that in a 
tetrahedron (Fig. 4) the angles between the vectors are 60, 
90, and 120". 

It is easily seen from Eqs. (28)-(30) that all the states, 
viz., of the one-dimensional wave 1, PC, FEE and BCC,, can 
be absolutely stable, depending on the relations between A, 
A,, and A,. The arguments in Sec. 2 show that in the case of 
strong fluctuations only the low-temperature phases of the 
Landau theory, in which the triangles are immaterial, sur- 
vive. Therefore even in the rather simple model (21), (22) 
the fluctuations make possible, besides the direct transition 
L +  1, also the direct transitions 

L-FCC, BCC2,PC 

It was apparently the transition L-BCC, for the strong 
fluctuation which was apparently obtained by Dyugaev,13 
for in his problem the interaction was patently dependent on 
the angles. 

In two-dimensional crystallization, allowance for the 
dependence of A on the angles makes rhombic, and particu- 
larly quadratic (0) solutions stable. Let us compare the en- 
ergies of and A: 

We see that at large A the quadratic lattice is preferred. At 
A ,  > A/2 a new transition cascade becomes possible 

or the direct transition L- for strong fluctuations. 

4. SYMMETRY BREAKING AND FLUCTUATIONS 

The concept of broken symmetry was formulated exact- 
ly by Pierre Curie back in the past century l 6  in the statement: 
"Only symmetry breaking produces a phenomenon." His 
meaning was that in view of the spherical symmetry of the 
main laws, the nature of the properties of all substances oth- 
er than classical gases is connected in one way or another 

with symmetry breaking. However, it was Landau, in his 
1937 papers,Ls2 who made the concept of broken symmetry 
into a tool of theoretical physics, by distinguishing between 
symmetry losses in jumplike and continuous transitions, and 
by singling out two types of energy dependence on the order 
parameter. 

The distinctive features of jumplike and continuous 
transitions are in Landau's theory signularities ("folds" ) of 
the general situations from the standpoint of catastrophy 
theory ( a  symmetrical "fold" in the continuous case). The 
situation changed radically when account was taken of fluc- 
tuations. The singularity at the point of a continuous transi- 
tion turned out to be special and dependent on the details of 
the fluctuational functional, such as the number of compo- 
nents of the order parameter and the number of significant 
charges. It became clear gradually, however, that fluctu- 
ations can in principle also restore the universality, by turn- 
ing a transition that is continuous according to Landau into 
a jumplike one. The first in this direction was the already 
mentioned paper by one of us,12 where it was shown in es- 
sence that even at the Landau critical points , ' .bhere  ,u in 
Eq. (1 )  is zero, crystallization due to fluctuations is a first- 
order transition. A number of workers have shown next (see 
the citations in Refs. 17 and 18) that in a large number of 
transitions describably by a multicomponent order param- 
eter and by a large number of charges, fluctuations trans- 
form a transition that is continuous according to Landau 
into a jumplike one. Finally, one of us has advanced the hy- 
pothesis that a general transition that is continuous accord- 
ing to Landau, i.e., with a large number of components of the 
order parameter and with more than two charges, has an 
overwhelming probability of becoming a first-order transi- 
tion when fluctuations are taken into account. By the same 
token, exceptions are transitions of the simplest type, viz., 
one-component, quantum, ferromagnetic, and others. This 
hypothesis was subsequently proved by Michel.'" 

It is of interest to note that the statement that a general 
transition is of first order was formulated and proved by 
Dykhne and one of us2' even before the advent of the fluc- 
tuattion theory of continuous processes. The general transi- 
tion was regarded in Ref. 20 as a transition with a random 
Hamiltonian, and the corresponding free energy was deter- 
mined, using the method of Yang and Lee,21 from the roots 
of a high-order random polynomial. 

We note in conclusion that in the theory of weak crys- 
tallization the fluctuations act quite uniquely: they suppress 
the specific role of the triangles, by the same token erasing 
the difference between weak and normal crystallization. 
From the aforementioned general standpoints this is, of 
course, not surprising. 

Note: Following Eq. (2 )  is an erroneous statement that 
the theory is valid only if k,< 1 and k <A < k,,. Actually, 
however, the contribution of the fluctations determined by 
Fig. 2a is always negligible, as shown by one of us in Ref. 12. 
This eliminates completely from the theory the constraint on 
the period of the crystal. 
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