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The transition of a frustrated Heisenberg antiferromagnet into a nonergodic state is investigated 
in the infinite-radius model. A phase diagram in an external magnetic field is constructed. Its 
distinctive feature is that the temperature of the transition into the nonergodic state increases 
with the field both in the collinear phase and after the overturning of the sublattices. The spin-flop 
transition line has a section in which the sublattice overturning is accompanied by a first-order 
transition from a nonergodic to an ergodic state. It is shown that the frustration leads to a growth 
of the transverse susceptibility as the temperature is lowered in the interior of the 
antiferromagnetic phase, and to other anomalies of the behavior of frustrated antiferromagnets. 

INTRODUCTION 

Many experimental investigations of the properties of 
disordered (both Heisenberg and Ising) antiferromagnets 
and of the transition of these antiferromagnets into a ~ a n e r -  
godic state have been recently reported. ' - ' I  A theory of Ising 
disordered antiferromagnets was developed in Ref. 13 in the 
framework of the Sherrington-Kirkpatrick infinite-range 
model.'' In the nonergodic state, both the antiferromagnetic 
and the spin-glass order parameters differ from zero. This 
state was therefore named antiferromagnetic spin glass 
(AFSG). The distinction of AFSG is manifested primarily 
in its behavior in an external magnetic field, which sup- 
presses both the long-range ferromagnetic order and the 
spin-glass state. Therefore, depending on the relation 
between the parameters, a magnetic field can not only de- 
crease but also increase the temperature interval in which 
spin glass exists. 

The experimental data3."' show that the temperature 
Tg ( H )  of the transition into AFSG does indeed increase 
strongly with the field in both Ising and Heisenberg antifer- 
romagnets. 

The distinctive features of the transition into AFSG in 
Heisenberg systems are due first to feasibility, in general, of 
transverse freezing and second to the fact that the transition 
can take place from an spin-flopped state, in which the subla- 
tice moments are not collinear. This raises two questions: 
how does the function Tg ( H )  behave in the collinear and 
spin-flopped phases, and what singularities appear on the 
phase diagram when the line of the continuous phase transi- 
tion into the nonergodic state T, ( H )  intersects the line of 
the spin flop, which is a first-order phase transition? We 
shall show that in both the collinear and the spin-flopped 
phases the region in which AFSG can exist can increase with 
increase of the magnetic field. According to experiment," 
the relative growth of the temperature T, ( H )  with increase 
of the field is larger the smaller the disorder. On the line 
separating these phases there exists a region of fields and 
temperatures where a first-order transition into a nonergo- 
dic state takes place simultaneously with the jump of the 
moments. 

In an ergodic antiferromagnetic state, regardless of the 
relations between the parameters,  experiment^^-^^^^ have 
shown that disorder leads to an increase of the transverse 
susceptibility with decrease of temperature. In some cases 
the longitudinal susceptibility can also increase near the 
N&el temperature T,(TS T N ) .  Increase of the disorder 
leads to a decrease of the sublattice flopping field (at  the 
same NCel temperature) and narrows down the magnetic- 
field region in which long-range antiferromagnetic order ex- 
ists. 

1. EQUATIONS OF STATE 

Consider a Heisenberg antiferromagnet in which the 
spins are distributed among two subsystems. We assume 
that the exchange interaction energies V,  and J, inside and 
between the subsystems do not depend on the distances 
between the spins and have a normal distribution with mean 
values V,,/N and - J,,/N, and respective variances V /  
N '/'and J / N  'I2, where Nis the total number ofspins in each 
subsystem. The spin Hamiltonian of the system is 

where D >  0 is the magnetic-anisotropy constant, H is the 
external field, and the subscripts p = 1 and 2 number the 
subsystems. 

In Appendix 1 we obtain by the replica method a system 
of equations of state for the "sublattice" magnetizations m,, 
the Edwards-Anderson parameters qg', and the quadrupo- 
larity parameters Q:v ( p  and vare  the spin vector indices): 

where the thermodynamic averaging ( . . . ) is carried out 
with the effective Hamiltonian. 
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and the configuration averaging ( . . . .) is over the Gaussian 
distribution of the random fields: 

(det &-I) '/' 1 
P (t,) = --- ex,, ( - tpip-Itp) 

(an)" 

These are the equations of state of a frustrated antiferromag- 
net and are valid above the temperature T, ( H )  of the transi- 
tion into the nonergodic phase and on the transition line 
itself. 

If the field is weaker than the flopping field H,,  the 
sublattice magnetizations a p  parallel to the anisotropy axis 
z, while the tensors 4, and Q, are diagonal and isotropic in 
the transverse plane. In this case Eqs. (2)-(4) are simpli- 
fied. The expression for the effective Hamiltonian takes, 
apart from a constant, the form 

P 

where the components of the vectors a, are 

ap~H~-Jomp~u+Vomp@+l(q,~w)"~p~'+V(qpw)~'"tpg, p P p ' ,  

(6 )  
and the effective anisotropy parameters are 

Here qi'  = q", q1 = qxx = qYY, and similarly for Q. In the 
change from (3)  to (5)-(7) we have used the substitution 

tPU-.t,'f gpw)"2, 

so that the distribution functions are 

P( tp )  = (2n) -'i;exp(-t,z/2). 

Rotating the coordinate frame in the ( t  ,",t Lf ) plane through 
an angle e, such that 

tg c~=(VlJ)"'(q,"y~,')"', 

we rewrite a; in the form 

All the configuration averagings are then reduced to integra- 
tion with respect to one vector t. For example, 

The averaging for ij and @ in Eqs. ( 2 )  should be taken to 
have the same meaning. 

2. TRANSITION TEMPERATURE 

The temperature of the transition to the nonergodic 
state is determined by the vanishing ofone of the eigenvalues 
of the stability matrix''-'' 

As shown in Appendix 2, the eigenvalues A of the matrix M 
can be obtained from the condition that the following system 
of equations be solvable: 

with the susceptibilities given by 

Let the external magnetic field be weaker than the sublattice 
flopping field. Then, depending on the value of D, there are 
two possibilities: a )  A phase transition to a nonergodic state 
in which only the longitudinal components of the tensor qpv 
differ from zero (if D exceeds a certain value determined by 
the relation between the mean values of the exchange inter- 
grals and their variances). b )  Nonergodicity and freezing of 
the transverse spin components take place simultaneously at 
the transition point, i.e., q,"" = q r # O  below T, (Refs. 17 and 
18). In either case, however, if the field is weaker than the 
sublattice-flopping field, we have qrv = 0 ( p , ~  = x,y)  at 
D T,, and therefore the system ( 1 1 ) breaks up into three 
systems for the longitudinal, transverse, and mixed compo- 
nents: 

Since 

it can be seen that the "danger" to the ergodic state lies in the 
eigenvalues obtained from the solution of one of the systems 
(13). Putting A = 0 in the systems (13),  we obtain from 
their solvability condition equations for the temperature of 
the transition to the nonergodic state: 

The transition to the nonergodic phase takes place at the 
higher of the two temperatures ( Ti, and T, ) defined by Eq. 
(15). 

It is known that in pure and ferromagnetic spin glasses a 
magnetic field always suppresses the nonergodic phase. It 
was shown in Refs. 13 and 14 that in a frustrated Ising anti- 
ferromagnet the temperature T, can increase with the mag- 
netic field, i.e., an external field expands the region of exis- 
tence of the nonergodic phase. The reason is that the 
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magnetic field decreases the total field acting on one of the 
sublattices. It can be seen from (15) that this conclusion 
remains valid also for a Heisenberg antiferromagnet, regard- 
less of which of the temperatures ( T I ,  or  T, ) coincides with 
T,. Let, for example, the interaction between the sublattices 
be non-fluctuating (J/J,,-+O, J,, = const). Then 

The sublattic with the highest susceptibility will be the one 
acted upon by a molecular field directed counter to the exter- 
nal one. Since this susceptibility increases with increase of 
the external field, T, likewise increases with H .  

The character of the T, ( H )  dependence in various 
limiting cases, both before and after the sublattice flopping, 
will be considered in detail below. We shall see that T, can 
increase with the field also in the case when the principal role 
is played by fluctuations of the interaction between the sub- 
lattices. 

After the sublattice flopping, when their magnetiz- 
ations are noncollinear, the analysis of the system ( 11 ) is 
extremely complicated. A complete analysis, capable of con- 
structing a phase diagram in fields both higher and lower 
than the flopping field, will therefore be carried out for the 
T, ( H )  dependence in the simplest case of a weakly frustrat- 
ed antiferromagnet. 

3. PHASE DIAGRAM IN THE CASE OF WEAK DISORDER 

We begin the study of the phase diagram with a calcula- 
tion of the effective energies of the anisotropy b,. I t  is easily 
seen that if J ,  V<J, + V,, and the temperature T< T, 
= J,, + V,,, in the configuratio%averaging the main contri- 

bution to the integrals for ij and Q are made by values t =: 1, so 
that the terms containing J and V can be neglected in the 
calculation of 6 and Q. It turns out then that 

Qpll-qpl'=TZ (IO+ V O )  - z ,  

and Q j  =. T(Jo + 4,) - I .  Recall that at T, the transverse 
component q i  = 0. As a result we have 

bp=D-UZIUo, 
where 

In the following subsections a )  and b )  of the present 
section we assume initially that D > U 2 / U 0 .  This restriction 
on D is not stringent and can be met even if D<J, V<Jo, V,,; 
we have thus an effective anisotropy of the "easy axis" type: 
b, ,-D>O. 

a )  Let the magnetic field be weaker than the flopping 
field H, = 2S(DJO) I". I t  can be shown that since the effec- 
tive anisotropy b, > 0, the transverse correlator is (x:) ,  
- ( T / D )  ' and the eigenvalue AT does not vanish at any tem- 
perature. Thus, T, coincides with Tll  of ( 15).  We shall show 
presently that T, is exponentially smaller than J or V, mean- 
ing, also D. In the calculation of the thermodynamic mean 
values in expressions of type ( 9 )  for xII it is therefore neces- 
sary to integrate with respect to S near the values S, = + S. 
Carrying out next configuration averaging just as in the Is- 
ing model, we obtain an expression for T, (Ref. 19): 

V B J  exp (-H,Uo/2U2S+HCZ/4U2S2), (17) 

then 

T ,  (H,)  =T,(O) V2U-Z exp[H,UolU2S-W,z/2U2SZ] (18) 

and T, ( H ,  ) T, (0), i.e., the temperature of the transition 
to the nonergodic state increases strongly with H. Since 
D<J,, the criterion (17) is almost always satisfied. If, how- 
ever, V> J2/U,,, then T, increases monotonically with the 
field all the way to the flopping. 

b )  The magnetic field exceeds the flopping field. Since 
the disorder is weak, the sublattice magnetization is the same 
as in a pure antiferromagnet: 

m,Z=m,z=SH/Ilo, mlX=-mzX=S(l-H"Ho2)">, rn,"=O, 

and the sublattice collapse field is H,, = 2(J0  - D)S. 
The tensor 4 is not diagonal in this case, and in view of 

the small disorder we have 

Since the matrices ijp cannot be inverted, it is inconvenient to 
use Eq. (4) .  I t  is simplest to turn again to Eq. (AS) .  Express- 
ing the second sum in (A9)  in the form 

we obtain for the effective Hamiltonian, with the aid of the 
transformation (A9)  for a scalar quantity, the expression 
(5) ,  but now the fields a, are equal to 

a,,=H-JOm,~+VOm,+JtPP~~~,,~~ViPmp, p'f p. (21) 

We assume as before that D >  U2/U, ,  and therefore retain 
only D in the effective anisotropy. The same considerations 
as above lead to the conclusion that the phase transition is 
connected with the longitudinal spin correlator. Since D &  T, 
we obtain by using the saddle-point method to calculate the 
thermodynamic mean values 

( (xiu) ' ) .  =( ( x ~ ~ ~ ) ~ ) ~ =  s'( L4 ch-' 
T 

where the saddle-point value lo of the coslne 6t the angle 
between the spin S and the z axis is given by 

The transition temperature ( 15) is equal to 
a E S T:=U2( ( x ~ ~ ~ ) ~ ) ~ =  U'S' (to' c h - ~  2) . 

c 

(24) 

Before giving the calculated T,, we advance qualitative 
arguments that explain the character of the T, (H) depen- 
dence after the flopping. The main contribution to (22) is 
made by configurations in which a,c,,=: T. It can be seen 
from (24) that in all cases the dependence of the characteris- 
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FIG. 1. Fields acting on the spins of the first sublattice. The thick arrow 
shows the average total field h = H - J,,mz + q,ml ,  the dashed arrows 
shows the molecular fields that fluctuate in space, from the directions of 
the spins of the first ( h ,  = vql"tz) and second (hz  = jq'l't,) sublattices. 

tic values of{,, on Tis in all cases weaker that T  ' I 2  otherwise 
Eq. (24)  has no solutions. I t  can be verified by direct calcu- 
lations that lo does not depend on T a t  all, meaning that 
a, =: T. If we now neglect a, in (23 ), we find that 

Thus, if Jam, $2DS, the configurations of importance are 
those in which not only a, but also a, is much smaller than in 
a pure antiferromagnet. Random fields that can lead to such 
a weakening of the field a are shown in Fig. 1.  I t  can be seen 
from the figure, just as from Eq. ( 21 ) ,  that at V =  0  these 
conditions cannot be met simultaneously. This means that if 
there are no fluctuations of the exchange between the sublat- 
tices, the temperature Tg jumps down to zero at H  = H, and 
is equal to zero all the way to fields close to Ho when the 
condition Jam, $2DS is not met. In such strong fields, a, is 
small in all the configurations, so that Eq. ( 24 )  can be satis- 
fied. The temperature Tg increases with H  in such strong 
fields up to H  = H,, and then drops just as in a ferromagnet. 

If V #0 ,  the conditions under which the components of 
the vector a are small can be met. The temperature T, is 
therefore no longer zero in the flopped phase far from the 
collapse field, although the Tg ( H )  plot does cross the spin- 
flop curve at lower temperatures than in the collinear phase 
(see Fig. 2 ) .  With increase of field, m, decreases and the 
transition temperature increases monotonically in the entire 
field interval H, < H  < H,,. 

The actual calculation of the configuration mean values 
leads to the following relations. 

For fields far from H,, when the following condition is 
met: 

FIG. 2. Phase diagram on ( T,H) plane. The shaded region of the diagram 
corresponds to the nonergodic phase under the T, ( H )  line. The thin line 
is a first-order phase-transition curve that coincides with T, ( H )  on the 
segment AB. The dashed lines are the suggested phase-transition lines in 
the nonergodic phase. 

the transition temperature is 

( 26 )  
and close to Ho, when 7, < 1 ,  

The general form of the phase diagram is shown in Fig. 
2. It can be seen that (26)  that, accurate to the leading term 
in the argument of the exponential, 

T,>(H,) =T,(H+H,+o) =exp(-Uo212V2) ( 28 )  

and is consequently exponentially smaller than T, ( 0 ) .  At 
the same time T,' = Tg (H-H ,  - 0) exceeds Tg ( O ) ,  so that 
at H  = H,, in accordance with the qualitative arguments 
advanced above, Tg (HI decreases jumpwise. If V = 0,  the 
temperature T,> ( H ,  goes to zero. 

It follows from ( 26 )  that the transition temperature 
T, ( H )  increases with the field exponentially in almost the 
entire interval from H, to H,,, except for a narrow interval 
near H,, where m, is small: m, < DU"U( J Z <  1.  Near Ho 
the temperature Tg ( H )  increases according to ( 27 )  as a 
power of H. At the intersection point of the T, (H)  and 
T, ( H )  curves Eq. ( 27 )  is continued by the known expres- 
sion of de Almeida and T h o u l e ~ s ' ~  for the temperature of the 
transition to the paramagnetic state. In our case this expres- 
sion is of the form 

( 2 9 )  
I t  is seen from ( 27 )  and ( 29 )  that the T, (H)  curve has a 
kink at the point where it crosses the T, ( H )  curve. This fact 
was noted by us earlierI4 for the Ising model. The ratio 

obtains independently of the relation between J and V. 
It follows from our results that in systems where the 

long-range magnetic order changes jumpwise the transition 
to the spin-glass state can also be jumplike rather than of 
third order as usual. The jumplike onset of nonergodicity on 
the phase diagram of Fig. 2  should take place on going from 
flopped antiferromagnetic to collinear on section AB of the 
phase diagram. 

C )  Similar calculations show that the relation between 
D  and U 2 S / U 0  is of no importance for the general character 
of the Tg ( H )  dependence. Although the transition tempera- 
ture Tg (H) at  D <  U 2 S / U 0  is determined not by the longitu- 
dinal but by the transverse susceptibility, it increases with 
the field as before both prior to and after the sublattice flop- 
ping. In the field H,, the temperature T, ( H )  drops jump- 
wise. 

The behavior of Tg ( H )  in the case of weak anisotropy 
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will be considered in greater detail in the next section for the 
opposite limiting case of a strongly frustrated antiferromag- 
net. 

4. FIELD DEPENDENCE OF T, IN A STRONGLY FRUSTRATED 
ANTIFERROMAGNET 

If the anisotropy is weak, the transition temperature is 
determined by the transverse susceptibility. In a field H < H, 
(the question of the value of H, in a strongly frustrated anti- 
ferromagnet will be considered belop) the transition tem- 
perature is determined by Eq. (15), in which ( ( ~ 7 ) ~ ) ~  
must be replaced by" 

where 

Weusein (31) t h e f a c t t h a t Z , Q r = 3 .  
It follows from (30) and ( 3  1 ) that in the case of strong 

disorder, whenp = ( Uo - U)/U,,< 1, we have in weak fields 

The function A( Uip/J2) ,  whose exact form will not be 
written out, takes on in limiting cases the values 

Substituting (32) in ( 3  1 ) and (30) and expanding the argu- 
ments of the exponentials in powers of ap /T  and bp/T, we 

It follows from (33) and (15) that the temperature T, ( H )  

increases with the field if Jg vp'I2 and decreases in the case 
of the opposite inequality. From this and from the results of 
the preceding section it follows that in real systems, when 
U z  UO andp =: 1, the temperature T, in a collinear antiferro- 
magent increases with the field if J 5  V, regardless of 
whether the replica symmetry is broken first for the longitu- 
dinal or transverse components of the tensor q. Note that in 
the considered casep g 1 the relative change of the tempera- 
ture T, in the field is small: with parametric accuracy, T, is 
independent of the field all the way to H = H,.  

5. MAGNETIC PROPERTIES OF ERGODIC PHASE 

a )  Near the NCel temperature T,, = U,, when the quan- 
tities m ,,, , q,,, , and XI,, are small, we have for the longitudi- 
nal and transverse susceptibilities of a weakly ionized anti- 
ferromagnet 

Here 

where m,,, q,,, and X,, are the magnetization, the Edwards- 
Anderson parameter, and the sublattice-quadrupolarity pa- 
rameter in a zero magnetic field. 

Simple calculations show that 

( G o ~ o )  ( O O ~ O ) ~  TN-T 
go = , Xo = = - 

1-O2 5-30' ' T ' 
(C*omo)2=5(1-302) (1-D2) (5+11U2-6CL) -IT. (37) 

The tilde marks quantities measured in units of T,. We have 
hence for the susceptibilities 

At V = V,, = 0 Eqs. (38) and (39) coincide with those 
obtained by us earlier."' 

The coeffficient of r in(39) is positive at any value of 3, 
i.e., at any degree of disorder. Consequently, the transverse 
susceptibility of a frustrated antiferromagnet in the ordered 
phase always increases with decrease of temperature, at any 
rate near T,, and if u=: 1 the coefficient of r contains no 
small quantities whatever. The increase of the transverse 
susceptibility in disordered antiferromagnets were experi- 
mentally observed in Refs. 5-7 and 15 in the interval 
TN > T >  T,. 

The behavior of the longitudinal susceptibility is more 
complicated. The coefficient of r in (38) is positive when 
w2 > 0.35. Since the condition for the existence of an antifer- 
romagnetic phase is 3' 5 1, the sign of the coefficient of r can 
be positive only if t' < 0.3 1. If these two inequalities are 
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satisfied, i.e., the intersublattice interaction is sufficiently 
strongly frustrated, and the intrasublattice interaction suffi- 
ciently weakly, the longitudinal susceptibility also increases 
with decrease of the temperature near T N .  These conditions 
are quite stringent, so that in most cases the transverse sus- 
ceptibility is expected to increase with lowering of the tem- 
perature, and the longitudinal to decrease. 

b)  Sublattice flopping field. The flopping field is deter- 
mined by the condition that the collinear phase be stable to 
transverse fluctuations of the sublattice moments, i.e., by the 
pole of the transverse susceptibility X, . In the ergodic phase, 
q, is always zero. For the sublattice susceptibilities xi, 
which add up to XI, we obtain therefore the equations 

whose solution has a pole at 

(41 
Relation (41 ) determines the flopping field. 

Near T, we obtain 

With increase of the disorder, the field H ,  decreases. In  
strongly frustrated antiferromagnets, when 1 - 8'4 1, the 
flopping field is parametrically small: 

The magnetic field region in which long-range antiferomag- 
netic order exists decreases simultaneously with increase of 
U. In weak magnetic fields, the derivative is 

dTn  (Uo+2Vo)2 1 
-=- 
dH2 16JoWo I-o2 ' 

APPENDIX l 

Introducing replicas in the usual fashion, we rewrite the 
expression for the free energy in the form 

The parentheses (i, j) denote different spin pairs, a is the 
replica index, n is the number of replicas, and P ( J , )  and 
P( V,, ) are distribution functions: 

(A21 
Averaging over the distribution of the exchange integrals, 
we have 

1 
I=-T lim - - { ~ p  exp [&z (z s , , ) '  

n + o  Nn 
N+- a i , ~  

Jo+ Vo 
- -71 yl (z s P i a )  ' 

2 T a p  I 

Here p,v = X, y,z are vector indices. 
Applying the Hubbard-Stratonovich transformation, 

we obtain 

J +V 
d J o ) '  r,s..x,+(._ip) 'E s p , x p ~ - ~ ~ ~ p . 8 3 ~ p %  + z  - 

Y.' 2 1 p , ,  

Herep = 1 or 2, and x,, x,, j, , j ,  are vectors and tensors in 
the direct product of the replica and spin space, and sPi is the 
spin vector in this space and has components S;:'. The inte- 
gration is over all the components of the vectors x and of the 
tensors j. 

Summing over i, we express f in the form 

where 

We calculate the free energy by the saddle-point method in 
the replica-symmetric approximation, i.e., assuming that in 
the saddle point the components y;.La and which are 
diagonal in the replica are independent of a ,  while y'i,", and 
vf;,'& are independent of the choice of the ( a ,  /?) pair. Intro- 
ducing next the quantities 
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and similarly for x, and y,, we obtain the followingsaddle- 
point equations: 

The averaging in (A7)  is carried out with the effective ener- 

gy 

Expression (AS) can be so transformed that only the spin 
variables pertaining to one replica are left. We use for this 
purpose the identity 

1 - (det L,)'l2 5 exp XAX = ------- etx-'lstLt dt, 
L (an) 1% 

h 

where 2 = A -  I .  Taking after the transformation the limit as 
n --0, we obtain the system (2)-(4) given in the text for the 
equations of state of a frustrated antiferromagnet. 

APPENDIX 2 
A 

According to (A6),  the matrix M has the following ele- 
ments: 

The symmetry of these matrix elements in replica space 
leads, just as in Refs. 16 and 17, to the folkwing structure of 
the eigenfunctions T: , "~ , ,~ ,  of the matrix M: 

if all the (a#)  pairs take on a 
fixed value ( y , ~ )  

Therefore, in the limit as n -0 the pr~blem~reduces to a de- 
termination of the eigenvalues of a matrix C with elements 

It can be shown that one of the eigenvalues is always equal to 
unity, and the others are determined by the system of eqtia- 
tions ( 11 ) of the main text. 

CONCLUSION 

We have obtained in this paper general equations that 
describe a frustrated antiferromagnet and the stability limit 
of the ergodic state. Analysis of the phase diagram in simple 
limiting cases of weak and strong disorder has revealed the 
qualitative distinctive features of the behavior of the consid- 
ered systems, features which we assume to be preserved also 
in a real situation. We have in mind here the increase of T, 
with increase of the magnetic field both before and after the 
sublattice flopping, the jumplike decrease of T, (H) on inter- 
secting the line of the magnetic first-order phase transitions, 
and the jumplike onset (vanishing) of nonergodicity on 
some segment of this line. These phenomena are brought 
about not by specific relations between the parameters, but 
by qualitative factors, viz., by the decrease of the total field 
on one of the sublattices prior to the flopping, and by the 
appearance, after the flopping, of a molecular-field compo- 
nent perpendicular to the anisotropy axis and to the external 
field. 

Naturally, to observe these phenomena it is necessary to 
carry out the measurements on single crystals. Unfortunate- 
ly, polycrystals were investigated in Ref. 10, where an in- 
crease of T, with H was observed. 

We discuss, finally, the role of random-field effects. I t  is 
known that a magnetic field H > H, applied parallel to the 
anisotropy axis of a disordered antiferromagnet leads to the 
appearance of effective Ising random fields that act on the 
antiferromagnetic order parameter 1 (Ref. 2 1 ). If these field 
are "turned on" at T >  T ,  ,lowering the temperature leads to 
freezing of a metastable state without a long-range magnetic 
order." The magnetic field must therefore be turned on after 
the transition into the antiferromagnetic phase. On the other 
hand if H >  H,., the external field is perpendicular to the 
antiferromagnetic order parameter, so that no random fields 
are produced at all. An investigation of the phase diagram in 
the flopped phase is from this viewpoint most desirable. 

We note finally that the conclusion that the transverse 
susceptibility increases with decrease of temperature at 
T< T,, is of general character. It was obtained, on the one 
hand, for an antiferromagnet with arbitrary disorder, and on 
the other, for the case when, just as after the flopping, no 
random fields capable of altering the character of the depen- 
dence of ~y , on Tare  produced. 

"For convenience, we put S' = 3 here and in the following. 
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