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The properties of a two-dimensional system in a strong magnetic field are studied with allowance 
for interaction between the particles. In the presence of two equivalent valleys the symmetry of 
the Hamiltonian is shown to determine in an essential way the properties ofmagnetic 
excitons.The character of symmetry depends on intervalley scattering of the particles and on the 
symmetry of the dispersion law ~ ( k )  near the minimum. In the case when intervalley scattering is 
predominant (E,, ( 0 )  < 0 ) ,  gapless collective excitations with a linear dispersion law occur. A 
similar situation may take place for electrons in a GaAs heterojunction. 

INTRODUCTION 

Two-dimensional electron system in a strong magnetic 
field H are the subject of intensive theoretical and experi- 
mental investigations (see, e.g., reviews, Ref. 1 and Ref. 2 ) .  
Although the important role of the electron interaction is 
widely known (especially for the fractional filling of Landau 
levels), its rigorous account remains an unsolved problem. 

In a recent paper' are discussed, properties of silicon- 
based MIS structures with surface orientation ( 1  10) such 
that when partial lifting of degeneracy is taken into account 
two-dimensional electrons have, owing to time reversal, two 
degenerate valleys' with energy minima at points + Q/2, 
which we shall consider located on they axis in the plane of 
the boundary (the z axis is the normal to the boundary). 
Electron-electron interaction plays a crucial role in forming 
the ground state of such a system, and two possibilities shall 
be considered: electrons fill only one valley or are evenly 
distributed between both valleys (in Ref. 3 this is a result of 
interaction between electrons and impurities). The aim of 
the present paper is, first, to point out a connection between 
Ref. 3 and earlier work,"-" in which magnetic excitons were 
studied in two-dimensional systems in a strong magnetic 
field, so that some striking properties of these excitons find a 
natural explanation in the symmetry analysis suggested in 
Ref. 3. Second, we investigate various physical effects not 
connected with the presence of impurities, but which deter- 
mine the character of the ground state and the collective 
excitations in such a system. We obtain also concrete expres- 
sions for various physical quantities near v = 1 ( v  is the fill- 
ing factor of a Landau level). In addition, we show that a 
similar physical picture may be realized also in a heterojunc- 

1. BASIC PHYSICAL MODEL 

Our initial premise is that in the two-dimensional sys- 
tem there is a crystalline order leading to a dispersion law 
~ ( k )  of two-dimensional electrons as a function of their qua- 
simomentum k, which assumes values in a two-dimensional 
Brillouin zone. The function ~ ( k )  is even ( ~ ( k )  = E (  - k )  ) 
and has equal minima at k = (0, + Q/2) .  

Assuming that the magnetic length I,, = ( f i c / eH)  I f '  is 
much larger than the atomic distances of the order of Q - - ' ,  
we obtain the Hamiltonian of interacting two-dimensional 
electrons, neglecting exponentially small terms of order 
exp( - l;,Q1). 

As is known (see, e.g., Ref. l o ) ,  in the presence of a 
vector potential A the appropriate basis consists of functions 
exp(ik.p) u, ,,,, ( p ) ,  where u, ( p )  are Bloch functions of 
the two-dimensional crystal (everywhere below we are not 
interested in the dependence of the wave functions on the 
transverse coordinate assuming this dependence to be 
known). We shall try to find the wave functions in the mag- 
netic field in the form d ( p )  = f( p )  u,  ..,, ( p ) ,  where the 
function f( p)  satisfies the effective Schrodinger equation in 
the crystal (the electron charge is equal to - e)  : 

Here ~ ( k )  is a periodic function of its argument with the 
periods of the reciprocal lattice. For low-energy states only 
the minima of ~ ( k )  are relevant. These minima are located 
far away from each other, and, neglecting the overlap of the 
wave functions (of the order exp( - / ;Q2)) ,  we obtain the 
wave functions of the lowest levels in a magnetic field with a 
vector potential A = (O,Hx,O) (in dimensionless units, i.e., 
x - ~ ~ x , ~ + / ~ Y ,  ky +k/ / ,{) :  

where the index n numbers Landau levels, k is the quasimo- 
mentum in the y-direction,the index r = $- 1 numbers val- 
leys, and L, is the length of the sample in they direction. The 
normalized functions (x)  are the oscillator functions, 
and @ ,,.r ( x )  and @,,, . ( x )  coincide only in the parabolic 
approximation in ~ ( k )  near a minimum, while in the general 
case they satisfy the relation 

since the function ~ ( k )  is even. 
When the interaction is neglected, the energy of an elec- 

tron depends only on the number of the Landau level, and we 
shall regard the quantity AE,, = E, + , - E,, = h, ( w ,  is 
the cyclotron frequency defined by ~ ( k )  ) as large compared 
to the characteristic interaction energy (e2/l,, g h ,  ), and 
restrict ourselves to electron states within the nth Landau 
level. In this case states with n '  < n are completely occupied, 
while states with n' > n are empty. 

Introducing Fermi creation and annihilation operators 
ii,;, and Ti,.r (we omit the index n ) ,  we obtain for a pair 
interaction with a potential V ( r ) ,  after integrating over the 
variable y, the following expression for the interaction Ham- 
iltonian (L, = 1 ) :  
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where by are reciprocal-lattice vectors, {k,r) stands for k,r,, 
k2r2, k3r3, and k,r4, and the quantities N,,,, (x,b,) are de- 
fined through the relation 

It is essential that when exponentially small terms are ne- 
glected, the arguments of the functions @,,, (x  + k)  and 
@,,,. (x  + k ') must be equal to within I,. Therefore only 
terms with 

are relevant in ( 1.3) ,  and by = - b ', (the quantity Q is in- 
commensurate with by ). Thus, with exponential accuracy, 
the interaction Hamiltonian is 

+ + x cD,,,,(Xff k 2 )  @ n , r , ( ~ ' t k 3 )  h'r.il(xrl -by) & , , T i  4 k 2 , r l  a k 3 . v  2kl,.r' 

(1.5) 

(when the relations ( 1.4) are taken into account). 
Thus, it is seen that allowance for umklapp processes 

with exponential accuracy modifies only slightly the form of 
the interaction, without causing any qualitative changes 
(since the quasimomentum conservation law has the usual 
form). We therefore omit the umklapp processes and set 
by = 0. The interaction may be expressed in the form 

where the operators 2, = 2,. + , and hk = a,, - , , V(q) is 
the Fourier component of the interaction potential, and 

Let us show that A,, = A,,. To this end, we note that in the 
expansion 

where b, are reciprocal-lattice vectors, the contribution of 
the terms with b, # - b ', to the integral ( 1.7) may be ne- 
glected with exponential accuracy. Further, performing the 
transformation 

we obtain 

A,, = esp[i(y,+b,) (k2-k1+ y y )  1 

XJ exp[i(q,+b,) ( k t ' )  Id5 dg' 

NVzc ( b X )  iVm ( -bx)  @a,= (E+qu/2) @n,r (5-qv12) 

X@,,, (Er+qY/2)  a,,, (E'-qu/2). 

Interchanging variables {++ - {' and taking into account 
that the quantities RrT do not depend on T and the condition 
( 1.2) is satisfied, we obtain A,, = A,,. Below we shall omit 
the factors %,, (b, ) with b, #O, and regard the constants 
%,, (0) as included in the form of the interaction. In this case 

where 

zrn (q) = J e'"~' @,,+,(k+qr/'2) QV.+I (E-qs /2 )d t .  (1.9) 

In similar fashion it can be shown that the quantities A , ,  and 
B, ,  are given by 

The last term in the Hamiltonian ( 1.6) may be transformed 
by using the intermediate integration 

,. 

exp [ i q x  ( k ,  - k l  + q,)lt &kl+bk:dk,+qgbkI-qy. 

Carrying out integration over the variable q, , we obtain the 
condition k, + q, = k, - a,, and, relabeling variables, we 
combine the last two terms in the expression ( 1.6). Thus, the 
interaction Hamiltonian finally takes the form 

where the effective interaction potentials are 
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Here n = H/H. 
The Hamiltonian ( 1.12) is valid with exponential accu- 

racy in the variable exp( - Z2,/a2), where a is the atomic 
length. The concrete form of the quantities V , , ,  (q)  depends 
on the form of the Bloch functions and an allowance for the 
umklapp processes. However, the symmetry properties of 
the Hamiltonian, which we shall discuss in the next section, 
do not depend on these functions and processes. 

2.THERMODYNAMlC PROPERTIES OF THE SYSTEM 

The difference between the effectivt interaction poten- 
tials V, and V2 [Eq. ( 1.13) ] is due to the transfer of a mo- 
mentum of order Q and to the asymmetry of ~ ( k )  near an 
energy minimum. Both factors are powerlike small in the 
parameter a//, . The model with Vl = V, is the most sym- 
metric one, and admits an exact solution for the ground state 
of the In this case, the Hamiltonian may be written 
in the form 

h 

whereAk = (iik ,ik ), and i is the unit matrix in the index 7. 

If one introduces, following Ref. 3, the "spin" operators 

where Gi are the Pauli matrices, tken the Hamiltonian (2.1 ) 
commutes with all the operators S, . 

One may choose as the ground state, e.g., the state with 
the maximum value of the operator 

when all electrons are in one valley and fill it completely. 
Owing to the isotropy (2.1 ) in the "isospin" space of the two 
valleys, any state obtainable as a result of a rotation in the 
isospin space has the same energy. The corresponding gen- 
eral expression for the wave function depends on two "an- 
gles" g, and 0 and has the form3 

. - 

q,. = 11 [c0s(U/2)6,+ -r r'.sin(0/2)^bk+] 10). (2.4) 
k 

where 10) is the vacuum with respect to electrons. 
If one proceeds from a state with a completely filled 

Landau level in one valley, these results may be interpreted 
in terms of "magnetic" excitons. Acting on the wave func- 
tion by the operator 

we arrive at a state that contains one magnetic exciton with 
zero momentum, and for the isotropic Hamiltonian (2.1) 
the energy of formation of such an exciton is zero. 

The Hamiltonians considered in this paper, are totally 
symmetric with respect to electrons in both valleys. In such 
systems a Bose condensate of excitons with zero momen- 

corresponds to one ofthe degenerate states (2.4), and 
these excitons form an ideal noninteracting gas. This strik- 

ing situation, for the first time observed in Ref. 4, is a conse- 
quence of symmetry-isotropy in the isospin space of a 
Hamiltonian of the form (2.1 ) , which describes an electro- 
neutral system, if one assumes S, = 0 and an electron den- 
sity equal to 1/2. 

Our aim is the investigation of the thermodynamics and 
the collective excitations for the Hamiltonian (1.12) with 
V, # V,. We ̂ note that such a Hamiltonian commutes with 
the operator S,, since it conserves the number of electrons in 
any valley. Depending on the sign of the energy of the exci- 
ton, there will be realized for a completely filled valley a 
ground state with either the minimum or the maximum val- 
ue of S, , and in view of the smallness of the terms that violate 
the complete isotropy, the account of the electron-electron 
interaction will be exact in the leading order in the small 
anisotropy. 

The energy of formationzf o%e exciton can be found by 
examining the commutator [H,, ,S- 1 .  Omitting simple cal- 
culations (see also Ref. 7-9), we obtain the expression for 
the energy of an exciton with zero momentum: 

The term in braces may be readily computed in the parabolic 
approximation to the electron energy near a minimum: 

E (k) =k,2/2ms+k;/2rn,. 

In the case of silicon, for the plane ( 1 lo),  the masses are1 
m, = m, and m, = (m, + m, )/2. The oscillator function 
is 

mn (x) = (n'L~2niz!)-1'2e-BZxz'ZH, (Px), (2.7) 

where0 = (m, /my ) 'I4, and H ,  (z) is a Hermite polynomi- 
al. Substituting this function in ( 1.9) and performing neces- 
sary integrations, we find that the first term of the expansion 
in the small parameter (Ql, ) - ' of the expression for E,, (0) 
in the braces (2.6) takes for the potential V(q) = 2?re2/tq 
the form 

-e ' (2n+l)ml~2  1 - 
2 ~ m i l ~  ( Q L 1 r ) '  ' 

(2.8) 

Thus, intervalley interaction favors formation of excitons, 
while the nonparabolicity of the energy near the bottom of 
the valley (the last term in (2.6) ) acts in the opposite direc- 
tion. Although the first term is of the order (a//, )', and the 
second of the order (a/l,)', numerical coefficients may 
change their ratio. It is very difficult to make a more exact 
statement, since the calculation in reality must include the 
wave functions in the direction of the normal to the surface, 
and also the true spectrum ~ ( k )  of two-dimensional elec- 
trons, which is not known accurately enough. 

A heterojunction without inversion may be another ex- 
ample of energywise favorable formation of excitons. In this 
case the spin-orbit interaction lifts the two-fold degener- 
a ~ ~ . " ~ ' ~  In the presence of a magnetic field the spectrum 
consists of two branches: 

E,+=%O* [ s f  (ti2+ Y~S)~"]. 

Here s are integers, 
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where m* is the effective mass, m, is the mass of a free elec- 
tron, g is the g factor, and A is the parameter of spin-orbit 
coupling. For such a system, the part of the exciton energy 
due to the interaction of particles is equal toI3 

where a is a numerical parameter. This energy must be com- 
pared with the energy loss due the transition of an electron to 
an other energy level. In this case transitions within one en- 
ergy branch (e.g., the transition (s, + ) - (s + 1, + ) ) cor- 
respond to cyclotron resonance whose energy is much larger 
than the particle-interaction energy. Transitions between 
levels (s, + ) - (s + 1, - ) correspond to the spin reso- 
nance, whose energy is 

For electrons in GaAs, f ia ,  gfia*, and presumably a situa- 
tion with Eex (0 )  + hSR <O may occur, i.e., formation of 
excitons is energywise favored. 

In the calculation of thermodynamic properties we 
shall consider hereafter the case when Eex (0 )  < 0 and Bose 
condensation of electrons sets in. Corresponding calcula- 
tions may be easily carried out in the generalized Hartree- 
Fock approximation. We note that when one Landau level is 
completely filled in the isotropic case (when Eex (0 )  = 0 )  
we know the exact wave function of the ground state (2.4), 
and calculations by the Hartree-Fock method will corre- 
spond to the first order of the perturbation theory in the 
small anistropy, which yields E,, (0 )  #O. 

We introduce the temperature Green functions: 

Gll(k. 7; k ' ,  Tr)=-(1'6a(~)6,, T(T'))=-6k,fr g l l ( ~ - - ~ ' ) ,  
I- .. 

GL2(k. T; h' ,  T')--(TD,(T) ~ I , , + ( T ' )  )= -<7k , f ,~gL~(~-~ ' ) ,  

(2.9) 
G,,(X., T; k'. T')=-<TT~,(T)O,;~~(T'))--~~~.~~~~~.!(T-T'), ,. 
G2,(k, 7; k', . t ' ) = - ( T b , ( ~ ) ~ c  + ( ~ ' ) > = - 6 , , ~ . g ~ ~ ( . r - ~ ' ) .  

A A 

(c?~ (T)  = erHlik e - TH, the averaging is over the Gibbs distri- 
bution). 

Restricting oneself to the lowest orders of perturbation 
theory (or splitting the highest Green functions, as is done in 
the theory of superconductivity), it is not difficult to obtain 
the self-consistent-field equations: 

Here, the following notation has been introduced: 

wherep is the chemical potential, and 

The energy parameters in (2.10) are 

We note that in the derivation of Eqs. (2.10) we subtracted, 
as usual, the energy of interaction with the background posi- 
tive-charge and put V ( q  = 0 )  = 0. 

In the formulae presented above we regarded all the 
averages as independent of k, which corresponds to a spatial- 
ly uniform state. However, it should be remembered that the 
momenta k are measured from the bottom of the corre- 
sponding valleys, which is equivalent to density modulation 
with the wave vector Q: 

i.e., we have a charge density wave, and the condition 
$, + $, = v yields only a spatially averaged density v. 

Equations (2.10) may readily be solved by a Fourier 
transform with respect to T. As a result, we obtain 
( W  = r T ( 2 n  + 1 ) )  

On calculating the quantities (2.12) with the help of 
(2.14), and substituting them in (2.11 ), we arrive at the 
following relations: 

where f ( x )  = [ex + I ] - '  is the Fermi distribution func- 
tion. 

Equations (2.15) implicitly define the quantities 
p (v ,T) ,  and A(v,T) and thus all the thermodynamic quanti- 
ties. For the phase-transition temperature we obtain from 
(2.151, letting 1 A (  tend to zero: 

The analysis carried out so far pertained to the case, 
E, (0 )  < 0. In the opposite case E, (0 )  > 0, no charge den- 
sity wave is formed and at low temperatures predominant 
filling of one valley is favorable, so that one has to look for a 
solution of equations (2.10) with $, # $, and x = 0. Now 
the consistency conditions take the form 

$l't+%=v, f(EtlT)=$t, f(E2/T)=$2 (2.17) 

and they define the chemical potential p (v ,  T). In this case 
the critical temperature TL, at which the intervalley symme- 
try is spontaneously broken, is given by the expression 

TCr=(E-E,)v ( 2 - ~ ) / 4 .  (2.18) 

It is seen from (2.16) and (2.18) that in all cases T, ( T5 ) 
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reaches a maximum at Y = 1. Of course, the expressions ob- 
tained here are only the first terms of an expansion in a / l ,  
and may be valid only in a small vicinity of v = 1. 

3. COLLECTIVE EXCITATIONS 

Since dissipation is usually determined by soft modes, it 
is of interest to find the energies of the collective excitations. 
If E,, (0)  > 0, the excitons themselves are these collective 
excitations, and we may use the results of Ref. 9 for the ener- 
gy of an exciton as a function of its momentum: 

From this it is evident that the expansion of the excition 
energy in the momentum begins from the quadratic terms 
(in the vicinity of an energy minimum). 

In the case E,, (0)  < 0  the collective excitations are 
Goldstone modes, which correspond to the independence of 
the ground-state energy of the phase of the charge-density 
wave or, in terms of excitons, of the phase of the Bose con- 
densate of excitons. We note that this is due to the comTuta- 
tion of the interaction Hamiltonian with the operator S, . 

To find the collective excitations we have to consider 
equations for two-particle Green functions obtained in the 
ladder approximation or, since we are interested only in the 
position of the poles, consider homogeneous equations for 
the variation SG(k,r; k ',TI) of one-particle Green functions 
whose matrix form isI4 

A 

Here G is the matrix Green furpion with components de- 
fined according to (2.14) and SZ is the variation of the mass 
operator in the self-consistent-field equations. 

Equation (3.2) corresponds to diagrams, which are de- 
pkted in Fig. 1, where the thick lines represenkthe quantities 
SG, and the thin lines the Green functions G (2.14). The 
dash corresponds to the interaction matrix, which defines 
the Hamiltonian ( 1.12). Since Z contains only equal-time 
Green functions, we can assume T = r' in the left-hand side 
of (3.2). 

We have quite a complicated system of four integral 
equations. It is convenient to represent the functions SG in 
the form 

d x  
6G (k, T;  kf, r) = 1 66(k-k', x ;  r, ~ ) e ' ~ ( ' * ~  )"- --, 

2n 
by introducing exciton variables x and k - k ' corresponding 
to the exciton momentum p. In the new variages the integral 
equations become algebraic for the matrix SG. After taking 
the Fourier transform in the variable T we obtain the follow- 
ing system of equations: 

The variations SX themselves are readily expressed in terms 
of the variations SG: 

Here we have used the notation: 

Sums over frequency w, are easily calculated if the expres- 
sions (2.14) for the functions g,, (w) are used, and it turns 
out that the right-hand sides of the equations for 6 g  contain 
only two combinations: IX = SG,, - 6GZ2 and 
p = h*SG,, - AsG,,. The final equations for them are 

2ioEz (p) 
X a -  ED (w2+4 1 A 1 ') P, 

Setting the determinant of this system equal to zero, we ob- 
tain equations for the spectrum of the collective excitations 
U(P> ( E o  =E;(O)): 

The frequencies of the collective excitations appearing in 
(3.7) were obtained by analytic continuation of the Matsu- 
bara frequencies contained in the definition of Sgi,. 

It is necessary to make here the following remark. The 
equations for the functions SG,, have been obtained in the 
approximation of the generalized Hartree-Fock method. 
One may say immediately that, more than likely, this meth- 
od is not applicable near the critical temperature T, (2.16), 
about which one can presumably only assert that T, -E, 
where E is the ionization energy of an exciton (with a possi- 
ble denominator in the form of a logarithm of the ratio of the 
exciton ionization energy to the anisotropy energy (see, e.g., 
Ref. 15 ), and T, has a maximum near v = 1. However, the 
circumstance that the Hartree-Fock approximation is as- 
ymptotically exact in the limit T-0 in the case4 V ,  = V, 
allows to hope that in the presence of a small anisotropy in 
the Hamiltonian our treatment is also valid in the limit T-0. 

Gapless collective excitations at small momentap cor- 
respond to a weak modulation of the charge-density wave. 
With the aid of (3.7), neglecting the asymmetry of s ( k ) ,  we 
obtain in the limit p -. 0 

oo(p) =~(p-~p,~+p~pyZ) '~,  

FIG. I 
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We emphasize that in the case when the effect of asym- 
metry of ~ ( k )  near the minimum is predominant, the spec- 
trum of the collective excitations begins from the gap E,, (0)  
given by the formula (2.6). 

It is clear that low-lying modes will be responsible for 
various dissipative processes. In the present paper we do not 
consider them. 

CONCLUSION 

The system considered in the present paper, of two-di- 
mensional electrons with two valleys in a strong magnetic 
field with filling factors near to unity, and with the interval- 
ley scattering and nonparabolicity of the spectrum neglect- 
ed, is a rare example of a problem in which electron interac- 
tion can be taken into account exactly (when states within 
only one Landau level are taken into account). The complete 
isotropy of the corresponding Hamiltonian explains the 
paradoxical res~lt~.~--the absence of interaction in the 
ground state of the exciton gas in a symmetric neutral system 
in a strong magnetic field. 

As was shown in Refs. 9 and 10, symmetry breaking in 
the Hamiltonian gives rise to interaction between excitons. 
The corresponding symmetry breaking was a result of the 
nonequivalence of electrons and holes. The general cause lies 
in thQact that a Hamiltonian not commuting with the oper- 
ator S - ,  which coincides with the creation operator of an 
exciton with zero momentum, necessarily gives rise to inter- 
action between excitons. In the present paper it is shown 
that, owing to intervalley scattering and nonsymmetry of the 
spectrum, which are small corrections (the former - (a/  
1, )3, the latter - (a/l, )', where a is the interatomic dis- 
tance), a charge-density-wave-type state with a wave vector 
Q equal to the distance between valleys, and symmetric with 
respect to both valleys is realized when the intervalley scat- 
tering is predominant. When the corrections to nonsym- 
metry predominate, a state with preferable filling of one val- 
ley is realized. The temperature of the corresponding phase 
transition is determined by the Coulomb interaction and is of 
the order T, - (e2/&I, ) Y( 2 - Y), where E is the dielectric 
constant; T, reaches a maximum at Y = 1. We emphasize 
that the results obtained about the symmetry of the Hamilto- 
nian are valid with exponential accuracy exp ( - l $/a2). Si- 
licon-based two-dimensional structures with surface orien- 
tation ( 110) should have this kind of behavior. 

It is also shown that in the case of GaAs-based two- 

dimensional structures a closely related situation for elec- 
trons may be realized, owing to the smallness of the g factor 
and of the effective mass. Here two spin subbands of the 
Landau level play the role of the two valleys, and the spin- 
orbit interaction (when the absence of inversion is taken into 
account) causes wave functions with different spins to be not 
symmetric. In t h i ~ c a s e  the Hamiltonian commutes only 
with the operator S,.  Now the Coulomb interaction plays 
the role of the intervalley interaction, and the frequency of 
the spin resonance the role of the asymmetry of ~ ( k ) .  

When a situation similar to a ferromagnet with "easy- 
plane" anisotropy takes place, gapless collective excitations 
occur in the system, and for small momenta we have w z c p  
(CZ (e2/&fix ( e l H  ) - 3 1 2 ) .  If, predominant filling of one val- 
ley is energywise favored, a gap is present in the excitation 
spectrum. 

In conclusion, the authors express their sincere grati- 
tude to E. I. Rashba and D. E. Khmel'nitskii for a discussion 
of the results of the paper. 
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