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Resonance tunneling of electrons via impurity states is the conduction mechanism in short 
semiconductor contacts. Inelastic processes are negligible at low temperatures. An analysis is 
made of the cases when the current passes through channels with one or two resonance impurities. 
The voltage scale of fluctuations of the random quantity J( V )  is equal to the width of the 
corresponding level. An increase in temperature T does not smooth out the fluctuations due to 
two-impurity channels. Regions with a negative differential conductance should appear at 
sufficiently high voltages. 

1. INTRODUCTION can be derived for them. In the case of narrow contacts one 

Strong fluctuations of the conductance of small-area 
contacts are observed because of the random distribution of 
impurities in a contact. The associated mesoscopic phenom- 
ena are discussed in a recent review' (see also the bibliogra- 
phy cited in this review ). An example of such phenomena is 
a strong nonlinearity of the current-voltage characteristics 
of such contacts. The characteristics of metal contacts had 
been investigated before2 and it was shown there that they 
become nonlinear at voltages inversely proportional to the 
transit time and also that they have regions with a negative 
differential resistance. An experimental study of nonlinear 
current-voltage characteristics of mesoscopic semiconduc- 
tor contacts was reported in Ref. 3. Impurities with reso- 
nance levels whose energy is close to the chemical potential 
are important in the conductance of semiconductor con- 
tacts. At low temperatures the length of a thermal jump may 
become greater than the length L of the contact and then 
inelastic processes are unimportant. The conductance is 
then dominated by channels with an almost periodic distri- 
bution of impur i t i e~ .~ ,~  The effective number of impurities in 
a channel may vary, depending on the length of the contact 
and on the impurity concentration. We shall consider the 
case of a low impurity concentration and short contacts, 
when one or two impurities are located in a channel. The 
case of a large number of impurities does not differ qualita- 
tively from the case oftwo impurities. However, the current- 
voltage characteristics in the cases of one or two impurities 
in a channel are very different. The case of one resonance 
impurity has been discussed extensively in the l i terat~re.~. '  
In this case the current through a contact is a monotonic 
function of the applied voltage since the contribution to the 
current made by one resonance reaches saturation on in- 
crease of the voltage, but the number of resonance impurities 
increases. In the case of two resonance impurities in a chan- 
nel the tunneling probability is maximal when the energies of 
these impurities are equal. An increase in the voltage alters 
the relative energies of the impurities and a channel conduc- 
tance may decrease. This may give rise to a negative differen- 
tial conductance. The effective number of channels depends 
on the width of the contact and on the impurity concentra- 
tion. We shall consider the case of sufficiently wide contacts 
when the number of channels is much greater than unity. 
The mesoscopic effects are then small and general formulas 

channel is the most important and then the contact conduc- 
tance depends on the actual disposition of the impurities. In 
this case the above results are only qualitatively valid. 

2. ONE IMPURITY IN A CHANNEL 

We shall consider a contact of area S a n d  of length 2L 
which has one resonance impurity of energy E ~ .  The Schro- 
dinger equation for an electron in the field of this impurity is 

where 1C., is the amplitude of the electronic statep to the left 
of the contact; 11, is the amplitude to the right of the contact; 
qbi is the amplitude at the impurity; Tp is the matrix element 
of the Hamiltonian between the states p and i. In the cases 
discussed below the nonresonance tunneling is negligible. 
Therefore, the corresponding terms are omitted from the 
system ( 1 ). Solution of the system ( 1 ) gives the general for- 
mula for the probability of resonance tunneling per unit time 
(from a statep to a state k )  : 

w h e r e r =  r, + r,, 

The conductance at absolute zero is found by summing Eq. 
(2)  over all final states and over all initial states of energy 
equal to the Fermi value E:  

The conductance has a sharp maximum amounting to e 2 / d i  
if E = E~ and rl = r, . We shall measure the coordinate of 
the impurity zi from the plane where TI = r, = T,. In the 
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case of a symmetric barrier this plane passes through the 
middle of the barrier. In the case of impurities located near 
this plane, we have 

r,, r=r, exp (T2xz i ) ,  ( 5  

where x is the reciprocal radius of the impurity state obeying 
the relationship A2x2/2m = E ~ .  The quantity TI  is exponen- 
tially small. The majority of the results is independent of the 
explicit form of TI .  The values of T, and T, can be found for 
specific potentials of the barrier and impurity using the for- 
mulas in Eq. (3) .  We shall calculate the matrix element 
T, = (p 1 H 1 i). The state Ip) should be orthogonal to the im- 
purity state ( i )  and it can be taken in the form 
Ip) = Ip') - li) (ilp'), where Ip') is the eigenstate of the 
Hamiltonian without an impurity and the wave function of 
this state p,, ( r )  decays exponentially inside the barrier. 
Apart from exponentially small terms, we have 

The last equation applies to a small-radius potential. In the 
case of rectangular barriers, we have 

2 p X  e ,  
exp [ -2% (LS-2,) ] r, =- 

p2+xZ x (Lfz,)  ' (6)  

wherep is the modulus of the wave vector of the state lp). If 
zi <L,  we have Eq. (5).  

If there are several impurities in a contact and they are 
sufficiently far apart, the conductance is given by 

The above quantity is self-averaging if the number of impuri- 
ties is large and it can be calculated by averaging over the 
positions and energies of the impurities: 

wherep is the number of impurities per unit volume and per 
unit energy interval. It therefore follows that the number 

represents the effective number of one-impurity channels. 
This number is equal to the number of impurities which are 
found in a layer of thickness -tc- near the z = 0 plane and 
which have energies in the interval -TI  near the Fermi en- 
ergy. 

In the case of semiconductor contacts we can have an 
experimental situation in which the chemical potential of 
electrons is altered by the electric field applied across the 
contact. The contact conductance then fluctuates near its 
average value described by Eq. (7) .  These fluctuations are 
characterized by a correlation function 

Here, the bar denotes averaging over E,  for a fixed value of 
the difference E ,  - E,. If the averaging is carried out over a 
wide range of energies E,, then Kg for a contact with a large 
number N, of channels is self-averaging and depends weakly 
on the actual distribution of the impurities. Averaging of Kg 
over the distribution of the impurities and their energies 
gives 

where A = (E, - E,) /~T, .  If A = 0, then Kg is equal to the 
variance of the conductances. Its value is N, times less than 
the square of the average conductance. The characteristic 
energy scale in which there is a change in the conductance is 
equal to the width T,  of the level of an impurity located at the 
middle of the contact. 

A finite temperature gives rise to inelastic processes, 
but broadening of the distribution function of electrons at 
the edges of a contact is now more important. The total cur- 
rent through this contact is 

where f ( ~ )  is the Fermi distribution function. For a low vol- 
tage, the conductance is 

de' 
4T ch2[ ( E ' - e )  / 2 T ]  

The average value of the conductance is independent of tem- 
perature. However, the correlation function depends strong- 
ly on temperature. At finite temperatures, it follows from 
Eq. (12) that 

If T g  I',, Eq. ( 13) reduces to the low-temperature limit de- 
scribed by Eq. ( 10). In the opposite limiting case of high 
temperatures T )  TI,  we have 

The variance governing the fluctuation amplitude is now a 
factor of 4T1/3Tsmaller than at the absolute zero. The ener- 
gy scale of the conductance fluctuations is equal to the abso- 
lute temperature. 

The differential conductance at nonzero voltage is 
equal to the derivative of Eq. ( 11 ) with respect to the vol- 
tage: 

1 
g ( V ,  E )  = T[g(e+eV/2)  f g(e-eV/2) 1. (15) 

The correlation function of the conductances measured un- 
der different voltages is 

The correlation function zg is obtained for fixed values of V, 
and V, by averaging over the chemical potential. It is clear 
from Eq. ( 15) that averaging over E can be replaced by aver- 
aging over V, for a fixed difference V, - V,. We then obtain 
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where Kg is given by Eqs. ( 1 0 )  and ( 1 4 ) .  Therefore, the 
differential conductance considered as a function of the vol- 
tage is a random quantity. The relative amplitude of fluctu- 
ations is equal to N ;  at low temperatures T & T ,  and to 
( T , / N ,  T )  ' I 2  at high temperatures T% r,. The characteris- 
tic scale of the voltage fluctuations is T l / e  and T / e  at low 
and high temperatures, respectively. We shall show that 
channels with two or more impurities may give rise to large 
fluctuations of the conductance. 

3. TWO IMPURITIES IN A CHANNEL 

The case of a low impurity concentration when the 
overlap of the electron states can be ignored was discussed 
above. An increase in the impurity concentration increases 
the importance of the electron-tunneling channels involving 
two resonance impurities. Then, the current is dominated by 
those channels in which one impurity is located closer to the 
left edge of the contact and the other closer to the right edge. 
The Schrodinger equation for an electron in the field of two 
such impurities is 

where Hi, is the matrix element of the Hamiltonian between 
the states of the ith and jth impurities. It decreases exponen- 
tially on increase in the distance r i j  between the impurities. 
In the case of small-radius impurities, we find by analogy 
with Eq. ( 6 )  that 

The formulas for the tunneling probability and for the 
conductance are then obtained by analogy with Eqs. ( 2 ) -  
(4). We thus obtain 

4e2 rrrl 1 Hij 1 
2 1 (~-&;+irr) (&-~~-kir~) - lHij l 2  1 '  ' 

( 2 0 )  

The maximum value of the conductance is e 2 / d ,  as in the 
case of one impurity. This value is obtained when 

In the case of a rectangular barrier this condition is satisfied 
when the distance between impurities is equal to half the 
length of the barrier. We then have 

4 p x  e2 
r22 = 

2& 
exp ( -2xL)  = --- r,. ( 2 1 )  

p2+r,"xL)Z xL 

For a symmetric distribution of the impurities the width of a 
two-impurity resonance is of the order of I?, and it is much 
greater than T I ,  which is equal to the width of the narrowest 
and strongest one-impurity resonance. In the case of an 
asymmetric position of the impurities the width of a two- 
impurity resonance is of the order of the width of the nar- 
rowest level. The contribution of two-impurity channels to 
the average conductance of a contact is found by averaging 

Eq. ( 2 0 )  over the positions of impurities and their energies, 
and it is given by 

where N2 is the number of two-impurity channels. 
The contribution of two-impurity channels becomes 

comparable with the one-impurity contribution if 

At lower values of the impurity concentration the two-impu- 
rity channels make a small contribution to the average con- 
ductance, but can make a major contribution to mesoscopic 
fluctuations of the current-voltage characteristic. It is im- 
portant to note that the impurity energies in Eq. ( 2 0 )  de- 
pend on the voltage across the investigated contact: 

When the voltages are V, and V,, the correlation function of 
the currents is 

The averaging in Eq. ( 2 5 )  is carried out over the chemical 
potential or over the voltage V  = ( V ,  + V 2 ) / 2  for a fixed 
difference Vl - V2. If the number N2 of channels is large, the 
quantity K j  is self-averaging and it can be calculated by 
averaging over the positions of impurities and their energies. 
The current J(  V )  in Eq. ( 2 5 )  can be calculated using Eqs. 
( 1 1 ), ( 2 0 ) ,  and ( 2 4 ) .  We shall consider the case when either 
the temperature T% T ,  or the voltage e  V% T ,  is high. The 
impurities with energies close to one another, - E, I - T,, 
are different from the chemical potential by an amount of the 
order of Tor e  V  and then play the dominant role. Averaging 
of Eq. ( 2 5 )  over the sum of the impurity energies and over 
the difference between them should be carried out indepen- 
dently and Eq. ( 2 5 )  should be factorized to give 

In the case of two-dimensional contacts of the kind used 
in field-effect transistors, Eqs. ( 10) and ( 14) are not affect- 
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ed ifp is understood to be the number of impurities per unit 
area and per unit energy interval, and S denotes the width of 
the contact. The formulas (26) and (28) are then modified 
somewhat to 

a3 
3,79-0,75a2 + a< I 

1 2 ~ l n c ~ ~ ~ ' ~  ' 
F (a) = 

2n'"-, u > l  
r, (28') 

The correlation function of the conductances is obtained 
from Eq. (26) by differentiation of 

At high voltages when eV& T,,  we have to differentiate 
the function F 

n3eh2SLI', jy 
8 -  2fiz x 3  

P"( e(:iV2) ) @ (Vi, V2, T). (301 

If Vl = V,, then F "  = - 0.424 and Eq. (30) gives the 
expression for the variance of the differential conductance. 
For a constant voltage the function @( V, V, T )  rises quadra- 
tically if e V ( T  and linearly if eV&T. Therefore, at suffi- 
ciently high values of V the variance may become greater 
than the square of the average value of the differential con- 
ductance given by Eqs. (22) and ( 7 ) .  This means that the 
current-voltage characteristic should have regions with a 
negative differential conductance. When the average con- 
ductance is dominated by two-impurity channels, the rel- 
evant condition is 

As pointed out in the Introduction, the physical reason for 
this effect is that the conductance of a two-impurity channel 
may decrease on increase in the voltage under off-resonance 
conditions. At some voltage the number of these channels 
may be accidentally greater than the number of channels 
with a growing conductance. An increase in the voltage by 
AV<T,/e  produces a relative change in the current 
amounting to 

where N( V) = e VN,/T, is the effective number of channels 
at a voltage V >  T,/e.  The first term is associated with an 
increase in the average number of channels and the second 
with a change in the conductance of a single channel. When 
the condition ( 3 1 ) is satisfied, the second term is larger than 
the first and the current-voltage characteristics should have 
regions with a negative slope. 

4. GENERATION OF HARMONICS 

The nonlinearity of the current-voltage characteristic 
of a mesoscopic contact should result in generation of har- 
monics if the contact is part of an alternating-current circuit. 
Let us assume that the voltage across the contact is a period- 

ic function of time and its frequency is w ( T,/+i. The current 
through the contact is determined by the instantaneous vol- 
tage and the amplitude of the nth harmonic is 

The average of J,  for many contacts vanishes if n>2. The 
average intensity of a harmonic differs from zero and can be 
expressed in terms of the correlation function of the currents 

P,, = /a2 = JJ K ,  (u. cos cp, uo cos cpr)  ein(q-q) d cp dvf. 
(32) 

In the case of an individual contact the intensity of a har- 
monic agrees with Eq. (32) only in respect of the order of 
magnitude. A quantitative comparison with Eq. (32) can be 
made by averaging the intensity of the harmonic over the 
chemical potential or over the applied additional static vol- 
tage. In the case of a contact with a large number of channels 
such averages depend weakly on the actual distribution of 
impurities. 

We shall now consider the contribution of one-impurity 
channels to the generation of harmonics. In the case of such 
channels the correlation function of the currents is expressed 
in terms of the correlation function of the conductances [Eq. 
( 16) ] with the aid of Eq. (29) and it is given by 

where 

T<I',. 

q (V)  =eV cth (eV/2T), TBr i .  

If the amplitude of the alternating voltage is small, Eq. (33) 
can be expanded in a series. Consequently, the intensity of 
the nth harmonic is given by 

(1) - n2 eP pSri2 --- d2" 
Pn - 24r1-6(~!)2 uozn -- cp (V) . 

3c d VZn (34) 

Equation (34) is valid in the case of odd harmonics. It fol- 
lows from Eq. (33) that the amplitude of the even harmonics 
vanishes. This is due to the fact that the impurities located 
near the middle of a symmetric contact are important and 
the energies of these impurities depend weakly on the ap- 
plied voltage. Even harmonics appear in the next order of the 
small parameter ( x L )  - I .  

If the amplitude of an alternating voltage is large, so 
that eUo& T I ,  T,  the intensity of odd harmonics is 

This is valid in the case of harmonics characterized by the 
inequalities n < eUo/T, ,  eUo/T. In the case of higher har- 
monics the intensity falls exponentially on increase of n. 

The contribution of two-impurity channels to harmonic 
generation is described by Eqs. (32) and (26). Under a low 
voltage such that eUo ( T ,  and at high temperatures T$ T,,  
we find from Eqs. (27) and (28) that 
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A comparison of Eqs. ( 34)  and ( 36)  demonstrates that the 
contribution of two-impurity channels falls more slowly on 
increase in the temperature or in the harmonic number than 
does the contribution of one-impurity channels. Therefore, 
two-impurity channels dominate harmonic generation even 
when they make only a small contribution to the total con- 
ductance of a contact. 

5. CONCLUSIONS 

As in the case of metal contacts, the scale of voltages 
typical of nonlinear current-voltage characteristics is in- 
versely proportional to the transit time. This time is equal to 
the lifetime of a resonance level. 

Our analysis deals with contacts of length less than the 
length of a thermal jump associated with inelastic processes. 
An increase in the temperature or voltage of a contact en- 
hances the role of inelastic processes. The mesoscopic effects 
then become weaker but do not disappear ~ompletely.~ 

The temperature convenient for the observation of me- 
soscopic effects is of the order of the width of a resonance 
level. This width depends exponentially on the parameter 
xL. This parameter will not be very high if the chemical 
potential is close to the bottom of the conduction band. This 
can be achieved in field-effect transistors when the channel is 
close to the transition to the metallic state. An irregular de- 
pendence of the conductance on the voltage applied to the 
substrate and gate of a field-effect transistor was reported in 
Ref. 9. This effect may be attributed to an irregular depen- 
dence of the mesoscopic conductance on the chemical poten- 
tial. It would be interesting to repeat this experiment at low 
temperatures so that the length ofa thermal jump is compar- 
able with the length of the contact and to determine the cur- 
rent-voltage characteristic. The conductance of one-dimen- 
sional contacts with just one channel was determined in the 
experiments described in Ref. 3. In this case the mesoscopic 
effects were very strong and they could not be described 
quantitatively by the theory presented above. However, a 
qualitative explanation can still be provided. Sharp peaks of 
the conductance considered as a function of the gate voltage 
correspond to resonance tunneling. Wider peaks may corre- 

spond to channels with two resonance impurities. The cur- 
rent-voltage characteristic near such a peak exhibits a nega- 
tive differential conductance region. This can be explained 
by the fact that an increase in the voltage increases the differ- 
ence between the energies of two impurity levels and reduces 
the channel conductance. Harmonic generation was also ob- 
served in these experiments. 

Harmonic generation was reported too in Ref. 10. How- 
ever, in this case (and also in the cases described in Refs. 3 
and 9 )  the length of a contact was greater than the thermal 
jump length, so that an allowance for inelastic processes was 
essential in a quantitative comparison of the theory and ex- 
periment. Temperature-independent resonance tunneling 
without inelastic processes was reported in Ref. 11. How- 
ever, as in Ref. 3, the contacts were not wide enough. In 
contacts of this kind only one channel contributes to the 
current at each energy. Therefore, the mesoscopic effects are 
very strong, depend on the actual distribution of the individ- 
ual impurity, and are not described by a correlation func- 
tion. It would be interesting to carry out such an experiment 
using wide contacts and to determine the current-voltage 
characteristic. 

Investigations of mesoscopic effects in contacts with 
Lifshitz-Kirpichenkov channels were started after the dis- 
cussion of this problem with L. G. Aslamazov. Unfortunate- 
ly, his tragic death prevented him from participating in the 
work reported above. 
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